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Abstract
Face restoration (FR) recovers high resolution (HR)
faces from low resolution (LR) faces and is chal-
lenging due to its ill-posed nature. With years of
development, existing methods can produce qual-
ity HR faces with realistic details. However, we
observe that key facial attributes (e.g., age and gen-
der) of the restored faces could be dramatically dif-
ferent from the LR faces and call this phenomenon
attribute bias, which is fatal when using FR for ap-
plications such as surveillance and security. Thus,
we argue that FR should consider not only image
quality as in existing works but also attribute bias.
To this end, we thoroughly analyze attribute bias
with extensive experiments and find that two major
causes are the lack of attribute information in LR
faces and bias in the training data. Moreover, we
propose the DebiasFR framework to produce HR
faces with high image quality and accurate facial
attributes. The key design is to explicitly model
the facial attributes, which also allows to adjust fa-
cial attributes for the output HR faces. Experiment
results show that DebiasFR has comparable image
quality but significantly smaller attribute bias when
compared with state-of-the-art FR methods.

1 Introduction
Face restoration (FR) is the task of recovering high-resolution
(HR) faces from their low-resolution (LR) counterparts and
finds many applications such as video surveillance, portal
control, and traffic monitoring. FR is challenging as the
problem is under-constrained and LR faces can come with
severe degradation (e.g., motion blur [Kupyn et al., 2018],
noise [Zhang et al., 2017], and JPEG compression [Dong et
al., 2015]). Early methods [Zhou et al., 2015; Huang and
Liu, 2016] treat face image as natural image. They design
methods without exploiting any face characteristics and the
output HR faces suffer from the severe over-smooth prob-
lem. Latter methods [Song et al., 2017; Chen et al., 2018;
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Figure 1: An example of attribute bias, best viewed when zoomed
in. The low-resolution face is downsampled from a high-resolution
face, and three existing face restoration methods produce realistic
output faces. However, key face attributes of the restored faces are
dramatically different from the ground-truth high-resolution face.

Grm et al., 2019] incorporate various face priors (e.g., facial
landmarks, parsing maps, and identity information) to im-
prove image quality, but their outputs are still over-smooth
and the magnification factor usually does not exceed 8x.
State-of-the-art methods, VQFR [Gu et al., 2022], GFPGAN
[Wang et al., 2021] and GPEN [Yang et al., 2021] for exam-
ple, use reference prior or pre-trained generative adversarial
network (GAN) priors and produce faces with realistic and
clear details as illustrated in Figure 1.

However, the restored faces produced by state-of-the-art
methods can be unreliable as their key facial attributes (e.g.,
age and gender are altered) can be dramatically different from
the ground truth. We show such an example in Figure 1,
where a teenage girl is restored to a middle-aged man by three
methods. We call this phenomenon attribute bias, which can
be fatal for applications where facial attributes count, e.g.,
identifying and tracking criminals for surveillance. We quan-
tify attribute bias as how far the restored faces deviate from
the ground truth in attribute and analyze it with extensive ex-
periments, which lead to two main findings. ❶ Attribute bias
becomes more severe when there is less attribute information
in the input LR faces. In particular, the confidence of pre-
trained classifiers for attribute information decreases with the
resolution of the LR faces but the attribute bias increases. ❷
Data prior affects attribute bias. Specifically, we construct
datasets with different attribute distributions for model train-
ing and find that the attributes of the restored faces are biased
toward the majority.

Our findings suggest that attribute bias is difficult to tackle

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1151

https://github.com/Seeyn/DebiasFR


using only the LR faces: low resolution is why we need FR
in the first place and it is difficult to collect large datasets
with balanced distribution on the attribute. Thus, we consider
cases where additional attribute information is provided as
input. For instance, in criminal investigation, attribute infor-
mation of suspects can be obtained from the witnesses, and
when restoring old films, attribute information of the charac-
ters and actors is available. We aim to produce faces with
not only high quality but also small attribute bias. The task is
challenging as images and attributes lie in different domains
and they need to be coherent for high image quality.

We propose the DebiasFR framework for such use cases.
DebiasFR explicitly models facial attributes in the latent
space of GAN priors that are used to produce the HR face
via the decoder model and represents each value in the do-
main of an attribute as an embedding vector. Thus, the output
face can be configured to have certain attributes by activating
the corresponding embedding vectors in the latent space. To
train attribute embedding for encoding facial attributes, be-
sides the usual pixel-wise restoration loss, we introduce an
attribute loss, which measures how well the attributes of the
output face match the input specifications. As a pair of HR
and LR faces allow only one set of attribute information, we
propose a pseudo pair strategy for data augmentation, which
allows using different attribute information for one LR face.
For pseudo pairs, we compute the restoration loss by de-
grading the HR faces into LR ones to tackle the absence of
ground-truth HR faces. We compare DebiasFR with state-of-
the-art FR methods on three datasets from different scenarios.
The results show that DebiasFR matches the baselines in im-
age quality and effectively retains the input facial attributes in
the HR faces. Besides manual attribute inputs, DebiasFR can
also take attribute information produced by pre-trained clas-
sifiers and allows applying different attribute information on
the same LR face for trials.

To sum up, we made the following contributions:

• We observe attribute bias in face restoration, which is
fatal for many applications and suggests that focusing
only on image quality may be problematic.

• We thoroughly analyze attribute bias and trace it to two
main causes, i.e., the lack of attribute information and
bias in training data.

• We propose DebiasFR, which faithfully preserves input
attribute information and produces quality HR faces.

2 Analyzing the Attribute Bias
In this section, we systematically analyze the cause of the at-
tribute bias problem. We target widely used face attributes
including gender and age for our observation, as they can be
easily captured in the real scene and are important biomet-
rics [Hassan et al., 2021]. Meanwhile, our observation exper-
iment is more of a paradigm, it can be extended to include
more attributes if there are any. For data selection, we use
FFHQ [Karras et al., 2019] and CelebA-HQ [Karras et al.,
2018] and their predicted attributes as target images and at-
tributes. Specifically, we use the attribute estimator [Rothe et
al., 2018] to generate gender (i.e., belongs to Male, Female)

(a) Age Confidence. (b) Gender Confidence.

Figure 2: Average attribute prediction confidence for images at dif-
ferent resolutions.

(a) CelebA-HQ. (b) FFHQ.

(c) CelebA-HQ. (d) FFHQ.

Figure 3: Average attribute bias of the methods when restoring im-
ages of different resolutions.

and age (i.e., ranging from 0 to 100 years old). To ensure
the universality of the experiment, we conduct experiments
with four representative face restoration methods, namely,
PLUSE [Menon et al., 2020], PSFRGAN [Chen et al., 2021],
GPEN [Yang et al., 2021], and VQFR [Gu et al., 2022].

Observation 1: The attribute bias increases dramatically
as the input image information decreases.

As illustrated in Figure 2(a) and Figure 2(b), the confidence
of both gender and age continues to decrease as the input im-
age resolution decreases. This indicates that the attribute in-
formation loses as the image resolution becomes lower. As
shown in Figure 3, the lack of attribute information results in
an obvious attribute bias enlargement, which is quantified by
the mean absolute error of age and the ratio of gender change.
As illustrated in Figure 3(a) and Figure 3(b), we can observe
an increase in age bias, as indicated by the rise in the mean
absolute error. It reaches 10 years when the input resolution
decreases to 16 × 16. This phenomenon also occurs with
gender, as shown in Figure 3(c) and Figure 3(d), where the
ratio of gender change dramatically increases as the resolu-
tion decrement.

Experiment settings: we divide the gender attribute into
male and female groups, and the age attribute into five groups:
10-20, 20-30, 30-40, 40-50, 50+. We sample 500 images
from FFHQ and CelebA-HQ and guarantee an equal num-
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(a) Gender. (b) Age.

Figure 4: Observing the impact of training priors on attribute bias.
(a) Impact of the gender ratio and (b) Effect of the age ratio on the
attribute bias.

ber of images from each attribute group. The images are then
downsampled to several different resolutions including 162,
242, 322, 482, 642, 962, and 1282 via bilinear interpolation to
simulate the loss of image information at different extend.

Observation 2: The attributes of the recovered images are
greatly affected by the attribute distribution of training data.

As illustrated in Figure 4(a), as the ratio of males in the
training data increases from 0.2 to 0.8, we observe the same
trend in the confidence of males in the recovered images from
0.46 to 0.56. Specifically, when the ratio of training males is
0.5, that is, half male training images and half female train-
ing images, the confidence of males in the recovered images
is about 0.5. This finding shows that the recovered attribute
information is strongly affected by the attribute distribution
of training data, which has not been explored in existing face
restoration methods. The same observation is also found in
the age attribute in Figure 4(b). Although the age distribu-
tion in the test dataset is uniform, different face restoration
methods are prone to recovery images with a certain similar-
ity to the age distribution of the training data. For example,
all methods tend to restore age attributes to 40-50, which is
biased toward the training data distribution. Some qualitative
results are included in our supplementary material.

Experiment settings: FFHQ is used as training data and
CelebA-HQ is used for testing. We sample 260 images from
CelebA-HQ to ensure an equal number of images for each
attribute group. All images are downsampled to 32 × 32
for restoration. For the training dataset, we adjust the at-
tribute distribution to suit our purpose. Specifically, we sam-
ple 41350 images from FFHQ to generate subsets with dif-
ferent male ratios, including 0.2, 0.5, and 0.8. Similarly, we
sample 14300 images from FFHQ and set the ratio of im-
ages for 10-20, 20-30, 30-40, 40-50, and 50+ age groups to
1:1:1:1:6 and use kernel density estimation to estimate the
age distribution of training and test sets.

3 The DebiasFR Framework
As depicted in Figure 5, the model consists of three parts: An
image encoder, a decoder and some attribute representations.
The encoder adopts a U-Net architecture, while the decoder
is a fixed pre-trained StyleGAN [Karras et al., 2019]. The
attribute representations are embedding vectors in the latent
space of the StyleGAN.

The image information is extracted by the encoder and in-
putted to the decoder by skip-connection structures and latent
space in the form of a latent vector. The base latent vector
from the encoder is adjusted by the addition of attribute rep-
resentations which can be viewed as a movement in the latent
space. After the addition, the decoder reconstructs the image
according to the input from skip-connection structures and la-
tent space. Since the addition of the attribute is independent
of the image input, it can be adjusted after the restoration.
This process can be formulated as follows:

ŷ = fx,θ(
−→n + λ−→r ), (1)

where x is the input image and ŷ is the restored image. θ is
the model parameters and f denotes the model. −→n is the base
latent vector extracted by the encoder and −→r is the attribute
representations. λ is the weight of the attribute representa-
tions. An adaptive feature fusion module employing the at-
tention mechanism is adopted to better utilize the GAN prior,
whose detailed introduction is in supplementary materials.

3.1 Attribute Representation
It has been observed that the latent space of a well-trained
GAN model has great properties in attribute manipulation.
We find that with the architecture modification, the model still
keeps some useful properties from the GAN model.

Property 1: Given the base latent vector −→n , the attribute of
the restored image can be manipulated by moving the latent
vector in an interpretable direction.

The face attribute space is well-bridged with the latent
space [Shen et al., 2020; Shen and Zhou, 2021; Härkönen
et al., 2020]. If there exists a scoring function s for a face at-
tribute and corresponding direction −→r for the attribute, then:

s(fx,θ(
−→n + λ−→r )) = s(fx,θ(

−→n )) + λϵ, (2)

with the ϵ > 0. We call the direction an interpretable di-
rection, and this property indicates that fine-grained manip-
ulation can be achieved by finding out the interpretable di-
rections and adjusting the distance. We train attribute rep-
resentations, which essentially search the direction for cor-
responding attributes, and the weights are used for distance
adjustment.

Property 2: The interpretable directions are almost orthog-
onal with each other [Härkönen et al., 2020].

This property guarantees no need to train representations
for the combinations of different attributes. Instead, we can
train representations for attributes individually and combine
them by addition. This is because adjusting the age attribute
through age representation addition has less impact on gen-
der representation (less movement on the gender direction)
and vice versa. It increases the extensibility of our design to
involve more kinds of attributes. Since if there are N kinds of
attributes and for each attribute, there are n choices, we need
to train Nn representations for combination attributes while
only needing N × n for individual attributes.

According to the two properties, the process of adding at-
tribute representations is designed to be:

ŷ = fx,θ(
−→n +Σαi

−−−−−→rgenderi +Σβj
−−→ragej ), (3)
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Figure 5: The architecture of DebiasFR.

where genderi ∈ {Male, Female}, agej ∈ {0−2, 3−6, 7−
9, 10− 14, 15− 19, 20− 29, 30− 39, 40− 49, 50− 69, 70+}
and αi, βj are the weights for the representations. During
training, the weights of attribute representations are decided
by the attribute label of the image. The correct attribute’s
representation weight is set to 1, and the others are 0.

3.2 Training Strategy
Given the image and its attribute label, we train the model
with two losses: Restoration loss and Attribute loss. The for-
mer requests the model to restore the image faithfully and
realistically, and the latter helps form the attribute representa-
tions. A Pseudo pair strategy is proposed as a data augmen-
tation strategy to help the learning of attribute representation.
If the model is trained by pseudo pair, restoration loss will not
be counted. Instead, a degradation loss is designed to make
up for the absence of restoration loss.
Restoration loss. The restoration loss consists of two parts:
reconstruction loss and adversarial loss. We adopt pixel-wise
L1 loss and perceptual loss as reconstruction loss:

Lper = ∥ϕ(ŷ)− ϕ(y)∥1
+ λstyle∥Gram(ϕ(ŷ))−Gram(ϕ(y))∥1,

Lrec = λLpix
∥ŷ − y∥1 + Lper,

(4)

where y is the ground-truth image and ϕ denotes the pre-
trained VGG-19 network [Simonyan and Zisserman, 2015]
and and we use the conv1, · · · , conv5 feature maps before
activation. The Gram(·) denotes calculating the Gram matrix
[Gondal et al., 2018]. Mapping restored the image and the
target image in Gram matrix statistics can effectively reduce
unpleasant artifacts [Wang et al., 2021]. As for the adversar-
ial loss, we adopt the same design as the pre-trained Style-
GAN network:
Ladv,D = Eŷ[Softplus(D(ŷ))] + Ey[Softplus(−D(y))],

Ladv,G = Eŷ[Softplus(−D(ŷ))],
(5)

where D and G denote the discriminator and the restoration
model.
Attribute loss. The training of attribute representations is
to search the interpretable direction in the latent space. To
accelerate this process, we use attribute loss to constrain the
attribute consistency between the input attribute weights and
attribute information in the restored image. The loss can be
calculated as follows:

Latt = CE(a, P (a|ŷ)), (6)
where CE denotes the cross entropy and a is the attribute
label. The probability P (a|ŷ) comes from a pre-trained clas-
sifier. The classifier’s architecture consists of two parts. The
first part is a pre-trained CLIP [Radford et al., 2021] model,
and the second part is an MLP, which classifies the extracted
feature vectors. The experiments about the superiority of clip
embedding are placed in the supplementary materials.

Pseudo Pair Strategy
Using the restoration loss and attribute loss, the model can
only support training by the image and its correct attribute la-
bel. To alleviate the necessity of attribute labels and improve
the generalized ability of the model, we propose a strategy
to construct pseudo pairs for model training. The strategy
helps the model train with images without ground-truth at-
tribute labels. However, the lack of ground-truth images for
calculating restoration loss can harm the model performance
in image reconstruction. To address this problem, we propose
degradation loss. The loss is designed based on the assump-
tion that the face attribute adjustment for the restored image
should be constrained by its degraded version. When the at-
tribute of the restored image is adjusted, there should not be
a big alteration for its degraded version. It needs a pair of im-
ages for model training: an HR image and its corresponding
LR image. A complex degradation process synthesizes the
LR image:

x = Deg(y) =
(
(y ⊗ k)↓r

+ nσ

)
JPEGq

. (7)
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The HR image y is blurred by convolution in the Gaussian
kernel k and downsampled by a factor r. After that, additive
Gaussian noise nσ is added, and a JPEG compression with
quality q is applied to obtain the LR image x. We keep the
arguments of the degradation and degrade the restored image
ŷ by the same degradation procedure. Then, the degradation
loss is calculated as follows:

Ldeg = ∥Deg(ŷ)−Deg(y)∥1. (8)
The degradation process involves JPEG compression, con-
taining some quantization operations that prevent the gradient
calculation. Following the principle of straight-through esti-
mator [Courbariaux et al., 2015], we treat the quantization
process as an identity function when calculating the gradient
to guarantee the gradient back-propagation.

The attribute loss is also calculated on the pseudo pairs. To
generate the pseudo label, we pre-train an attribute classifier
predicting the labels for the LR images. The top-2 probabil-
ity label will be selected. They are normalized by their sum
and taken as the weight of the attribute representation and the
attribute label.

4 Experimental Evaluation
4.1 Experiment Settings
Training data. We use the FFHQ-Aging dataset [Or-El et
al., 2020] from FFHQ [Karras et al., 2019] as our training
data. Compared to FFHQ, FFHQ-Aging removes images
with large challenges, such as low-confidence annotation pre-
dictions, large pose variations, and severe face occlusion. It
consists of 53831 images and is annotated with both gender
and age. During training, all images are degraded accord-
ing to Eq. (7) to obtain low-quality images. Specifically, the
factor k, r, σ, q are randomly sampled from [0,0.1], [0.8,20],
[0,20] and [60,100], respectively.
Test data. We use three datasets from two application sce-
narios, namely CelebA-HQ [Karras et al., 2018], IMDB-
WIKI [Rothe et al., 2018], and COX [Huang et al., 2015] for
testing. CelebA-HQ consists of 3000 images and is widely
used to evaluate the performance of face super-resolution.
IMDB-WIKI and COX are two datasets that can be used for
real-world face restoration applications. We clean these two
datasets according to the filtering rule detailed in the supple-
mentary materials for our experiment.
Metrics. There are two types of metrics used for evaluation.
The first is the traditional image quality metrics, including
PSNR, SSIM, NIQE [Mittal et al., 2012] and FID [Heusel
et al., 2017], which measure the quality of restored images.
The second is the attribute error metric, which quantifies the
attribute bias in the recovered images, defined as:

Age/Gender error = 1−
∑

y∈D I(C(ŷ) ̸= C(y))

|D|
, (9)

where C denotes the attribute classifier, which we use the
pre-trained model in [Rothe et al., 2018] in our experiments.
I and D denote the indicator function and the image set.
Implementation details. The implementation details, like
parameters setting and weights of the loss terms, are placed
in the supplementary materials.

CelebA-HQ NIQE↓ FID↓ PSNR↑ SSIM↑ Age error (%)↓ Gender error (%)↓

Bilinear 16.59 213.3 23.25 0.6951 60.90 14.37

AACNN 4.132 59.80 22.65 0.6052 43.60 2.930

PULSE 3.765 65.90 20.81 0.5695 68.90 14.16

PSFRGAN 3.982 55.88 21.71 0.6173 50.66 3.500

GFPGAN 3.800 53.87 20.72 0.6001 50.50 4.160

GPEN 3.877 47.39 22.12 0.6152 47.70 3.333

VQFR 3.350 52.09 20.48 0.5699 50.60 3.666

Ours 4.411 48.63 21.71 0.6247 22.30 1.467

Table 1: Quantitative comparison on the CelebA-HQ datasets. Red
denotes the best performance and blue denotes the second best per-
formance.

VQFR GFPGANGPEN Ours TargetAACNN
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Figure 6: Qualitative comparison on the CelebA-HQ dataset. Pre-
dict denotes that the attribute label is obtained from model predic-
tion. Zoom in for best view.

4.2 Main Results
We include five state-of-the-art methods for comparison. All
experiments are performed using their official open-source
models. We consider two comparison tasks: 1) 16× face
super-resolution that the degradation is achieved by fixed
downsampling. 2) blind face restoration that the degradation
process is unknown. It is worth noting that AACNN [Lee et
al., 2018] is an attribute-constrained face restoration model,
which also needs the attribute input but is only designed for
8× face super-resolution. We reproduce the AACNN by
adding additional convolution layers with the same training
data as DebiasFR to support our 16× face super-resolution
task comparison.

Face super-resolution. We conduct super-resolution ex-
periments under a large-scale factor: 16x, which we con-
sider a good simulation of small faces captured in surveil-
lance scenarios. The high-quality images from CelebA-HQ
and FFHQ-Aging are downsampled by bilinear interpolation
and resized back to 512 × 512 to adapt to the input of the
restoration model. The quantitative results are presented in
Table 1. Our method can achieve comparable face restora-
tion results with SOTA methods and apparent alleviation in
attribute bias. The qualitative results are presented in Figure
6. The images show the actual effect of our method in solving
the problem of attribute bias. AACNN also receives attribute
information input, but it suffers from severe artifacts. As for
other methods that can generate quality images, the features
like wrinkles and beards that do not exist in the original hu-
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IMDB NIQE↓ FID↓ Age error (%)↓ Gender error (%)↓

PSFRGAN 4.316 39.04 50.72 1.790

GFPGAN 4.133 32.30 48.30 1.699

GPEN 4.719 54.13 49.25 1.155

VQFR 3.540 33.40 50.29 1.631

Ours 4.482 39.41 26.57 0.929

COX

PSFRGAN 4.521 88.94 61.60 21.19

GFPGAN 5.036 82.52 59.50 20.59

GPEN 4.713 84.01 64.30 22.59

VQFR 4.190 70.00 59.40 22.90

Ours 5.238 80.45 29.50 8.80

Table 2: Quantitative comparison on the IMDB-WIKI and COX
datasets. Red denotes the best performance and blue denotes the
second best performance.

man face might be generated, leading to an age bias. Debi-
asFR circumvents this problem without harming the image
quality.
Blind face restoration. Since the degradation model of the
compared methods is slightly different from each other, in-
stead of synthesizing LR images by our degradation model,
we collect real-world LR images from the IMDB-WIKI
dataset for fairness. We also compare face restoration for
the images from COX, which is challenging as these images
are captured under the surveillance scenario. The quantita-
tive results are presented in Table 2. The qualitative results
are presented in Figure 7 and Figure 8. It can be found that
other methods may convert noise in some regions into wrin-
kles, whiskers, and ornaments which can cause attribute bias.
Also, the repair of wrinkles can be ignored due to information
loss. In contrast, DebiasFR is free from these problems.

4.3 Micro Results
Impact of training data prior. Data-driven method is in-
evitable to be influenced by the data prior. However, we
speculate that the design of attribute representations can al-
leviate the influence of the data prior. The training of a sin-
gle attribute representation is not influenced by gradient re-
sults from other representations during the training. Also, the
pseudo-pair strategy improves the generalized ability of the
model for the low-frequency class images in the training set.
To support our assumption, we repeat the experiments for ob-
servation 2. We propose two metrics for the experiment: Gen-
der var and Age var. Gender var is the variance of the mean
confidence of males. It evaluates the influence of the change
of training set on the model. With lower variance, the model
performance is more robust to the variation of training data.
Age var is the variance of the age of the restored images. A
large variance indicates less concentration on a single age pe-
riod which implies better robustness on the influence of train-
ing data. As listed in Table 3, our method suffers from less
Gender var as the gender distribution change. As for the age
attribute, our method can produce a more balanced age dis-
tribution with higher variance than other methods. Also, our
method suffers from lower attribute error than other methods.
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male
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 female 

Predict
Age: 16
female 
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Age: 23

male 
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 male 
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Predict
Age: 21
 female 
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Figure 7: Qualitative comparison on the IMDB-WIKI dataset. There
is no target image in IMDB-WIKI. Label denotes that the attribute
label is offered by the dataset.

VQFR GFPGANGPEN OursGallery Input

Predict
Age: 18 
female

Predict
Age: 32

 male 

Predict
Age: 33
 female 

Predict
Age: 25
 female 

Predict
Age: 17 
female 

Predict
Age: 47

 male 

Predict
Age: 50 

male 

Predict
Age: 50

male 

Predict
Age: 68 

male 

Predict
Age: 74 

male

Predict
Age: 52
female 

Predict
Age: 47

 male 

PSFRGAN

Predict
Age: 47

 male 

Predict
Age: 42
 female 

Figure 8: Qualitative comparison on the COX dataset. There is no
target image but a gallery image for each person in COX.

Performance gain of inference strategy. Our model ac-
cepts the weight of attributes as input, which can be obtained
from either the ground-truth label or an attribute predictor es-
timation. We pre-trained an attribute predictor to evaluate the
latter setting. Two strategies can be adopted for this two-stage
inference: 1) The weight of the attribute with the largest con-
fidence is set to 1, while the others are 0. 2) The confidences
of the two most confident labels are used as weights (normal-
ized and sum up to 1). As Table 4 shows, our model can
only perform slightly better than baseline methods as the pre-
trained attribute predictor performance is limited. This setting
can be improved by adopting a predictor with better perfor-
mance. The predictor can also predict attributes from other
sources of information like voice or gait, which are exten-
sively discussed in the context of multi-modal research.

Flexibility of manual control. Since the input attribute
weight can be manually adjusted, the user can interact with
the model by tuning the attribute weights, similar to the crim-
inal portrait drawing. Figure 9 shows the manipulation results
with different attribute weights. It can be found that the ma-
nipulation of the face mainly focuses on the high-frequency
parts of the image, such as eyes, beards, wrinkles, etc. These
parts are easily overlooked in image restoration and cause the
attribute bias problem.
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Gender var (10−5)↓ Age var↑ Age error (%)↓ Gender error (%)↓
PSFRGAN 81.81 182.14 54.61 7.179
GPEN 107.38 169.47 51.92 7.948
VQFR 50.11 152.6 60.77 7.308
Ours 8.05 282.6 34.62 1.667

Table 3: Qualitative comparison on the model’s robustness to the
influence of data prior.

Age error (%)↓ Gender error (%)↓
GPEN 47.70 3.33
Attribute predictor 51.43 4.13
Ours (Top1 strategy) 47.50 3.43
Ours (Top2 strategy) 46.80 3.10

Table 4: Quantitative comparison on the CelebA-HQ dataset. We
only list the baseline method with the best performance in CelebA-
HQ to compare with our model.

5 Related Work
Blind face restoration. Blind face restoration, also called
real-world face super-resolution. Previous face super-
resolution only focused on addressing the low-resolution
problem, while blind face restoration should deal with the
complex and unexpected degradations of the captured im-
age in the real scene. Although the complex degradations
lead to a severe loss of face information, existing works can
utilize facial prior information to fill realistic face informa-
tion. GAN prior and reference prior are the current main-
stream used face prior. PULSE [Menon et al., 2020] first
proposed to leverage GAN prior to do face restoration. It
redefined super-resolving a low-resolution image as gener-
ating the image whose corresponding downsampling result
is most similar to it by GAN inversion. Although PULSE
can produce high-quality images, it is time-consuming, and
its capacity to generalize to real scenes is limited. The
subsequent methods [Wang et al., 2021; Yang et al., 2021;
Zhu et al., 2022] address this problem by adopting encoder-
decoder architecture and blending the features through a well-
designed feature fusion module. As for the reference prior,
vector quantization [van den Oord et al., 2017] is the mainly
used technique. The features extracted from the degraded im-
age are used to select the suitable features from high-quality
images, which help restore realistic face [Zhao et al., 2022;
Gu et al., 2022]. Existing methods treat the face restora-
tion task as a combination of face reconstruction and face
generation. The model can generate realistic face informa-
tion to replace the missing information, but the correctness
of the information is not guaranteed. As a result, although
existing methods have achieved great progress in restoring
realistic face details, they can still suffer from the attribute
bias problem. The guided face restoration methods might
alleviate this problem, which require a guidance image and
align the degraded image with it to achieve restoration. GFR-
Net [Li et al., 2018] addresses this issue by training a warp-
ing sub-network. The warped image is concatenated with
the degraded image and fed to the reconstruction network.
ASFFNet [Li et al., 2020] improves this pipeline by adopting
a one-stage framework and employs spatial adaptive feature

Gender

Age

Female Male

70+3-6 10-14 20-29 40-49

Figure 9: The manual manipulation of age and gender for an image.
The first line is manipulated by setting the gender attribute weights
to [2,0], [1,0], [0.5,0.5], [0,1], [0,2]. The second line is manipulated
by setting the corresponding age representation weight to 1.

fusion. Guided-based methods should perform well when the
guidance image is available and the image information per-
fectly aligns with the degraded image. However, it is more
possible to only own simple attribute information (e.g., age
and gender) in real scenes.

Attribute-constrained face super-resolution. Existing
works have explored face super-resolution with supplemen-
tary attribute information [Yu et al., 2018; Lee et al., 2018;
Lu et al., 2018; Li et al., 2019]. Although they only focus
on the low-resolution problem in face restoration, these
works explored the feasibility of involving attribute infor-
mation. The addition of attribute information is achieved
through the concatenation of image features and attribute
features. These works did not yet explore the attribute bias
problem, and they evaluate their methods by traditional
metrics PSNR, SSIM. Instead of directly fusing the image
and attribute information, we map the attribute information
into the latent space of GAN. Utilizing the GAN prior,
DebiasFR produces realistic face restoration. Although the
editability of latent space in face attribute has been stud-
ied by many face editing works [Karras et al., 2019;
Shen et al., 2020; Härkönen et al., 2020;
Shen and Zhou, 2021], we are the first to propose the
attribute bias problem and explore exploiting the editability
to combat the bias problem in image restoration.

6 Conclusions
In this paper, we propose and analyze the attribute bias prob-
lem in face restoration. Existing works can restore LR images
to HR images with realistic face details. However, the recon-
struction of attribute information is still biased. We propose
DebiasFR for combating attribute bias. The framework lever-
ages the editability of GAN’s latent space to support a fine-
grained attribute manipulation on the restoration result. It is
superior to SOTA solutions on attribute accuracy while with
comparable image restoration performance. Furthermore, ex-
ploring the impact of DebiasFR on face recognition is an in-
triguing avenue for future research.
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