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Abstract
For many driving safety applications, it is of great
importance to accurately register LiDAR point
clouds generated on distant moving vehicles. How-
ever, such point clouds have extremely different
point density and sensor perspective on the same
object, making registration on such point clouds
very hard. In this paper, we propose a novel fea-
ture extraction framework, called APR, for online
distant point cloud registration. Specifically, APR
leverages an autoencoder design, where the au-
toencoder reconstructs a denser aggregated point
cloud with several frames instead of the original
single input point cloud. Our design forces the
encoder to extract features with rich local geom-
etry information based on one single input point
cloud. Such features are then used for online dis-
tant point cloud registration. We conduct extensive
experiments against state-of-the-art (SOTA) feature
extractors on KITTI and nuScenes datasets. Re-
sults show that APR outperforms all other extrac-
tors by a large margin, increasing average registra-
tion recall of SOTA extractors by 7.1% on LoKITTI
and 4.6% on LoNuScenes. Code is available at
https://github.com/liuQuan98/APR.

1 Introduction
As LiDAR sensors have a precise and accurate 360° view,
they are installed on new vehicle models for obstacle detec-
tion and avoidance to navigate safely. It is of great interest
to share and align outdoor point clouds among neighboring
vehicles via broadband wireless communication, which can
greatly extend the visual field and improve the point density
on distinct objects. Because vehicles may be distant (e.g. 20
to 50 meters apart), the corresponding point clouds are rather
different in terms of point density and point of view about
the same object in the scene. For example, Figure 1 (a) illus-
trates points about a target vehicle extracted from two nicely
aligned point clouds obtained from two vehicles only 20 me-
ters apart1, respectively. It can be seen that they have quite

∗Corresponding author
1Two point clouds separated by 20.48 meters are picked from the

KITTI dataset for illustration without loss of generality.

(d) FCGF

(a) Ground Truth (b) Predator

(c) SpinNet

Figure 1: (a) An example vehicle extracted from two well-aligned
point clouds with different point density and sensor perspective. (b)-
(d) Registration results of SOTA point cloud registration methods,
i.e., Predator, SpinNet and FCGF, respectively. Predator and Spin-
Net cannot align both point cloud well, with the example vehicle
separated at two distinct locations indicated by the red boxes. FCGF
can roughly align both point clouds but is still not accurate enough.

distinct perspectives about the target (i.e. blue and orange
points are obtained from the side front and the rear perspec-
tives, respectively). Despite such disparity of distant point
clouds, if they can be well aligned, it would certainly en-
hance various downstream tasks such as object detection and
semantic segmentation.

One practical online distant point cloud registration
scheme for moving vehicles has to meet the following three
requirements: 1) it has to be able to deal with the density and
view disparity of such point clouds; 2) it should be cost effi-
cient with respect to both computation and storage overhead
for online inference; 3) it has to achieve superior accuracy as
the result is crucial to autonomous or assisted driving decision
and driving safety applications. For instance, it is extremely
critical for driving safety applications to adopt a rigid reg-
istration criterion, e.g., 0.5° of rotation error and 0.5 meters
of translation error (corresponding to a maximum translation
error of less than one meter at all locations within 50 meters).

In the literature, most point cloud registration schemes tar-
get at close point clouds (e.g., 10 meters apart), which have
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similar point density and share overlapped sensor perspective
on target objects. Among these methods, feature extractors
[Choy et al., 2019; Bai et al., 2020; Ao et al., 2021; Huang
et al., 2021; Poiesi and Boscaini, 2021] aim at improving
feature quality. Outlier rejection methods [Bai et al., 2021;
Pais et al., 2020; Choy et al., 2020] try to identify false cor-
respondences. End-to-end methods in turn create new regis-
tration pipelines. These methods have made great effort in
merging of traditional methods [Aoki et al., 2019; Yew and
Lee, 2020], feature matching procedure [Weixin et al., 2019;
Li et al., 2020; Sarode et al., 2019], using transformer to
extract contextual information [Wang and Solomon, 2019a;
Wang and Solomon, 2019b; Ali et al., 2021], and performing
staged registration based on local patch similarity assumption
[Lu et al., 2021; Yu et al., 2021; Qin et al., 2022]. The ac-
curacy when directly applying these methods to large-scale
outdoor distant point clouds, however, is unsatisfactory. For
example, Figure 1 (b)-(d) depict the results of SOTA point
cloud registration methods on the example two distant point
clouds shown in Figure 1 (a). As a result, to the best of our
knowledge, there is no existing scheme successfully address-
ing the online distant point cloud registration problem.

In this paper, we propose a novel feature extraction frame-
work, called Aggregated Point Cloud Reconstruction (APR),
for online distant point cloud registration on moving vehicles.
To defeat the density and view disparity of distant outdoor
point clouds, it would be ideal if both vehicles have a full
view and a better understanding about the same environment.
Inspired by this insight, the main idea of APR is to train a
powerful feature extractor by embedding a representation of
a denser aggregated point cloud with a complete view about
the current environment into the features, referred to as APR
features. Then, such features of two corresponding distant
point clouds can be used for registration.

The APR design faces two main challenges as follows.
First, training such a powerful feature extractor to contain a
full view of the environment is non-trivial. In APR design,
the extractor is trained via an autoencoder structure. Specif-
ically, the encoder can be a state-of-the-art feature extrac-
tion backbone (e.g., FCGF or Predator), and metric learning
loss is applied to the extracted features, making APR features
preferable for registration based on feature similarity. Fur-
thermore, the decoder decodes the feature map of a single
point cloud and derives a reconstructed point cloud, which is
compared against the aggregated point cloud (APC), defined
as a series of point cloud frames of the corresponding vehicle
aligned together. As a result, the capability of the encoder
to guess a denser geometry is enhanced, so that APR fea-
ture contains rich environment information. Particularly, for
memory-heavy backbones such as Predator, the encoder and
decoder are asymmetrical to avoid out-of-memory (OOM) is-
sue during training.

Second, it is challenging to perform online distant point
cloud registration on two moving vehicles as it requires the
registration algorithm to be not only accurate but fast. Given
a consecutive series of point cloud frames collected on each
vehicle, a straightforward method is to take multiple frames
from each vehicle as input to perform registration, which
would incur heavy memory and computation costs since

SLAM or multi-way registration is needed to register consec-
utive sweeps. In contrast, in our design, as the encoder has
the capability to guess the features of APC, only two point
cloud frames of a pair of vehicles are used to perform online
pairwise registration. Point cloud series of each vehicle are
only used to generate aggregated point clouds during offline
training.

We implement APR on previous SOTA feature extractors,
i.e., FCGF [Choy et al., 2019] and Predator [Huang et al.,
2021]. We distill two low-overlap point cloud datasets, i.e.,
LoKITTI and LoNuScenes, with ≤ 30% overlap from KITTI
and nuScenes and conduct extensive experiments. Results
demonstrate that APR can effectively improve the perfor-
mance of previous feature extractors, granting an increase of
registration recall (RR) by 2.6% on LoKITTI and 5.2% on
LoNuScenes when registering two point cloud frames rang-
ing from 5 meters to 50 meters apart.

We highlight our main contributions made in this paper as
follows:

• We propose an autoencoder design as a feature extraction
framework, where the descriptiveness of the encoder could
be enhanced despite the variety of decoder design, which is
either symmetrical or asymmetrical.

• We introduce a new type of point cloud reconstruction tar-
get, where instead of using the input frame, we use several
frames in vicinity to describe the environment in different
views and densities, effectively confronting density varia-
tion and view disparity.

• We conduct extensive experiments and results demonstrate
that APR achieves SOTA performance for distant point
cloud registration.

2 Related Work
In this section, we first discuss traditional and learning-based
feature extractors, which are closely related to our feature
extractors; Then we move on to end-to-end methods and
reconstruction-based methods to introduce recent progress on
registration pipelines.

2.1 Traditional Feature Extractors
Traditional methods [Johnson and Hebert, 1999; Rusu et al.,
2009; Tombari et al., 2010] represent earlier exploration of
feature matching based on local shapes. SpinImages (SIs)
[Johnson and Hebert, 1999] matches point clouds based on
projection images; FPFH [Rusu et al., 2009] extracts rotation-
invariant histograms of local geometries; SHOT [Tombari
et al., 2010] functions by combining loca reference frames
(LRFs) with geometry histograms. However, traditional
methods usually ask for surface normal, which is hard to ob-
tain in real-time scenarios, and are easily outperformed by
learning methods due to their limited discriminative power.

2.2 Learning-based Feature Extractors
Patch-based Learning Methods. The pioneering work for
patch-based learning methods is 3DMatch [Zeng et al., 2017],
which applies 3D convolutions on local areas to extract local
features for registration. PPF-Net [Deng et al., 2018] utilizes
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PointNet [Qi et al., 2017] to extract robust point-pair features.
PerfectMatch [Gojcic et al., 2019] uses smoothed density
value (SDV) to further improve feature robustness. Recent
progress include DIP [Poiesi and Boscaini, 2021], which uses
a combinational loss of chamfer loss and hardest-contrastive
loss [Choy et al., 2019]; SpinNet [Ao et al., 2021] combines
LRF with SO(2) invariant convolution to achieve better rota-
tion invariance. However, these methods generally have lim-
ited receptive field due to the use of local patches, and high
computation time due to repeated local patch computation.
They generally don’t satisfy the real-time requirement for our
problem.

Fully Convolutional Methods. In order to naturally incor-
porate global and local information, fully convolutional meth-
ods are proposed. FCGF [Choy et al., 2019] first applies
metric learning to dense convolutional features, achieving
SOTA performance while being orders of magnitude faster
than patch-based methods. D3Feat [Bai et al., 2020] im-
proves upon FCGF through adopting KPConv [Thomas et al.,
2019] and training a joint extractor-detector backbone. Preda-
tor [Huang et al., 2021] further approaches the low-overlap
problem using overlap attention module at bottleneck, achiev-
ing SOTA performance. We implement our method based
on these methods, as their fast and robust nature perfectly
matches our requirements for a backbone.

2.3 End-to-end Registration
End-to-end registration methods generally modify compo-
nents of the traditional registration pipeline, converting the
pipeline into a network that can be trained in an end-to-end
manner.

Superpoint Matching Methods. Staged registration based
on superpoints have seen success on high-overlap point
clouds [Lu et al., 2021; Yu et al., 2021; Qin et al., 2022],
where registration is first performed on downsampled point
cloud (i.e., superpoints), then cascaded onto denser point
cloud patches around the matched superpoints. However,
these methods generally struggle to register distant point
clouds, since the patch similarity assumption is broken under
huge density variance and view disparity.

Other Methods. Some methods such as PointNetLK [Aoki
et al., 2019] and RPM-Net [Yew and Lee, 2020] enhance op-
timization algorithms [Lucas and Kanade, 1981; Gold et al.,
1998] with features extracted from PointNet [Qi et al., 2017].
Some methods such as DeepICP [Weixin et al., 2019] and
IDAM [Li et al., 2020] refine the feature matching process in
a learnable manner, reducing false positives. Other pipelines,
including DCP [Wang and Solomon, 2019a], PRNet [Wang
and Solomon, 2019b] and RPSRNet [Ali et al., 2021], use
transformers to grab the contextual information between fea-
tures. However, they are generally dedicated to indoor or syn-
thetic point cloud datasets, and are generally inable to scale
up to the level of outdoor LiDAR point clouds.

2.4 Reconstruction-based Registration
We are aware of other methods that are also trying to merge
chamfer loss and reconstruction into registration pipelines.

Feature-metric Registration [Huang et al., 2020] uses the re-
construction of the input frame, which basically asks for no
information loss. DIP [Poiesi and Boscaini, 2021] uses cham-
fer loss only for aligning two local patches. Compared to their
focus on features rather than geometries, our decoder network
directly learns the offset bias of the new points from features,
focusing more on reconstructing local geometry.

3 Problem Modeling

3.1 System Model
We consider conducting online distant point cloud registra-
tion on moving vehicles. Each vehicle is equipped with a
LiDAR sensor and can continuously generate a time series
of point cloud frames (e.g., ten point cloud frames per sec-
ond) while moving. In addition, neighboring vehicles can
efficiently exchange point cloud data in real time via broad-
band wireless communication techniques [Wang et al., 2020;
Perfecto et al., 2017]. Vehicles have sufficient amount of
memory for point cloud data storage but a restricted computa-
tional capability with an onboard embedded system. During
offline training of our scheme, the rough distance estimation
between a pair of point cloud frames in the point cloud series
is required. It should be noted that, during online registration,
we do not require any side channel information about how ve-
hicles move via GPS or inertial sensors (e.g., accelerometers
and gyroscopes).

3.2 Problem Definition
We denote the sequence {Xvi

1 , X
vi
2 , . . . , X

vi
t } as the time

series of t point cloud frames of vehicle vi, where Xvi

k =
{pi ∈ R3|i = 1, 2, ..., N} for k ∈ [1, t] is the k-th point
cloud frame of N points. For a pair of vehicles v1 and v2 to
register their current point cloud frame, e.g., Xv1

k = {pi ∈
R3|i = 1, 2, ..., N} of N points and Xv2

k = {qi ∈ R3|i =
1, 2, ...,M} of M points, the distant point cloud registration
problem is to find the optimal rotation matrixR ∈ SO(3) and
translation vector t ∈ R3 that align the pair of point clouds,
i.e., Xv1

k RT + tT aligns with Xv2

k . For the ease of explana-
tion, we refer to the point cloud frames to be registered as the
key frames and point cloud frames before and after one key
frame as non-key frames.

4 System Design
The core idea of Aggregated Point Cloud Reconstruction
(APR) is to leverage an autoencoder structure to train a pow-
erful encoder as the feature extractor. Instead of reconstruct-
ing the original key frame, the decoder in the autoencoder
structure reconstructs an aggregated point cloud. Therefore,
with the well-trained encoder, features can be extracted from
one single key frame but can effectively represent an environ-
ment point cloud with a dense and panoramic view, which are
used for online registration. To this end, as depicted in Fig-
ure 2, APR has distinct pipelines for offline training and for
online inference, respectively. More specifically, the training
pipeline consists of the following three components:
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Figure 2: The training and inference pipelines of APR. The offline training pipeline consists of three components, i.e., APG, KFE and NPR.
APG generates the current aggregated point cloud (APC) based on nearby non-key frames of a vehicle in a non-trainable manner. KFE and
NPR constitute an autoencoder, where the encoder extracts per-point features and the decoder takes such features to reconstruct the current
APC. The Chamfer Distance between these two point clouds is used as a complementary loss against the metric learning loss to train the
extractor (i.e., FCGF and Predator). During the online inference, only the current key frames of a pair of vehicles are exchanged and used to
perform feature-based registration with the encoder at each vehicle.

Key-frame Feature Extraction (KFE). KFE is the en-
coder in the autoencoder structure which is a fully convolu-
tional network (FCN). The encoder acts as the feature extrac-
tor that extracts features from a key frame for both online reg-
istration during inference and non-key-frame reconstruction
during training. APR is a universal feature extraction frame-
work and can take an existing per-point feature extractor as
its encoder. For instance, in our current implementation, two
SOTA fully convolutional methods, i.e., FCGF [Choy et al.,
2019] and Predator [Huang et al., 2021] are adopted to satisfy
the real-time requirement for online registration. More point
cloud feature extractors such as D3Feat [Bai et al., 2020]
would be adopted in the future.

Aggregated Point Cloud Generation (APG). APG takes
neighboring non-key frames of the current key frame as input
and aligns them to form an Aggregated Point Cloud (APC) as
the reconstruction target of the decoder.

Non-key-frame Point Cloud Reconstruction (NPR).
NPR acts as the decoder of the autoencoder which explicitly
extracts local geometries from the feature map by generating
several new points around the point corresponding to a fea-
ture vector. The generated points are compared with the APC
generated by the APG using the Chamfer Distance loss.

During online inference, only the current key frames are
exchanged between a pair of vehicles. Then the key frames
are used to extract APR features and perform conventional
feature-based registration at each vehicle.

4.1 Aggregated Point Cloud Generation
The APG component is used to generate APC as the recon-
struction targets for the autoencoder during offline training.
Specifically, given the point cloud series of vehicle vi, i.e.,
{Xvi

1 , X
vi
2 , . . . , X

vi
t } and a key frame Xvi

k , APG first sam-
ples 2ψ non-key frames centered at the key frame Xvi

k from

Figure 3: An example APC that consists of six non-key frames
(points in blue), excluding the key frame (points in orange), with
frames separated at a distance interval of ten meters. Objects are
viewed from different perspectives in the generated APC, providing
comprehensive shape information. In contrast, orange points of the
key frame are more sparse and suffer from self-occlusion.

the point cloud series, i.e., ψ frames beforeXvi

k and ψ frames
after Xvi

k with frames separated at a short distance interval of
α meters. Then, these sampled non-key frame and Xvi

k are
aligned by ground-truth position label, or through a conven-
tional multi-way registration method [Choi et al., 2015] when
precise relative position is not available. The frames are fur-
ther cropped with a scope sphere centered at the key frame
to discard distant points out of interest. Finally, voxel down-
sampling is conducted on the APC to enhance the robustness
against density variation. Figure 3 illustrates an APC using
six non-key frames (denoted as blue points) centered at one
key frame (denoted as orange points) with frames separated
at a distance interval of ten meters.

4.2 Non-key-frame Point Cloud Reconstruction
Our key insight is that APC naturally suffers less from density
variation and self-occlusion, as depicted in Figure 3. Through
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the reconstruction of local geometry, ground truth correspon-
dence features are encouraged to be similar in order to recon-
struct similar local shape of APCs. This can be interpreted as
a new side-channel for feature similarity supervision which is
less influenced by density and view disparity.

Specifically, the encoder (feature extractor) in APR is
trained to guess the local geometry and encode such infor-
mation into a per-point feature map; The decoder in APR
is trained to take the feature map, and decode it into a
denser point cloud. Formally, given a key frame of N points
Xk = {pi ∈ R3|i = 1, 2, ..., N} and the corresponding l-
dimensional features F = {fi ∈ Rl|i = 1, 2, ..., N}, the
decoder can be formulated in two ways, either symmetrical
or asymmetrical.

Symmetrical Design. In this case, the decoder Dsym is an
FCN that shares identical structure with the encoder except
for the input and output dimensions. The decoder takes the
feature map and outputs the reconstructed offsets as the out-
put feature O = Dsym(F ) ∈ RN×3ϕ, where ϕ is referred to
as the point generation ratio.

Asymmetrical Design. Alternatively, the decoder Dasym

can be a small MLP that takes a single feature vector as input,
providing a lightweight and universal option. For each feature
fi, the decoder locally generates the set of location offsets as
output Oi = Dasym(fi) ∈ R3ϕ.

Fusion. We interpret Oi as ϕ segments of 3-dimensional
vectors with each vector being an offset b1i , b

2
i , ..., b

ϕ
i ∈ R3.

By adding these location offsets to the corresponding original
point pi in the key frame, a reconstructed point cloud is ob-
tained: Rk = {pi + bji ∈ R3|i = 1, 2, ..., N ; j = 1, 2, ..., ϕ}.
The collected offsets are denoted as Ô = {bji ∈ R3|i =
1, 2, ..., N ; j = 1, 2, ..., ϕ}. We contract the index i and j
into a single index in the following section for convenience
of display.

4.3 Loss Formulation
To train the autoencoder, the Chamfer Distance (CD) between
the APC generated by the APG and the reconstructed envi-
ronment generated by the NPR is used as a complementary
loss against the metric learning loss involving the extracted
features from a pair of point clouds. L2 regularization is also
applied to the generated offset lengths.

Specifically, given a pair of point clouds Xv1

k = {pi ∈
R3}, Xv2

k = {qj ∈ R3}, and their corresponding offsets
Ôv1 = {ol ∈ R3}, Ôv2 = {om ∈ R3}, CD loss and reg-
ularization loss are formulated as:

LCD =
1

|Xv1

k |
∑

pi∈X
v1
k

min
qj∈X

v2
k

||pi − qj ||2

+
1

|Xv2

k |
∑

qj∈X
v2
k

min
pi∈X

v1
k

||pi − qj ||2
(1)

LL2 =
1

|Ôv1 |

∑
ol∈Ôv1

||ol||2 +
1

|Ôv2 |

∑
om∈Ôv2

||om||2 (2)

Metric Learning (ML) is generally utilized to train effec-
tive fully-convolutional feature extractors. In this paper, we
use the original Hardest Contrastive Loss for FCGF [Choy et
al., 2019], and the Circle Loss [Sun et al., 2020] plus Overlap
Loss and Matchability Loss for Predator [Huang et al., 2021],
same as their original paper.

Let LML denote the metric learning loss of an embedded
point cloud feature extraction scheme (e.g., FCGF [Choy et
al., 2019] and Predator [Huang et al., 2021]) and the final
loss is formulated as L = LML + λ1LCD + λ2LL2, where
λ1, λ2 controls the ratio between loss terms.

5 Performance Evaluation
Distant Point Cloud Datasets. Previously, only close-
range registration datasets have been extracted from KITTI
[Geiger et al., 2012] and nuScenes [Caesar et al., 2020].
To create distant point cloud datasets, following 3DLoMatch
proposed in Predator [Huang et al., 2021], we pick point
cloud pairs with ≤ 30% overlap from KITTI and nuScenes,
creating LoKITTI and LoNuScenes, respectively. We also
subdivide KITTI and nuScenes w.r.t. the distance between
two LiDAR centers, denoted as d (in meters). Dataset
slices with d ∈ [d1, d2] in KITTI and nuScenes are dubbed
KITTI[d1, d2] and nuScenes[d1, d2], respectively. In addi-
tion, previous close-range datasets with d = 10, referred
to as KITTI and nuScenes, are also considered. We adopt
three registration criteria for assessing a successful registra-
tion, i.e., loose (5◦ & 2m) [Yew and Lee, 2018], normal (1.5◦
& 0.6m) and strict (0.5◦ & 0.3m). We report three metrics,
including relative rotation error (RRE), relative translation er-
ror (RTE), and registration recall (RR). For alignment of non-
key frames in APG, we use only ground-truth pose from Se-
manticKITTI [Jens et al., 2019] and nuScenes [Caesar et al.,
2020], while the effect of low-precision position labels are
simulated in the robustness analysis in Secion 5.2. We set
default parameters as ψ = 3 and α = 10.

Training Strategy. Although we report arbitrary results on
[d1, d2] datasets, it is hard for the network to converge when
directly trained with d2 ≥ 30 or d1 ≥ 10. As a result, we
first pre-train a model on a dataset with lower distance, where
d ∈ [5, 20]. Then the pre-trained model is further finetuned on
[5, d2] (d2 ≥ 30) to guarantee convergence. For cases where
d2 < 30, no finetuning is applied. Finally, the resulting model
is used to report results on [d1, d2] datasets.

Decoder Choice. We implement both symmetrical design
(denoted with postfix (s)) and asymmetrical design (denoted
with postfix (a)) on FCGF, and found that symmetrical design
generally performs better. However, symmetrical Predator is
not trainable due to memory constraints, so only asymmetri-
cal design is reported for Predator.

Visualization. We demonstrate the registration perfor-
mance of all methods on KITTI in Figure 4.

5.1 Parameter Configuration
Effect of Point Generation Ratio ϕ. We first examine the
effect of the point generation ratio ϕ, varying it from one to
eight. Table 2 lists the performance of FCGF+APR(a/s) and
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Loose Criterion (5°,2m) Normal Criterion (1.5°,0.6m) Strict Criterion (0.5°,0.3m)

Metrics RRE (°) RTE (cm) RR (%) RRE (°) RTE (cm) RR (%) RRE (°) RTE (cm) RR (%)

K
IT

TI
FCGF 0.35 10.6 98.2 0.27 8.1 96.9 0.20 7.8 85.3
FCGF+APR(a) 0.34 9.6 98.2 0.30 9.6 97.1 0.22 8.6 86.9
FCGF+APR(s) 0.30 10.0 99.0 0.28 9.4 97.1 0.21 9.2 84.7
Predator 0.31 7.4 100.0 0.30 7.4 98.5 0.24 7.2 85.3
Predator+APR(a) 0.30 7.3 100.0 0.28 7.3 99.0 0.23 7.2 88.0

Lo
K

IT
TI

FCGF 2.02 55.2 22.2 0.91 32.1 5.1 0.42 19.0 1.3
FCGF+APR(a) 1.74 51.9 32.7 0.74 28.6 18.9 0.31 18.4 3.1
FCGF+APR(s) 1.76 47.9 33.0 0.90 27.5 16.3 0.37 19.1 2.8
Predator 1.75 43.4 42.4 0.83 29.9 22.0 0.35 18.5 4.2
Predator+APR(a) 1.64 39.5 50.8 0.83 27.8 29.9 0.34 18.4 5.5

nu
Sc

en
es

FCGF 0.46 50.0 93.6 0.38 20.0 77.9 0.27 14.8 55.9
FCGF+APR(a) 0.45 37.0 94.5 0.39 18.2 78.1 0.27 14.1 55.1
FCGF+APR(s) 0.47 47.0 98.4 0.43 20.6 78.0 0.23 14.7 53.2
Predator 0.58 20.2 97.8 0.52 18.0 92.3 0.32 14.0 44.5
Predator+APR(a) 0.47 19.1 99.5 0.45 17.1 95.3 0.31 13.8 56.9

Lo
N

uS
ce

ne
s FCGF 1.30 60.9 49.1 0.72 30.0 23.7 0.34 18.5 7.8

FCGF+APR(a) 1.40 62.0 51.8 0.68 29.9 23.6 0.33 18.3 8.4
FCGF+APR(s) 1.35 65.8 50.8 0.72 28.8 24.3 0.34 18.9 8.2
Predator 1.47 54.5 50.4 0.78 31.0 26.3 0.34 18.9 5.3
Predator+APR(a) 1.30 51.8 62.7 0.72 29.8 35.3 0.34 19.2 8.5

Table 1: Comparison of FCGF and Predator with their APR-empowered version on KITTI, LoKITTI, nuScenes and LoNuScenes under
different registration criteria. Symmetrical and asymmetrical designs are tagged as ’(a)’ and ’(s)’, respectively.

Predator+APR(a) on KITTI[5, 20] validation set. It can be
seen that the performance of FCGF+APR(a/s) peaks when
ϕ = 4, while the performance of Predator+APR drops when
ϕ < 4. We can see that ϕ = 4 is a good choice for all feature
extractors.

Effect of Decoder Size. We fix the point generation ratio
ϕ to four and vary the size of the per-point decoder in asym-
metrical designs. Specifically, the asymmetrical decoder is an
MLP with flexible hidden layer size, e.g., (29, 28) reveals a 3-
layer MLP with l, 512, 256, ϕ × 3 dimensions from input to
output. Table 2 lists the performance of FCGF+APR(a) and
Predator+APR(a) on KITTI[5, 20] validation set. It can be
seen that the decoder with the size of (29, 28) can achieve the
best RR performance. Therefore, we set the decoder hidden
layer size in asymmetrical design to (29, 28) in the following
experiments.

5.2 Performance Comparison

Improvements over Baselines. We compare our method
with baseline feature extractors under all three criteria on all
four datasets. Table 1 lists the registration results. Compared
to the baselines, APR can effectively improve the registra-
tion performance both under normal overlap and low overlap,
either symmetrical or asymmetrical. Symmetrical designs ex-
cel under loose criterion but lose advantage under rigid crite-
rion. Though Predator+APR(a) does not excel in all tests with
RRE or RTE slightly falling behind in some cases, it gener-
ally outperforms other methods in most scenarios. On aver-
age, APR improves the RR of FCGF and Predator by 4.4%,
3.5%, respectively on KITTI, and 0.6%, 6.9%, respectively
on nuScenes. The average RR improvements for both back-
bones on LoKITTI and LoNuScenes are 7.1% and 4.6%, re-
spectively.

FCGF+APR(a) FCGF+APR(s) Predator+APR(a)

PGR(ϕ) RRE RTE RR RRE RTE RR RRE RTE RR

1 0.32 9.3 92.4 0.33 10.1 94.4 0.41 9.8 98
2 0.31 8.8 93.0 0.34 12.0 94.6 0.42 9.6 99
4 0.31 8.7 93.0 0.31 10.7 95.1 0.37 8.7 100
8 0.30 10.0 92.8 0.32 10.6 93.2 0.34 8.8 100

Decoder size RRE RTE RR RRE RTE RR RRE RTE RR

(24) 0.33 11.8 96.1

None (symmetrical)

0.31 8.1 97.2
(25, 24) 0.32 12.1 96.4 0.31 8.2 96.8
(29, 28) 0.33 11.9 96.4 0.32 8.1 97.3
(211, 210, 29) 0.35 9.1 96.1 0.31 8.2 97.3

Table 2: Performance of FCGF+APR(a/s) and Predator+APR(a)
with different point generation ratio ϕ (upper half) and decoder hid-
den layer size (lower half) on KITTI[5, 20] dataset under normal reg-
istration criterion. Decoder size of FCGF+APR(s) remain the same
as the encoder and stay unchanged.

Impact of Distance d for all Methods. Due to the nature of
LiDAR sensors, points on near objects are denser than those
on distant objects. Consequently, density and view dispar-
ity are mainly caused by increased distance between both Li-
DARs. Table 3 shows the RR of all candidate methods under
increasing ranges of d on KITTI[d1, d2] dataset under normal
registration criterion (1.5°,0.6m). It can be seen that SpinNet,
D3Feat and Geotransformer gradually fail with increasing d,
as they suffer from bad convergence caused by improper loss
or structure designs. The APR-empowered methods gener-
ally receive a performance boost that is proportional with the
distance d, and Predator+APR(s) surpasses all other methods
on all distances. We conclude that APR can effectively con-
front the density and view disparity between two separated
point clouds, and sets a new SOTA for distant point cloud
registration problem.
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Pred.+APR(a)FCGF+APR(a)FCGFGround Truth Predator D3Feat SpinNet

Figure 4: Qualitative distant point cloud registration results on KITTI[5, 20]. The yellow arrow indicates the relative transformation between
this pair of point clouds. Both APR-empowered methods perform perfectly while FCGF actually fails the loose registration criterion with
5.32° rotation error, as highlighted with the displacement of the example vehicle.

Range of d (m) [5, 10] [10, 20] [20, 30] [30, 40] [40, 50]

SpinNet 97.6 73.1 7.3 0 0
D3Feat 98.7 86.8 52.7 20 4.5
CoFiNet 99.6 94.2 80.0 44.8 24.3
GeoTransformer 97.9 88.3 8.3 0.7 0.0
FCGF 97.0 85.4 54.1 25.0 14.3
FCGF+APR(a) 97.5 88.9 55.7 35.0 17.1
FCGF+APR(s) 98.4 93.0 58.4 42.1 22.5
Predator 99.3 96.8 90.2 60.6 26.7
Predator+APR(a) 99.6 97.4 91.2 62.1 40.8

Table 3: RR (%) of all methods on 5 KITTI[d1, d2] datasets with
different ranges of d ∈ [d1, d2] under normal registration criterion.

Robustness Analysis. We investigate the robustness of
APR, assuming APG could fail to align some non-key frames
with only noisy pose annotation available, as in Odome-
tryKITTI. To simulate different degrees of failure during
training, we impose random rotation (θ ∈ [−π, π]) on a ran-
dom axis on Ndisturb out of 2ϕ non-key frames. Table 4
lists the RR of APR on both KITTI[5, 20] and nuScenes[5, 20]
dataset with Ndisturb ∈ [0, 5]. Under the optimal parameter
setting, we have ψ = 3, i.e., 6 non-key frames, 3 on each
side. It can be seen that asymmetrical design performs better,
whose RR first rises then decreases with Ndisturb, peaking at
95.4% for FCGF+APR(a), and 99.5% for Predator+APR(a),
respectively on KITTI dataset. Similar trends can be observed
on nuScenes dataset. When Ndisturb ≥ 4, RR for both asym-
metrical methods drops slightly. All versions of APR, are
comparable with not-disturbed version (Ndisturb = 0), and
better than native methods (see the last column). We con-
clude that APR is robust against APG failures.

Impact of Density Variation. In this experiment, we ex-
amine the effect of density variation alone, without view dis-
parity. We choose d ∈ [5, 10] to minimize the difference in
point of view, then randomly downsample one point cloud out
of every point cloud pair, creating simulated density variation
between a pair of point clouds. Table 5 lists the RR of FCGF,
Predator and their asymmetrical APR-empowered version on
nuScenes[5, 10] dataset under normal registration criterion.
The relative improvement of RR for APR-empowered meth-
ods compared to native methods increases as the downsample
ratio decreases, meaning that APR is effective in confronting
point cloud density variation.

Ndisturb 0 1 2 3 4 5 /

KITTI[5, 20]

FCGF+APR(a) 94.3 94.2 94.2 95.4 93.7 93.4 87.6
FCGF+APR(s) 95.1 87.8 93.2 91.3 93.2 93.2 87.6
Predator+APR(a) 99.0 98.5 99.5 98.3 98.1 98.5 98.8

nuScenes[5, 20]

FCGF+APR(a) 61.2 58.1 61.2 62.1 63.3 61.1 53.6
FCGF+APR(s) 54.0 55.7 54.4 53.7 55.9 56.7 53.6
Predator+APR(a) 85.2 82.3 83.4 86.1 72.1 70.8 65.9

Table 4: RR for APR-empowered methods under normal registration
criterion, with d ∈ [5, 20] and 6 non-key frames for each key frame.
Ndisturb out of 6 non-key frames are randomly rotated, providing
noise to APR instead of useful information. The ’/’ column shows
results of raw FCGF and Predator.

Downsample Ratio 0.1 0.2 0.5 1

FCGF 44.6 57.6 70.4 78.4
FCGF+APR(a) 49.4 63.1 76.2 85.3
Relative ∆RR (%) 10.7 9.55 8.81 8.80

Predator 3.4 32 80.2 96.6
Predator+APR(a) 3.8 34.4 84.9 98.1
Relative ∆RR (%) 11.7 7.50 5.86 1.55

Table 5: RR for asymmetrical APR and the relative RR improvement
compared with FCGF and Predator on nuScenes[5, 10] dataset, with
one point cloud out of every pair downsampled by a certain ratio.

6 Conclusion

We have proposed APR, a novel feature extraction framework
for online distant point cloud registration on moving vehicles.
APR leverages an autoencoder design to obtain a better fea-
ture extractor through reconstruction of the aggregated point
clouds during training. Our method is able to force the fea-
ture extractor to guess local geometry information without
changing any of the extractor design or imposing extra in-
ference time. The extracted APR features are more robust
against density variation and view disparity, significantly im-
proving the accuracy of distant point cloud registration. APR
outperforms all other extractors by a large margin, increas-
ing average registration recall of SOTA extractors by 7.1%
on LoKITTI and 4.6% on LoNuScenes.
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