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Abstract
Film, a classic image style, is culturally signifi-
cant to the whole photographic industry since it
marks the birth of photography. However, film
photography is time-consuming and expensive, ne-
cessitating a more efficient method for collecting
film-style photographs. Numerous datasets that
have emerged in the field of image enhancement
so far are not film-specific. In order to facilitate
film-based image stylization research, we construct
FilmSet, a large-scale and high-quality film style
dataset. Our dataset includes three different film
types and more than 5000 in-the-wild high reso-
lution images. Inspired by the features of Film-
Set images, we propose a novel framework called
FilmNet based on Laplacian Pyramid for stylizing
images across frequency bands and achieving film
style outcomes. Experiments reveal that the per-
formance of our model is superior than state-of-
the-art techniques. The link of code and data is
https://github.com/CXH-Research/FilmNet.

1 Introduction
Film imaging is a special chemical process [Teubner and
Brückner, 2019] that generates a unique color and graininess,
which is different from that of digital cameras. It is the graini-
ness of film-style images that gives the whole picture a unique
charm. The beauty shown in film photographs has demon-
strated its charm. Hence, film has become a prominent kind
of photography in the minds of many. Years of adjusting by
film makers have made it possible to present films in colors
that meet the aesthetics of the public. As a result, people have
a better sense of the colors presented by film, which has sig-
nificant implications for the field of enhancing the beauty of
images.

Although film style is appealing, film photography is time-
consuming, labor-intensive, and expensive. Therefore, many
individuals begin to minimize the professionalism of film
photography to save time and funds by digitally simulating
film styles. Designed to replace tedious human labor, the
Look-Up-Table (LUT) is a reliable tool for automatic image
color grading. The fundamental premise underlying them is
transforming input into a certain output value using efficient

(a) Input (b) Film style

(c) Result of STAR-DCE (d) Result of Ours

Figure 1: This figure contains input image (a) and film style im-
age (b) from our FilmSet. Although existing deep learning image en-
hancement methods such as STAR-DCE (c) may not perform well,
our method (d) can properly enhance the image towards film style.

lookup and interpolation algorithms. In recent years, deep
learning has pushed the development of LUTs, resulting in
an explosion of fascinating research [Haoyuan Wang and Lau,
2022; Liu et al., 2022; Wang et al., 2022; Song et al., 2021;
Kim et al., 2021; Kim et al., 2020; Yang et al., 2022].

Despite the above-mentioned studies, film stylization has
not yet been investigated. A great number of individuals have
been drawn to film’s timeless and alluring visual qualities.
Nevertheless, many old film cameras lack the ability to ex-
port digital images, and digital cameras cannot replicate film
imagery so that they must rely on LUT for film simulation.

The challenge is that the current LUTs or some methods
focus mostly on global color and lighting, while other de-
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Figure 2: Visual samples demonstrating the variety of the proposed dataset FilmSet, such as various scenes, portraits and film types. Each
image depicts the original image, the Cinema style, the Classic Negative style, and the Velvia style horizontally.

tailed operations may get less consideration. Consequently,
the visual quality may deteriorate and they may become in-
valid, as shown in Figure 1 (c). In addition, the existing image
enhancement datasets MIT FiveK [Bychkovsky et al., 2011]
and HDR Plus [Hasinoff et al., 2016] are designed for broad
use and do not adequately address our issue.

Therefore, our objective is to extract additional features
and enhance photographs to resemble film. Thus, we con-
struct a large scale film-specific dataset that allows us to fa-
cilitate relative film style research, namely the FilmSet. We
found that the features of film style images are very suitable
for the enhancement in multi-frequency, inspired this, we pro-
pose a novel framework utilizing Laplacian Pyramid [Burt
and Adelson, 1987]. We summarize our major contributions
as follows:

1. We are the first to construct a large-scale high-quality
dataset with 3 groups of different film style and a total
of 5,285 high-quality images, called FilmSet.

2. To learn the features in FilmSet properly, we present
FilmNet, a novel multi-frequency framework based on
Laplacian Pyramid for simulating film styles and subse-
quently retouching normal photos.

3. We demonstrate our model is superior to the state-of-the-
art methods via extensive experiments on our dataset and
other publicly accessible benchmark datasets.

2 Related Work
2.1 Lookup tables
A LUT is an array that supplants run-time calculation with a
more straightforward array indexing process. Once the LUT
is created, input images can be retouched using only the mem-
ory access and interpolation without further recalculation.

Previous works focus on mastering LUTs to simulate the
color adjustment curves of well-known picture editing soft-
ware [Song et al., 2021; Kim et al., 2021; Guo et al., 2020;
Bianco et al., 2020]. By learning a large number of image-
independent basic LUTs and combining them with image-
dependent weights, it is possible to predict LUTs that are
adaptable to a variety of picture contents. Therefore, it is vi-
able to use digital LUT to replicate the film imaging process.
However, more refinements are needed to learn the features

properly instead of simply using a single LUT, such as refin-
ing in different frequency bands or focus both on detailed and
global features.

2.2 Photo retouching methods
Previously, experts and professional image editing systems
are required for photo retouching to optimize global tuning
and adjust local aspects. Nowadays, deep learning models
are widely used to retouch photos.

Inspired by bilateral grid processing and local affine
color transforms, HDRNet is proposed to use in smart-
phones [Gharbi et al., 2017]. Then, Hui Zeng et al. pro-
posed to learn 3D LUTs from annotated data using pairwise
or unpaired learning [Zeng et al., 2020]. SepLUT [Yang et
al., 2022], separated a single color transform into component-
independent and component-correlated sub-transforms to en-
hance images. Liang et al. propose LPTN based on Laplacian
Pyramid [Liang et al., 2021]. Nonetheless, few studies have
concentrated on film stylization.

2.3 Image enhancement datasets
Recently, there has appeared many datasets that enable learn-
ing photo enhancement and retouching. MIT FiveK [By-
chkovsky et al., 2011] is a general-purpose dataset which
consists of 5,000 original images of broad situations and
five versions of retouched targets. Another example is HDR
Plus [Hasinoff et al., 2016]. HDR Plus is a burst photogra-
phy dataset which consists of 3640 bursts (made up of 28461
images in total), organized into sub-folders.

Despite these significant efforts, the preceding datasets
were constructed in general scenarios and film-style pho-
tographs were not included. Therefore, the models trained
on them are inappropriate for the film stylization task. In this
study, we produce an expansive FilmSet dataset to help this
endeavor.

3 FilmSet Dataset
As previously stated, current datasets and models for photo
retouching cannot meet the needs of film stylization. To ad-
dress these issues, we develop a vast and high-quality dataset,
called FilmSet. Visual samples are available in Figure 2. We
have three syles in total: Cinema, Classical Negative (Class-
Neg) and Velvia, each style contains 5285 images.
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3.1 Challenges
To develop a worthwhile film-style dataset that meets real-
world needs, we must surmount a number of obstacles. First,
the photographs should be in high-quality raw format. In
contrast to the ubiquitous and widely accessible JPG pho-
tographs, raw photos are far more difficult to get. Second, the
dataset should be extensive and encompass a broad variety
of real-world scenarios in terms of shooting purpose, diverse
settings and portraits, lighting circumstances, and film type,
hence increasing the cost of data collecting.

3.2 Data collection and selection
To gather as many raw film-style photographs as feasible, we
collected license-free samples from individual photographers
and professional photography studios. Additionally, we sup-
plemented some raw format images taken by ourselves.

When gathering data, we carefully inspected the variety of
raw images in terms of the shooting occasion, the portrait,
background scenes and other possible variants. Figure 2 il-
lustrates the variety of images obtained.

3.3 Film simulation
Initially, we amassed over 8000 raw images, after which we
undertook multiple rounds of curation. We initially discarded
photos with poor quality, such as significant motion blur or
out-of-focus, as well as those containing improper informa-
tion. In addition, we meticulously examined photos group
by group, eliminating outliers and duplicates. We acquired a
total of 5285 photographs after the screening.

Using Capture One [One, 2023], we independently applied
three film recipes to each of these 5000 images as ground
truth. Fujifilm is renowned for its world-class film manufac-
turing and quality, and Capture One’s film stylization LUT
imitates three Fujifilm film styles flawlessly due to their ex-
tensive collaboration.

4 Proposed Method: FilmNet
Following the core idea of multi-frequency optimization, ini-
tially, our network splits the input picture into two distinct
areas using Laplacian Pyramid (LP): two high-frequency re-
gions representing textures and edges, and a colored low-
frequency region. The 512 × 512 input image is downsam-
pled to 128 × 128 and sent into the Nonlinear Stylization
Remapping (NSR) block to precisely adjust the color de-
tails, which substantially increases computing efficiency. The
high-frequency sections are input individually into a cascade
network, and a mask is learned and expanded, which saves
our computation volume and enables us to optimize the high-
frequency regions more effectively. Finally, these three im-
ages are recombined into a single picture Iout, downsampled
to a Low-Resolution (LR) image ILR and fed into Triple Tri-
linear Regulator (TTR) alongside the Iout, and the weights
of the TTR are adjusted using a CNN to produce the final
film output. Each node in our network lightweightimal pa-
rameters, resulting a more efficient caltulation. The overall
framework of FilmNet can be seen in Figure 3.

4.1 Multi-frequency Style Transferring
Laplacian Pyramid
Since the characteristics of film style images are very suitable
for multi-frequency enhancement and inspired by [Liang et
al., 2021], Laplacian Pyramid (LP) [Burt and Adelson, 1987]
is applied in the first phase, which is a time-tested image pro-
cessing method. This allows us to refine images in various
frequency domains and obtain high quality results. The LP
stores the picture difference between each level’s blurred ver-
sion and it consists of linearly decomposing a picture into
a series of high- and low-frequency bands, from which the
original image may be precisely rebuilt.

Given an H ×W input image I , it creates a low-pass pre-
diction Î ∈ R

H
2 ×W

2 in which each pixel is a weighted av-
erage of its nearby pixels using a specified kernel. In order
to provide reversible reconstruction, the LP stores the high-
frequency residual h0 as h0 = I0 − Î0, where Î0 represents
the upsampled picture from Î . To further lower the sample
rate and picture resolution, LP repeatedly performs the pre-
ceding procedures on Î to provide a series of low-frequency
and high-frequency components. The whole process can be
wrote as Equation 1:

Li = Gi − PyrUp (PyrDown (Gi)) (1)

where PyrUp and PyrDown represent the upsample and
downsample operations, respectively. Gi is the source image
and Li is the corresponding LP image.

Nonlinear Stylization Remapping
The low-frequency part Ii of the input image is sent to a
UNet-like architecture for detailed color transfer, namely
Nonlinear Stylization Remapping (NSR), which output re-
fined result Îi. Inspired by [Chen et al., 2022], NSR is a sim-
plified nonlinear network with lightweight parameters, which
eliminates extraneous activation functions such as Sigmoid,
Softmax, ReLU, etc. and it has been demonstrated the per-
formance will not drop. The NSR block begins with the ad-
dition of LayerNorm inspired by [Ba et al., 2016] to stabilize
the training process, followed by two convolutions. After the
deformable convolution, SimpleGate and Simplified Channel
Attention (SCA) are utilized to improve the performance.

As shown in Figure 3, SimpleGate separates the features
straight into two pieces along the channel dimension and mul-
tiplies them together and SCA utilizes a direct 1× 1 convolu-
tion technique to transmit data across channels. SimpleGate
can be described as Equation 2:

SimpleGate(X,Y) = X⊙Y (2)

where X and Y are identically sized feature maps, ⊙ is an
element-wise multiplication.

Given a fully-connected layer W , pool represents the
global average pooling procedure that combines spatial data
into channels, ∗ indicates a channel-wise multiplication, SCA
can be described as Equation 3:

SCA(X) = X ∗W pool(X) (3)
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Figure 3: The general structure of our FilmNet network. Initially, the LP divides the input picture into three frequency bands and sends them
to distinct networks. These pieces are combined into the output picture before being transmitted to TTR. Eventually, the TTR performs the
final output processing.

High-frequency Refinement
In this section, we learn a mask on the concatenation of
[Ii−1, up(Ii), up(Îi)], as shown in Figure 3, where up(·)
indicates bilinear upsampling. This mask is gradually en-
larged to improve the remaining high-frequency components
based on the inherent property of LP. Given an input high-
frequency image H and mask M , the output is described as:
Hout = H ⊗ M , where ⊗ represents the pixel-wise mul-
tiplication. This is a simpler method for optimizing global
correction compared to mixed-frequency images since high-
frequency bands vary only little, allowing us to reduce the
calculation volume [Liang et al., 2021].

Then, for better refinement, we introduce Multi-Scale Re-
construction Module (MSRM). There are two components in
MSRM: Global-Aware Convolution and Attentive Aggrega-
tion Node [Cun et al., 2019]. Inspired by [Xu et al., 2022],
Global-Aware Convolution is designed as a two-branch struc-
ture with a lightweight convolution [Wu et al., 2019] and a
standard convolution, focusing on both light and dark areas
of images. The lightweight convolution seeks to learn the
color mapping in the lighter area, while conventional convo-
lution seeks to learn the color mapping in the darker part. The
outputs of these two branches are then blended and added to
the input characteristics using a shortcut in order to increase
contextual similarity and decrease learning difficulty.

The Attentive Aggregation Node is designed for feature ag-
gregation and attention aggregation. Each aggregation node
utilizes a squeeze-and-excitation block [Hu et al., 2018] to re-

weight the significance of each feature channel. Then, a 3×3
convolution is used to compress the features and match the
original channels. At the end of the MSRM, a spatial pooling
pyramid (SPP) [He et al., 2015] is introduced to facilitate the
remixing of multi-context features. As shown in Figure 3, the
1/r in SPP represents the Average Pooling with stride = r.

4.2 Global Refinement
After completing the above procedures, the three images are
combined into one and sent into a lightweight TTR mod-
ule. TTR has been designed to further enhance the tone of
film styles. It consists of three 3-dimensional lookup table
(3DLUT) weight matrices, which are used to perform tri-
linear interpolation. Given a source image I , we first send
it to an Style-Aware Adjuster. The Style-Aware Adjuster is a
CNN network and the weight is borrowed from[Zeng et al.,
2020]. As seen in Figure 3, the Style-Aware Adjuster modi-
fies the weight of three basis 3D LUTs on the left side based
on the input LR image. Given a source image with RGB color{
rI(x,y,z), g

I
(x,y,z), b

I
(x,y,z)

}
, a LUT is performed in order to

determine its position (x, y, z) in the 3D LUT lattice as Equa-
tion 4:

x =
rI(x,y,z)

s
, y =

gI(x,y,z)

s
, z =

bI(x,y,z)

s
(4)

where s = Cmax

M , Cmax refers to the maximum color value
and M indicates the number of bins in each color channel.
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(a) Input (c) UPE (d) STAR-DCE (e) 3D-LUT (f) LPTN (g) Ours (h) Target

Figure 4: Visual comparison of different methods for image enhancement on the FilmSet dataset. Our results (g) are visually better in color
tone and details. Due to space constraints and the inaccessibility of DPE results, we reduce the number of displayed images. The input (a)
and target (h) are the reference images from the FilmSet. Each row of images represents Cinema, ClassNeg and Velvia film style vertically.

In the whole training phase, we use MSE and SSIM as
loss functions as Equation 5 and 6:

LMSE =

∑n
i=1(f(x)− y)2

n
(5)

LSSIM =
(2µxµy + C1) (2σxy + C2)(

µ2
x + µ2

y + C1

) (
σ2
x + σ2

y + C2

) (6)

where µx and µy represent the mean of images X and Y, σxy
indicates the covariance between images X and Y, σx and σy

represent the standard deviation of images X and Y. Normally,
C1 = (K1 × L)2 and C2 = (K2 × L)2 with K1, K2 and L
set to 0.01, 0.03 and 255.

We set the weight of SSIM function to 0.4, so our total
loss function can be wrote as Equation 7:

Ltotal = LMSE + 0.4 ∗ LSSIM (7)

5 Experiments
5.1 Experimental Setup
Datasets
In this section, three datasets are used for training and
evaluation in total: MIT-Adobe FiveK [Bychkovsky et al.,
2011], HDR+ [Hasinoff et al., 2016] and our FilmSet. The
MIT-Adobe FiveK dataset is the largest image enhancement
dataset available, consisting of five retouched versions of
5,000 original pictures under varied conditions. The 3640-
scene HDR+ collection from Google Camera Group for high
dynamic range and low-light enhancement is a burst photog-
raphy dataset. And our FilmSet is a vast high-quality dataset
including over 8000 images with three distinct film genres.
It is configured with 4657 training samples and 638 testing
samples. For easier training and validation, all images are
transformed to 512 × 512 resolution and standard PNG for-
mat. For FiveK and HDR+, we use the same dataset config-
uration as [Zeng et al., 2020] and transform all images to the
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(a) Input (b) DPE (c) UPE (d) LPTN

(e) 3D-LUT (f) SepLUT (g) Ours (h) Target

Figure 5: Visual comparison of various image enhancement methods on the FiveK dataset. Our result (g) is aesthetically superior in terms of
color tone and specifics. The DPE (b) and UPE (c) results greatly deviate from the objective. Their color, exposure and reproduction of fine
details are unsatisfactory. 3D-LUT (e), SepLUT (f) and LPTN (d) are visually better, however the tone mapping is typically too bright or too
dark compared to the target (h).

Fivek HDR+Method PSNR↑ SSIM↑ ∆E↓ PSNR↑ SSIM↑ ∆E↓
HDRNet 19.93 0.798 14.42 23.04 0.879 8.97

DPE 17.66 0.725 17.71 22.56 0.872 10.45
UPE 21.88 0.853 10.80 21.21 0.816 13.05

DeepLPF 24.55 0.846 8.62 N/A N/A N/A
3D-LUT 24.59 0.846 8.30 23.54 0.885 7.93

STAR-DCE 24.50 0.893 N/A 26.50 0.883 5.77
LPTN 22.19 0.878 11.90 N/A N/A N/A

SepLUT 25.02 0.873 7.91 N/A N/A N/A
Ours 25.20 0.906 7.62 28.06 0.916 5.41

Table 1: Quantitative comparisons on the MIT FiveK and HDR+ dataset of different image enhancement methods. ”N/A” indicates that the
result is unavailable and the top result is highlighted in red.

Cinema ClassNeg VelviaMethod PSNR↑ SSIM↑ ∆E↓ PSNR↑ SSIM↑ ∆E↓ PSNR↑ SSIM↑ ∆E↓
HDRNet 35.18 0.990 2.81 35.41 0.988 2.19 34.37 0.975 3.56

DPE 3.98 0.358 47.58 3.79 0.320 49.66 3.48 0.313 52.12
UPE 22.81 0.946 4.22 22.50 0.936 4.97 22.23 0.893 5.00

DeepLPF 36.34 36.34 1.96 33.40 0.978 2.43 34.06 0.956 2.24
3D-LUT 35.49 0.990 1.86 33.82 0.989 1.83 34.07 0.976 2.40

STAR-DCE 28.12 0.949 6.91 25.54 0.945 7.98 34.06 0.956 2.24
LPTN 36.55 0.985 2.12 34.22 0.972 2.72 33.19 0.948 3.32

SepLUT 35.82 0.986 2.42 34.10 0.982 2.34 32.88 0.964 3.60
Ours 40.07 0.993 1.61 38.89 0.992 1.47 37.60 0.981 2.05

Table 2: Quantitative comparisons on the FilmSet dataset of different image enhancement methods. The top result is highlighted in red.

more common 480p resolution and standard PNG format. Evaluation Metrics
In this section, we analyze frameworks utilizing the Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM),
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Fivek HDR+Method PSNR↑ SSIM↑ ∆E↓ PSNR↑ SSIM↑ ∆E↓
D2+NSR+A 25.18 0.902 7.67 27.22 0.905 6.02

D2+NSR+TTR 25.14 0.903 7.63 27.08 0.906 6.24
D2+NSR 25.15 0.901 7.64 26.95 0.888 6.65

D2+UNet+A+TTR 21.98 0.856 11.56 21.67 0.842 11.51
D3+NSR+A+TTR 25.06 0.899 7.68 26.70 0.901 6.78

Ours 25.20 0.906 7.62 28.06 0.916 5.41

Table 3: Ablation studies on the MIT FiveK and HDR+ dataset of different image enhancement methods. The top result is highlighted in red.

Cinema ClassNeg VelviaMethod PSNR↑ SSIM↑ ∆E↓ PSNR↑ SSIM↑ ∆E↓ PSNR↑ SSIM↑ ∆E↓
D2+NSR+A 39.18 0.992 1.61 37.40 0.991 1.55 37.54 0.976 2.06

D2+NSR+TTR 39.46 0.992 1.61 38.65 0.992 1.53 37.60 0.978 2.12
D2+NSR 39.46 0.992 1.91 37.55 0.990 1.71 37.49 0.977 2.61

D2+UNet+A+TTR 32.10 0.987 3.84 30.14 0.975 4.50 33.59 0.969 3.52
D3+NSR+A+TTR 39.29 0.992 1.94 37.50 0.991 1.74 37.36 0.980 2.21

Ours 40.07 0.993 1.61 38.89 0.992 1.47 37.60 0.981 2.05

Table 4: Ablation studies on the FilmSet dataset of different image enhancement methods. The top result is highlighted in red.

and∆E metrics. ∆E is a measure of color variation as expe-
rienced by humans in the CIELab color space [Backhaus et
al., 2011]. Greater PNSR and SSIM values imply increased
performance, whereas a lower ∆E value indicates enhanced
color appearance.

Implementation Details
Our implementation is based on the PyTorch. The typical
Adam optimizer with its default parameters is used to train
our model by NVIDIA RTX A6000. The batch size is set to
1 and the learning rate is set to 1e − 4. Random cropping,
horizontal flipping, and tweaks to brightness and saturation
are used to enrich data. Visual results of FilmSet and FiveK
are available in Figure 4 and 5.

5.2 Comparisons with State-of-the-Arts

A total of eight state-of-the-art methods are selected in this
section: HDRNet [Gharbi et al., 2017], DPE [Chen et al.,
2018], UPE [Wang et al., 2019], DeepLPF [Moran et al.,
2020], 3D-LUT [Zeng et al., 2020], STAR-DCE [Zhang et
al., 2021], LPTN [Liang et al., 2021] and SepLUT [Yang
et al., 2022]. We utilized SOTA models with their provided
pretrained weights in FiveK and HDR+ datasets. For Film-
Set, we trained SOTA models by utilizing their own training
strategies. As demonstrated in Tables 1 and 2, our method
exceeds others across all metrics among the three datasets.
Note that DPE produces bad results, which may be because
its framework is not conducive to learning the distribution of
film style, so we eliminate the visual sample of DPE. Com-
paring FilmSet to other datasets reveals that all approaches
provide excellent results, indicating that our dataset’s distri-
bution is stable and not chaotic like the manually enhanced
dataset.

5.3 Ablation Studies
In this section, we separate the different parts from our archi-
tecture and set DepthLP to 2 and 3. We do not set DepthLP

to 1 due to the CUDA Memory limitation. In Table 3 and
Table 4, “NSR” is Nonlinear Stylization Remapping; “D”
represents the depth of LP, i.e., the DepthLP ; “A” stands
for Attentive Aggregation Node and “TTR” is Triple Trilin-
ear Regulator. The architecture of the best results here is
DepthLP = 2 +NSR+Aggregation+ TTR.

In the ablation experiment, DepthLP is increased to 3 and
4. The module’s controlled variable experiment is conducted
on D4. It is evident that the results do not improve when the
DepthLP is raised. When the DepthLP is set to 4, removing
the TTR module slightly diminishes the results. Likewise,
deleting the A resulted in a small drop as well. When both
A and TTR are eliminated, the data show a slighter decline.
Following this, we substitute NSR with UNet and see a signif-
icant decline in outcomes, indicating that NSR plays a rather
significant influence. In summary, increasing the DepthLP

does not mean a better performance and every component in
our architecture is helpful for improving the results.

6 Conclusion
In this paper, we construct a new dataset FilmSet, a large-
scale and high-quality library of film styles. Our dataset con-
sists of three distinct film types and over 5000 photos cap-
tured in the field in raw format. In order to learn the fea-
tures of the FilmSet images more properly, we propose the
FilmNet, a new framework based on Laplacian Pyramid for
refining multi-frequency pictures and achieving high-quality
results. We demonstrate that the performance of our model
is superior to the state-of-the-art strategies through extensive
experiments. This may facilitate the film style transferring
researches in deep learning methods.
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