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Abstract
Decision-based methods have shown to be effec-
tive in black-box adversarial attacks, as they can
obtain satisfactory performance and only require
to access the final model prediction. Gradient es-
timation is a critical step in black-box adversar-
ial attacks, as it will directly affect the query effi-
ciency. Recent works have attempted to utilize gra-
dient priors to facilitate score-based methods to ob-
tain better results. However, these gradient priors
still suffer from the edge gradient discrepancy issue
and the successive iteration gradient direction is-
sue, thus are difficult to simply extend to decision-
based methods. In this paper, we propose a novel
Decision-based Black-box Attack framework with
Gradient Priors (DBA-GP), which seamlessly inte-
grates the data-dependent gradient prior and time-
dependent prior into the gradient estimation proce-
dure. First, by leveraging the joint bilateral filter to
deal with each random perturbation, DBA-GP can
guarantee that the generated perturbations in edge
locations are hardly smoothed, i.e., alleviating the
edge gradient discrepancy, thus remaining the char-
acteristics of the original image as much as possi-
ble. Second, by utilizing a new gradient updating
strategy to automatically adjust the successive it-
eration gradient direction, DBA-GP can accelerate
the convergence speed, thus improving the query
efficiency. Extensive experiments have demon-
strated that the proposed method outperforms other
strong baselines significantly.

1 Introduction
Deep neural networks have achieved great success on vari-
ous of tasks, such as image classification [He et al., 2016;
Pham et al., 2021], object detection [Wang et al., 2021;
Wang et al., 2022] and speech recognition [Chiu et al., 2018;
Park et al., 2019]. However, recent researches demonstrate

∗Corresponding author.

that neural networks are significantly vulnerable to adversar-
ial examples, which are almost indistinguishable from nat-
ural data in human perception and yet classified incorrectly
by the models [Goodfellow et al., 2015; Cao et al., 2021;
Zhong et al., 2022]. This phenomenon probably causes a
large risk in many real-world applications, such as spam de-
tection [Wu et al., 2017], automatic drive [Luo et al., 2021;
Muhammad et al., 2021] and economic services [Cintas et
al., 2020]. Investigating the generation rationale behind ad-
versarial examples seems a promising way to improve the ro-
bustness of neural networks, which motivates the research of
adversarial attacks. Based on the accessibility level of vic-
tim models, adversarial attacks can be categorized into white-
box attacks and black-box attacks. For white-box attacks
[Moosavi-Dezfooli et al., 2016; Carlini and Wagner, 2017],
the attackers are assumed to have full knowledge about the
target model, including training data, model architecture and
parameters. Therefore, it is easy to utilize gradient informa-
tion to lead these methods to generate adversarial examples.
However, these attack methods are overly idealistic and even
impracticable in real application scenarios, as most model de-
velopers are impossible to release all the model and data in-
formation in public. For black-box attacks, the attackers only
have extremely limited knowledge about the target model,
e.g., the predicted labels or confidence scores, so this kind
of adversarial attacks seems more promising and practical.

Existing black-box attacks mainly contain transfer-based
methods, score-based methods and decision-based methods.
Transfer-based methods [Guo et al., 2020; Wu et al., 2020;
Qin et al., 2022] aim to train a surrogate model to imitate
the behaviors of the target model and then conduct the white-
box attacks on it. This kind of attack needs a huge number
of training data that are similar to the data used for train-
ing the target model, which is difficult to achieve in practice.
Score-based attacks [Guo et al., 2019; Li and Chen, 2021;
Li et al., 2020b] require that the target models provide the
predicted scores, which is also impractical in real-world ap-
plications since they may only offer the predicted labels.
Compared with transfer-based and score-based approaches,
decision-based methods [Chen et al., 2020; Li et al., 2020a]
can only use discrete predicted labels to attack the target
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model, thus seem more realistic and feasible. However, ex-
isting decision-based attack models are not perfect since they
usually rely on a large number of queries to generate adver-
sarial examples.

Gradient estimation is the key point in decision-based
methods, as it consumes the majority of all the queries. Re-
cently, [Ilyas et al., 2019] attempt to integrate two types of
gradient priors, i.e., data-dependent prior and time-dependent
prior, into score-based methods to facilitate them to obtain
better performance. Nevertheless, these two priors are still
difficult to simply extend to decision-based methods, as they
suffer from the following drawbacks. (1) The data-dependent
prior follows a strong assumption, that is, if two pixels are
spatially close to each other, then their estimated gradients
may have similar directions. This prior only takes spatial in-
formation into consideration but ignores the importance of
the values of pixels. In fact, only the pixels have similar val-
ues and are spatially close, their estimated gradients may be
similar. The sharp change of pixel values usually appears on
the edge of objects. Therefore, to estimate the gradients ac-
curately, it is essential to address the edge gradient discrep-
ancy problem. (2) The time-dependent prior assumes that
the gradients of successive steps are highly correlated and
tend to be similar, which is suitable for score-based meth-
ods. This is because that in the iterative procedure of score-
based methods, the distances between successive adversarial
samples keep small, so the gradient direction of successive
steps will also be similar. However, in the iterative procedure
of decision-based methods, the distances between successive
adversarial samples will be relatively large in the beginning,
but become small subsequently. This indicates that the gra-
dient direction of successive steps should have a similar ten-
dency. In addition, when the similarity between estimated
gradients at current and previous iterations is very large, it
means that decision-based methods have fully explored in the
estimated gradient direction, so a new gradient direction is
needed to accelerate the convergence speed. Based on the
above analysis, we need to design a crafty strategy to adjust
the successive iteration gradient direction, thus boosting the
query efficiency.

In this paper, we propose a novel Decision-based Black-
box Attack framework with Gradient Priors (DBA-GP). To
tackle the edge gradient discrepancy problem, we propose to
leverage the data-dependent prior via the joint bilateral fil-
ter, which can not only smooth similar gradients for spatially
close pixels with similar values, but also diversify gradients
for pixels with different values. To deal with the successive
iteration gradient direction problem, we simultaneously con-
sider the distance between successive adversarial samples and
the gradient direction of successive steps as additional judg-
ment conditions, thus can generate a more appropriate gra-
dient direction to improve the query efficiency. In summary,
our contributions are as follows:

• We propose a new decision-based black-box adversarial
attack framework with two simple yet effective gradient
priors, thus can generate high-quality adversarial exam-
ples efficiently.

• We discover two fundamental drawbacks of existing gra-

dient priors, i.e., the edge gradient discrepancy issue and
the successive iteration gradient direction issue. To over-
come these limitations, we utilize the joint bilateral filter
and two specially-designed gradient updating judgement
conditions, and integrate them into decision-based attack
models seamlessly.

• We conduct extensive experiments against both offline
and online models to validate the superiority of the pro-
posed method compared with other strong baselines.

2 Related Work
Decision-based methods only require discrete predicted la-
bels to attack the target model, thus seem more feasible and
promising in real-world applications. [Brendel et al., 2018]
propose the first decision-based attack method (boundary at-
tack), which starts with a large perturbation and then per-
forms a random walk on the decision boundary to reduce the
distance to the target image, but the use of the standard nor-
mal distribution affects the efficiency of the attack. Biased
boundary attack [Brunner et al., 2019] uses some biases that
can significantly reduce the number of queries. SIGN-OPT
[Cheng et al., 2020] utilizes the gradient sign estimation to
improve the query efficiency. EA [Dong et al., 2019] de-
signs an evolutionary algorithm to carry out the attack. HSJA
[Chen et al., 2020] utilizes the binary information on the deci-
sion boundary to estimate the gradient direction, which pro-
vides a fundamental and powerful framework for decision-
based methods. QEBA [Li et al., 2020a] employs three sub-
space optimization methods that can reduce the number of
queries and further improve the performance. PSBA [Zhang
et al., 2021] further improves the query efficiency via pro-
gressive scaling techniques. However, it requires to train the
GAN model with more additional data. SurFree [Maho et al.,
2021] attempts to move along diverse directions guided by the
geometrical properties of the decision boundary. AHA [Li et
al., 2021] utilizes historical query information to improve the
random walk optimization. Although decision-based meth-
ods have shown to be effective in adversarial attacks, they are
complicated and still require a large number of queries.

3 Problem Formulation
Given an input image x ∈ [0, 1]dim, considering an m-class
image classification model F : Rdim → Rm, we can get
the prediction result by y = argmaxi [F (x)]i, where [F (x)]i
represents the probability score belonging to the i-th class,
and i ∈ {1, 2, ...,m}. Given an image x∗ with the true label
y∗, the targeted attack aims to find an adversarial image xadv

such that the model outputs a pre-specified class yadv under
the constraint that d (x∗, xadv) is minimum, where d(·) is a
distance measure function like l0, l2 or l∞ norm. Formally,

min
xadv

d (x∗, xadv) , s.t., ϕx∗(xadv) = 1, (1)

where ϕx∗(x) : [0, 1]dim −→ {−1, 1} is a sign function de-
fined as:

ϕx∗(x) = sign (Sx∗) =

{
1 if Sx∗(x) > 0,
−1 otherwise.

(2)
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Here Sx∗ : Rdim → R is a real-valued function defined as:

Sx∗(x) = [F (x)]yadv
− max

y ̸=yadv

[F (x)]y. (3)

From Eq. (3), it is easy to observe that x is adversarial if
and only if Sx∗(x) > 0. When Sx∗(x) = 0, x is exactly on the
decision boundary. Note that in the decision-based black-box
attack scenario, we can only get the value of function ϕx∗(x).
For ease of representation, hereinafter we represent the func-
tions Sx∗(x) and ϕx∗(x) as S(x) and ϕ(x) respectively.

In contrast, the untargeted attack aims to find an adversar-
ial image with any incorrect category. It is worth noting that
by simply treating all classes different from y∗ as the class
yothers, we can convert an untargeted attack to a targeted at-
tack, hence only considering the targeted attack is enough.

In terms of decision-based black-box adversarial attacks,
the basic idea is to first select an initial adversarial image xinit
with predicted category label yadv , then move xinit towards
x∗ as close as possible and keep yadv unchanged simultane-
ously. In this paper, we focus on this type of method and at-
tempt to improve this procedure with two simple yet effective
gradient priors.

4 Decision-Based Black-Box Attack with
Gradient Priors

4.1 The Overall Framework
The DBA-GP method utilizes a similar framework with
the powerful decision-based boundary attack method HSJA
[Chen et al., 2020]. It adopts a sampling-based gradient es-
timation component to guide the search direction. Specifi-
cally, it first selects xinit as an initial adversarial image, and
then performs an iterative algorithm consisting of the follow-
ing three parts: (1) Estimating the gradient direction of the
current adversarial image; (2) Moving the current adversarial
image along the direction of the estimated gradient; (3) Ap-
proaching the decision boundary via a binary search strategy.

Estimating the Gradient
Denote by x(t)adv the adversarial image on the decision
boundary in the t-th iteration, the direction of the gradient
∇Sx∗

(
x(t)adv

)
can be approximated via the Monte Carlo esti-

mation [Mooney, 1997]:

∇̃S
(

x(t)adv, δt

)
=

1

B

B∑
b=1

ϕ
(

x(t)
adv + δtub

)
ub, (4)

where {ub}Bb=1 are d-dimensional random perturbations with
the unit length, and δt is a small positive parameter. As [Chen
et al., 2020] state, this estimate is accurate only if x(t)

adv is on
the decision boundary.

Moving Along the Gradient Direction
When obtaining the estimated gradient, DBA-GP moves x(t)adv
along the gradient direction with the following formula:

x̃(t)adv = x(t)adv + ξt ·
∇̃S

(
x(t)adv, δt

)
∥∥∥∇̃S

(
x(t)
adv, δt

)∥∥∥
2

, (5)
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Figure 1: (a) The ratio of similar adjacent pixel gradients in various
adjacent pixel difference intervals. I1, I2, · · · , I5 represent the inter-
vals [0, 0.2], (0.2, 0.4], · · · , (0.8, 1.0] respectively. (b) The average
cosine similarity of the gradients between the current and previous
steps along the optimization trajectory of HSJA.

where ξt is the step size at the t-th step, and Eq. (5) should
satisfy the constraint that ϕx∗

(
x̃(t)adv

)
= 1.

Approaching the Boundary
After moving along the gradient direction, x̃(t)

adv may be far
from the decision boundary. To ensure that x(t+1)

adv still ap-
proaches the decision boundary, DBA-GP pulls x̃(t)

adv towards
the target image x∗ by:

x(t+1)
adv = αt · x∗ + (1− αt) · x̃(t)adv, (6)

where the coefficient αt ∈ [0, 1], which can be determined by
a binary search method.

4.2 Gradient Estimation with Priors
In the overall framework shown in Section 4.1, estimating
the gradient plays the most crucial role as its accuracy will
directly affect the query efficiency of the method. Obviously,
increasing the value of B is a straightforward way to improve
the quality of gradient estimation. However, in adversarial
attack scenarios, as the algorithm is iterative and limited by
a fixed query budget, an excessively large B is unreasonable
and impracticable.

Previous studies [Ilyas et al., 2019; Li et al., 2020a] at-
tempt to use data-dependent and time-dependent gradient pri-
ors to obtain more accurate gradient estimation results, which
have achieved promising performance. However, they still
suffer from the edge gradient discrepancy issue and the suc-
cessive iteration gradient direction issue. In the following,
we will dissect the reasons behind the above issues and pro-
pose the corresponding solutions.

Gradient Estimation with the Data-Dependent Prior
The spatially local similarity (i.e, pixels that are close to-
gether tend to be similar) is a well-known prior in the image
domain. Inspired by this fact, the data-dependent gradient
prior means that the gradients of adjacent pixels tend to be
similar. Specifically, if two coordinates (i, j) and (k, l) in
∇Sx∗(x) are close, then we have ∇Sx∗(x)i,j ≈ ∇Sx∗(x)k,l.

Existing works [Ilyas et al., 2019; Li et al., 2020a] attempt
to utilize the average-pooling, bilinear interpolation or inverse
discrete cosine transform techniques to ameliorate the accu-
racy of gradient estimation, and have shown to be effective in
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black-box adversarial attacks. However, they still suffer from
the edge gradient discrepancy problem. Specifically, consid-
ering the image edge locations, it is easy to discover a phe-
nomenon that although two coordinates are close, their pixel
values are usually different, then their gradients also tend to
be different.

To confirm our observation, we randomly select 50 images
from ImageNet [Deng et al., 2009]. For each image, we first
normalize all pixels into [0, 1], calculate the absolute values
of adjacent pixel differences, and assign them into five in-
tervals [0, 0.2], (0.2, 0.4], (0.4, 0.6], (0.6, 0.8] and (0.8, 1.0].
Then we calculate the ratio of similar adjacent pixel gradients
averaged over all images. Here we treat the gradient values
with the same positive and negative signs to be similar. Fig-
ure 1 (a) shows the statistic results about the ratio of similar
adjacent pixel gradients in various adjacent pixel difference
intervals. It can be seen that with the increase of the adjacent
pixel difference, the ratio of similar adjacent pixel gradients
tends to be small. That is to say, when the adjacent pixel
values are close, the corresponding adjacent pixel gradients
are inclined to be close. On the contrary, when the adjacent
pixel values are large, the corresponding adjacent pixel gra-
dients will be disparate. According to the above analysis, the
data-dependent prior should be redefined as: the gradients of
adjacent pixels tend to be similar if their pixel values are sim-
ilar.

The joint bilateral filter [Petschnigg et al., 2004] is a non-
linear, edge-preserving, and noise-reducing smoothing filter,
which has the following advantages. If nearby pixels are sim-
ilar, it can replace the intensity of each pixel with a weighted
average of intensity values from nearby pixels. If nearby pix-
els are diverse, it will not smooth these nearby pixels. To
better leverage the data-dependent prior, we propose to use
joint bilateral filter to deal with each random perturbation ub

with x∗ as the guide image. Formally,

ũb = J (ub, x∗) , (7)

where ũb is the filtered perturbation which can be used to
replace ub. x∗ is the original target image, which can pro-
vide abundant image characteristic information. J is the joint
bilateral filter. In the following, we give the concrete compu-
tation formula of J .

Given an image A (n×n size) and a guided image G (n×n
size), after passing through the joint bilateral filter J , the filter
output of Ai,j can be calculated by:

J(A,G)i,j =
1

w(i, j)

∑
(k,l)∈Ω

gs(i, j, k, l)gr(Gi,j , Gk,l)Ak,l,

(8)
where Ω represents a neighborhood of pixel coordinates
(i, j). w(i, j) is a normalization term which can be obtained
by:

w(i, j) =
∑

(k,l)∈Ω

gs(i, j, k, l)gr(Gi,j , Gk,l). (9)

The functions gs(i, j, k, l) and gr(Gi,j , Gk,l) are computed
by:

gs(i, j, k, l) = exp

(
− (i− k)2 + (j − l)2

2σ2
s

)
, (10)

gr(Gi,j , Gk,l) = exp

(
− (Gi,j −Gk,l)

2

2σ2
r

)
, (11)

where σs and σr are parameters which can be used to adjust
the spatial similarity and the range (intensity/color) similarity
respectively.

Gradient Estimation with the Time-Dependent Prior
The time-dependent prior means that the gradients of succes-
sive steps are heavily correlated and tend to be highly similar,
which is also called the multi-step prior. [Ilyas et al., 2019]
attempt to extend the time-dependent prior to score-based
attack methods and have achieved impressive performance.
However, it is difficult to be directly applied to decision-based
attack methods. The reasons are as follows. For score-based
attack methods, they start from the original image and then
move along the gradient direction until an adversarial image
is found. Thus, the distances between successive adversarial
samples in the whole iterative procedure will keep small, and
the gradient direction of successive steps will also be similar.
However, for decision-based attack methods, they first select
an adversarial image (outside the decision boundary) which is
far away from the original image, and then gradually reduce
its distance from the original image. Therefore, the distances
between successive adversarial samples in the iterative pro-
cedure will be relatively large in the beginning, but become
small later on. In the same manner, the gradient direction of
successive steps should keep a similar tendency.

To validate our hypothesis, we randomly sample 50 target
images from ImageNet and calculate the average cosine sim-
ilarity of the gradients between successive steps based on the
decision-based boundary attack method HSJA [Chen et al.,
2020]. Figure 1 (b) shows the average cosine similarity of
the gradients between the current and previous steps along
the optimization trajectory of HSJA. It can be seen that in the
first 50 steps the gradients between successive steps are not
very similar, but after that they become closer and closer.

Based on the above analysis, we attempt to use the follow-
ing formula to estimate the gradient:

∇̃S
(

x(t)adv, δt

)
=

1

B

B∑
b=1

ϕ
(

x(t)
adv + δtub

)
ub

+
1

m

∑
x
(j)
adv∈X (t)

∇̃S
(

x(j)adv, δj

)
,

(12)

where X (t) = {x(j)adv : max(1, t−k) ≤ j ≤ t−1, Dt,j < τ} is
the set of intermediate-process generated adversarial images
that satisfy some conditions. m is the number of images in
X (t). Dt,j = d

(
x(t)adv, x(j)

adv

)
is the distance between x(t)adv to

x(j)adv . k represents that there are k iterations before the current
iteration step. τ is a threshold parameter.

For Eq. (12), we first use X (t) to filter out the intermediate-
process adversarial images with large distances, and then uti-
lize the remaining ones to facilitate the current gradient esti-
mation. Obviously, it will increase the accuracy of the gra-
dient estimation significantly. However, it cannot lead to an
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Algorithm 1 Gradient Estimation with Priors
Input: An image x∗, the number of random sam-
pling B, the joint bilateral filter J , the time-dependent
length k, the decision function ϕ, the perturbation
size δt, the distance function d, the adversarial im-
age x(t)adv in the t-th iteration, the adversarial image set
{x(j)

adv : max(1, t − k) ≤ j ≤ t − 1}, the gradient estimation

result set {∇̂S
(

x(j)
adv, δj

)
: max(1, t− k) ≤ j ≤ t− 1}, the

threshold parameters τ and ρ.
Output: The estimated gradient ∇̂S

(
x(t)
adv, δt

)
.

1: Sample B random perturbations {ub}Bb=1
2: Deal with perturbations using the joint bilateral filter:

{ũb}Bb=1 =
{
J(ub, x(t)adv)

}B

b=1
3: Estimate the gradient with the following formula:

∇̃S
(

x(t)
adv, δt

)
= 1

B

∑B
b=1 ϕ

(
x(t)adv + δtũb

)
ũb

4: ∇S
(t)
p = 0

5: for j in [max(1, t− k), t− 1] do
6: Dt,j = d

(
x(t)adv, x(j)

adv

)
7: St,j =

〈
∇̃S

(
x(t)adv,δt

)
,∇̂S

(
x(j)adv,δj

)〉
∥∥∥∇̃S

(
x(t)adv,δt

)∥∥∥
2

∥∥∥∇̂S
(

x(j)adv,δj
)∥∥∥

2

8: if Dt,j < τ and St,j > ρ then
9: ∇S

(t)
p = ∇S

(t)
p + ∇̂S

(
x(j)adv, δj

)
10: end if
11: end for
12: if ∇S

(t)
p ̸= 0 then

13: ∇S
(t)

p =
∇S(t)

p∥∥∥∇S
(t)
p

∥∥∥
2

14: else
15: ∇S

(t)

p = 0
16: end if

17: ∇̂S
(

x(t)
adv, δt

)
=

2∇̃S
(

x(t)adv,δt
)

∥∥∥∇̃S
(

x(t)adv,δt
)∥∥∥

2

−∇S
(t)

p

18: return ∇̂S
(

x(t)adv, δt

)

improvement in query efficiency. This is because in each iter-
ation, decision-based attack methods will move a step along
the estimated gradient direction as large as possible, which
means that decision-based attack methods have fully explored
in that gradient direction. Therefore, if the similarity between
estimated gradients at current and previous iterations is very
large, we need to generate a new gradient direction to speed
up the algorithm convergence, thus improving the query effi-
ciency.

To achieve the above goal, we define the set A(t) = {x(j)
adv :

max(1, t − k) ≤ j ≤ t − 1, Dt,j < τ, St,j > ρ}, which
contains intermediate-process generated adversarial images
that satisfy some conditions. Dt,j = d

(
x(t)
adv, x(j)adv

)
is

the distance between x(t)adv to x(j)
adv . St,j is the cosine sim-

ilarity between ∇̃S
(

x(t)adv, δt

)
and ∇̂S

(
x(j)
adv, δj

)
, where

∇̃S
(

x(t)adv, δt

)
is the estimated gradient in the t-th iteration

with Eq. (4), and ∇̂S
(

x(j)adv, δj

)
is the final estimated gra-

dient in the j-th iteration. τ , ρ and k are hyperparameters.
Based on the above definitions, in the t-th iteration we can
first estimate the gradient ∇̃S

(
x(t)adv, δt

)
with Eq. (4), and

then obtain the final gradient ∇̂S
(

x(t)adv, δt

)
with:

∇̂S
(

x(t)adv, δt

)
=

2∇̃S
(

x(t)
adv, δt

)
∥∥∥∇̃S

(
x(t)adv, δt

)∥∥∥
2

−∇S
(t)

p , (13)

where ∇S
(t)

p is the average estimated gradient of adversarial
images in A(t), and it can be calculated by:

(1) If A(t) is not an empty set, we first compute ∇S
(t)
p by:

∇S(t)
p =

∑
x
(j)
adv∈A(t)

∇̂S
(

x(j)adv, δj

)
, (14)

and then compute ∇S
(t)

p by:

∇S
(t)

p =
∇S

(t)
p∥∥∥∇S
(t)
p

∥∥∥
2

. (15)

(2) If A(t) is an empty set, we simply set ∇S
(t)

p = 0. By

using ∇̂S
(

x(t)
adv, δt

)
as the estimate of the gradient direction,

we can better leverage the time-dependent prior to improve
the query efficiency of decision-based attack methods.

Algorithm 1 summarizes the details about how to integrate
data-dependent and time-dependent priors into the gradient
estimation procedure.

5 Experiments
5.1 Datasets
For offline experiments, we first conduct preliminary experi-
ments on a simple dataset MNIST [LeCun, 1998]. Then we
make a comprehensive evaluation on ImageNet [Deng et al.,
2009] and Celeba [Liu et al., 2015] datasets. For different
datasets, we exactly follow [Li et al., 2020a] to randomly se-
lect 50 pairs of correctly classified images from the validation
set of each dataset as the target images and the initial adver-
sarial images. For online experiments, we attack the commer-
cial face recognition API Face++1.

5.2 Victim Models
For MNIST, we train a neural network consisting of two con-
volutional layers and two fully connected layers as the victim
model. For ImageNet, we choose two well-known pre-trained
models ResNet50 [He et al., 2016] and VGG16 [Simonyan
and Zisserman, 2015] as the victim models. For Celeba, we
utilize samples from 100 people to fine-tune the pre-trained
models ResNet50 and VGG16 on ImageNet, and take the
fine-tuned models as the victim models.

1https://www.faceplusplus.com/face-comparing/.
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5.3 Baselines
We compare the proposed method with the state-of-the-art
targeted decision-based black-box attacks: EA [Dong et al.,
2019], SIGN-OPT [Cheng et al., 2020], HSJA [Chen et al.,
2020], QEBA [Li et al., 2020a], SURFREE [Maho et al.,
2021], and AHA [Li et al., 2021].

5.4 Implementation Details
Evaluation metrics. The first evaluation metric is the av-
erage mean squared error (MSE) between the generated ad-
versarial image and the target image as the number of queries
increases. A smaller MSE means that the adversarial image
is closer to the target image and also indicates that the attack
quality is better. Under the same query budget, the lower the
achieved MSE, the higher the query efficiency of the attack.
The second evaluation metric is the attack success rate (ASR)
of reaching a specified MSE threshold under a limited budget
of queries. For the same query budget, a higher ASR indi-
cates better attack quality.
Parameter settings. We develop our framework based on
the FoolBox library [Rauber et al., 2017; Rauber et al., 2020].
The image size of MNIST is 28×28, we set the spacial sensi-
tivity σs = 2 and the range sensitivity σr = 8/255. For other
datasets, we resize their image size to 3× 224× 224, and set
σs = 8 and σr = 32/255. We set the time-dependent length
k = 5, the MSE threshold τ = 0.2 and the cosine similarity
threshold ρ = 0.1 respectively. We set B = 100, which is
the number of perturbations selected in each gradient estima-
tion. We use the l2 norm as the distance measure function
d(·). In addition, we set the step size ξt =

∥∥∥x(t)adv − x∗
∥∥∥
2
/
√
t

and the perturbation size δt =
∥∥∥x(t)

adv − x∗
∥∥∥
2
/dim, where t

is the iteration number and dim is the input dimension.

5.5 Experimental Results
Contribution analysis of each gradient prior. To make a
comprehensive analysis of different gradient priors, we con-
duct the ablation study on a simple dataset MNIST, which
has a smaller image resolution of 28× 28, thus can converge
faster and demonstrate the contribution of each gradient prior
clearly. Specifically, we compare the following five cases.

• DBA-GP means the DBA model with both time-
dependent prior and data-dependent prior.

• Without data-dependent prior (w/o DP) means the
DBA model with only time-dependent prior.

• Without time-dependent prior (w/o TP) means the
DBA model with only data-dependent prior.

• Without DP and TP (w/o DP & TP) means the DBA
model without both gradient priors.

• With only naive time-dependent prior (Naive TP)
means the DBA model with only the naive time-
dependent prior described in Eq. (12).

Figure 2 shows the curves of MSE versus the number of
queries when using different gradient priors on MNIST. X-
axis represents the number of queries, and Y -axis denotes the
average MSE value. From the results, we can get that w/o DP
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Figure 2: The curves of MSE versus the number of queries when
using different gradient priors (lower is better).

and w/o TP perform better than w/o DP & TP, which indicates
that using arbitrary gradient prior properly could improve the
performance to some extent. We can also observe that the
naive time-dependent prior described in Eq. (12) will bring
some side effects on performance. The reason is that Eq. (12)
ignores the gradient direction change at the current and previ-
ous iteration. In addition, it also can be seen that DBA-GP us-
ing both data-dependent and time-dependent gradient priors
can achieve the best performance. The reason is that DBA-
GP utilizes the joint bilateral filter and two specially-designed
judgement conditions to better leverage data-dependent and
time-dependent gradient priors respectively, thus avoiding the
edge gradient discrepancy issue and the successive iteration
gradient direction issue.

Comparison with baselines. Table 1 shows the perfor-
mance against different baselines on ImageNet and Celeba
with 1K, 3K, and 5K queries respectively. The main results
in the table are MSE values, and the results in parentheses
represent ASR values when the MSE threshold is 0.001. The
best results are highlighted in bold. It can be observed that
DBA-GP performs much better than other strong baselines.
Specifically, in terms of MSE under 3K queries, no matter
attacking ResNet50 or VGG16, DBA-GP can have less than
one-half of MSE values than other models on ImageNet, and
even less than one-third of MSE values on Celeba. In terms
of ASR with 3K queries, when attacking ResNet50 on Ima-
geNet and Celeba, DBA-GP can improve the ASR values by
16% and 40% respectively compared with the best baseline.
The reason is that DBA-GP utilizes more gradient prior infor-
mation, which enables it can obtain better adversarial images
within less number of queries. In addition, as the query num-
ber increases, each method tends to achieve a lower MSE and
a higher ASR. But the convergence speed of DBA-GP is the
fastest, which makes it more promising in real applications.

Attack the real-world API Face++. We also attack the
real-world face recognition API Face++ from MEGVII. The
API Face++ could give the prediction confidence score of
whether two images contain the same person. In the experi-
ment, when the returned confidence score is greater than 60%,
we think the corresponding images are labeled as the same
person. Note that since the pixel values of the images up-
loaded to the API are 8-bit floating point numbers that are
not continuous in [0, 1], we follow QEBA [Li et al., 2020a]
to discretize the images. Figure 3 shows the results of at-
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Dataset ImageNet Celeba

Method Model Q=1K Q=3K Q=5K Q=1K Q=3K Q=5K

EA ResNet50 0.0426 (0%) 0.0179 (0%) 0.0104 (0%) 0.0693 (0%) 0.0353 (0%) 0.0243 (2%)
VGG16 0.0423 (0%) 0.0195 (0%) 0.0123 (0%) 0.0574 (0%) 0.0433 (0%) 0.0398 (2%)

SIGN-OPT ResNet50 0.0335 (0%) 0.0179 (0%) 0.0117 (2%) 0.0409 (0%) 0.0241 (2%) 0.0171 (6%)
VGG16 0.0334 (0%) 0.0183 (0%) 0.0119 (2%) 0.0448 (0%) 0.0314 (2%) 0.0254 (6%)

HSJA ResNet50 0.0299 (0%) 0.0143 (0%) 0.0081 (6%) 0.0377 (0%) 0.0193 (6%) 0.0121 (12%)
VGG16 0.0308 (0%) 0.0140 (2%) 0.0080 (6%) 0.0452 (4%) 0.0332 (10%) 0.0286 (12%)

QEBA ResNet50 0.0260 (0%) 0.0112 (4%) 0.0064 (36%) 0.0124 (10%) 0.0024 (48%) 0.0015 (76%)
VGG16 0.0266 (0%) 0.0135 (12%) 0.0096 (36%) 0.0149 (18%) 0.0039 (48%) 0.0015 (68%)

SURFREE ResNet50 0.0433 (0%) 0.0176 (2%) 0.0116 (6%) 0.0268 (0%) 0.0146 (4%) 0.0089 (6%)
VGG16 0.0421 (0%) 0.0233 (0%) 0.0134 (6%) 0.0277 (0%) 0.0152 (4%) 0.0081 (8%)

AHA ResNet50 0.0243 (0%) 0.0119 (4%) 0.0067 (32%) 0.0119 (12%) 0.0038 (42%) 0.0015 (74%)
VGG16 0.0248 (0%) 0.0133 (4%) 0.0099 (30%) 0.0138 (18%) 0.0043 (46%) 0.0021 (60%)

DBA-GP ResNet50 0.0190 (0%) 0.0056 (20%) 0.0025 (48%) 0.0047 (30%) 0.0007 (88%) 0.0004 (92%)
VGG16 0.0214 (2%) 0.0075 (14%) 0.0036 (36%) 0.0049 (30%) 0.0009 (66%) 0.0005 (86%)

Table 1: Attack performance against different target models on different datasets. The main results in the table are the MSE values between
the adversarial and target images, and the ASR values are shown in parentheses.

Method Q=1K Q=3K Q=5K

EA 0.0926 (0%) 0.0910 (0%) 0.0893 (0%)
SIGN-OPT 0.0833 (0%) 0.0801 (0%) 0.0764 (0%)
HSJA 0.0684 (0%) 0.0651 (0%) 0.0634 (0%)
QEBA 0.0583 (4%) 0.0493 (4%) 0.0427 (8%)
SURFREE 0.0799 (0%) 0.0741 (0%) 0.0689 (0%)
AHA 0.0621 (0%) 0.0542 (2%) 0.0468 (6%)
DBA-GP 0.0415 (6%) 0.0272 (12%) 0.0205 (22%)

Table 2: Attack performance of defending with adversarial training
on ImageNet.

tacking Face++ API. The first column is the target image and
the initial adversarial image, and the last four columns are
the adversarial images produced by different attack methods
under different query numbers. We can observe that the ad-
versarial image attempts to get close to the target image grad-
ually and keep the label unchanged. For HSJA, the MSE val-
ues do not decrease with increasing the number of queries,
which indicates that it is difficult to find a better adversarial
image. In addition, the right side of the generated adversar-
ial image always contains the facial feature of the initial ad-
versarial image, which also indicates HSJA works not well.
QEBA performs much better, but it requires 5K queries to get
a clean-looking adversarial image. DBA-GP could generate
high-quality adversarial images at only 1K queries, and the
MSE value decreases continually as the number of queries
increases. All these phenomena validate the superiority of
our proposed DBA-GP.
Attack results of defending with adversarial training.
Adversarial training [Madry et al., 2018] has shown to be ef-
fective to defend against adversarial attacks. Therefore, we
further compare the performance of different attacking mod-
els when attacking the ResNet-152 model with adversarial
training on ImageNet. Table 2 gives the results, the main re-
sults are MSE values, and the results in parentheses represent

MSE=0.01179 MSE=0.01233 MSE=0.01289

MSE=0.00913 MSE=0.00653 MSE=0.00158

MSE=0.00193 MSE=0.00088 MSE=0.00047

MSE=0.01052
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Figure 3: Comparison of different attack models when attacking
against real-world API Face++.

ASR values when the MSE threshold is 0.01. The results in
Table 2 show that our method DBA-GP can also obtain the
best adversarial performance.

6 Conclusion
In this paper, we propose DBA-GP, a novel decision-based
black-box attack framework with gradient priors. To better
leverage the data-dependent gradient prior, DBA-GP exploits
the joint bilateral filter to process each perturbation, which
can mitigate the edge gradient discrepancy to some extent. To
seamlessly integrate with the time-dependent gradient prior,
DBA-GP introduces a new successive iteration gradient direc-
tion update strategy, which can speed up the convergence sig-
nificantly. Extensive experiments confirm the superiority of
our proposed method over other strong baselines, especially
in query efficiency. In future work, we plan to investigate the
theoretical underpinnings of the proposed method and extend
it to other types of black-box adversarial attack methods.
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