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Abstract
Most existing cross-domain facial expression
recognition (FER) works require target domain data
to assist the model in analyzing distribution shifts
to overcome negative effects. However, it is of-
ten hard to obtain expression images of the target
domain in practical applications. Moreover, exist-
ing methods suffer from the interference of identity
information, thus limiting the discriminative abil-
ity of the expression features. We exploit the idea
of domain generalization (DG) and propose a rep-
resentation disentanglement model to address the
above problems. Specifically, we learn three in-
dependent potential subspaces corresponding to the
domain, expression, and identity information from
facial images. Meanwhile, the extracted expression
and identity features are recovered as Fourier phase
information reconstructed images, thereby ensur-
ing that the high-level semantics of images remain
unchanged after disentangling the domain informa-
tion. Our proposed method can disentangle ex-
pression features from expression-irrelevant ones
(i.e., identity and domain features). Therefore, the
learned expression features exhibit sufficient do-
main invariance and discriminative ability. We con-
duct experiments with different settings on multiple
benchmark datasets, and the results show that our
method achieves superior performance compared
with state-of-the-art methods.

1 Introduction
Due to the difference in photographic environments (e.g., in-
the-lab or in-the-wild) and collected subjects, there are obvi-
ous domain shifts across different facial expression datasets
[Li and Deng, 2020]. The current well-performing FER
methods may achieve satisfactory performance in intra-
dataset protocols, but their performance drops dramatically
in inter-dataset settings [Recht et al., 2019; Zhang et al.,
2021]. Recently, a series of cross-domain FER algorithms
[Chen et al., 2021; Li et al., 2022; Li et al., 2021] have
been widely developed to address this problem. They mainly
focus on exploiting the idea of domain adaptation (DA)
to collect data from each possible target domain and train
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Figure 1: The high-level idea of our method. Other cross-domain
FER models do not consider the influence of identity on cross-
domain FER and require the target domain in the training process.
Our method adopts the idea of DG and introduces feature disentan-
glement to disentangle the identity information from the domain and
expression representation.

the model with each source-target pair [Kang et al., 2019;
Huang et al., 2021b]. However, in practice, there may not
be any target domain data available during the training of ex-
pression recognition for the model to analyze the distribution
shift to overcome the negative effects.

Recently, the DG methods have been studied extensively,
which aim to generalize the knowledge extracted from multi-
ple source domains to an unseen target domain that is not ac-
cessible during training [Gan et al., 2016; Tzeng et al., 2017].
Existing DG methods attempt to learn domain-agnostic fea-
tures via employing various strategies such as adversarial fea-
ture learning [Li et al., 2018], domain adversarial image gen-
eration [Zhou et al., 2020], domain randomization [Huang et
al., 2021a], or style mixing [Zhou et al., 2021b]. However,
the domain-invariant features extracted by these methods may
contain identity information, which makes the discrimination
of the learned expression features limited. Eventually, the
generalization of cross-domain FER is weakened. In fact, the
identity information here is often the focus of face recogni-
tion or face verification work. In addition, the expressions
to be recognized in real-world applications often come from
unknown domains and subjects. It is necessary to eliminate
the reliance on domain and identity information in the expres-
sion recognition process. As shown in Figure 1, cross-domain
FER is interfered by the domain (different datasets) and iden-
tity information. Existing DG methods can hardly remove the
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interference of identity information when learning domain-
invariant features. Therefore, the discriminative capability of
their extracted expression features is limited.

To solve the above issue, we extract more discrimina-
tive expression features via disentangling domain, expres-
sion, and identity information from the aspect of feature dis-
entanglement [Zhou et al., 2021a]. Thus the generaliza-
tion performance of cross-domain FER is improved. Re-
lated studies [Muandet et al., 2013; Zhang et al., 2022] show
that the learned representations reflect the intrinsic category
semantics and have strong invariance to cross-domain vari-
ation, which is of great importance to the robustness and
generalization of deep learning. Li et al. [Li et al., 2022]
also demonstrate that the learned representation is separa-
ble and domain-invariant, which is effective for cross-domain
FER. Therefore, we handle cross-domain FER via learning
domain-invariant, separable, and discriminative representa-
tions. As shown in Figure 1, we propose a representation
disentanglement framework for extracting domain, expres-
sion, and identity features, respectively. Disentangling iden-
tity features from domain and expression features can enable
our model to extract discriminative expression features in un-
seen domains. Moreover, to enforce the disentanglement of
the above information and reduce the coupling between fea-
tures, we provide additional supervision, which renders the
disentangled expression features to be invariant to interfer-
ence factors. Eventually, cross-domain FER can be better
performed.

Additionally, we know from visual psychophysics that
changes in the amplitude of the image Fourier transform can
significantly alter the appearance but not the interpretation
of the image. The high-level semantic information in im-
ages is associated with the phase of its Fourier transform
[Hansen and Hess, 2007; Yang et al., 2020]. Inspired by
this, to ensure that the high-level semantic information of
the facial image remains unchanged after disentangling do-
main information, we recover the encoded expression and
identity features as images reconstructed from Fourier phase
information. Accordingly, we construct the generator with
an encoder-decoder structure that acts as an image semantic
changer. It aims to output the fake Fourier phase information
reconstructed image that can fool the phase information dis-
criminator. Besides, to smooth the transformation of expres-
sions, we introduce the identity discriminator to control the
distribution of identity features. With the additional expres-
sion classifier, the decoder can strive for the generated image
to have the same semantics as the real Fourier phase informa-
tion reconstructed image. The above operations facilitate the
disentangling of identity features and improve the discrimina-
tive ability of expression features. Meanwhile, they can en-
sure that the extracted expression features have good domain
invariance.

The contributions of our work can be summarized as fol-
lows. (1) We propose a representation disentanglement net-
work for domain-generalized FER, which can recognize fa-
cial expressions in unseen domains during inference. (2) We
disentangle the identity features from both domain and ex-
pression features. Furthermore, the identity and expression
features are recovered as the Fourier phase information recon-

structed images. As a result, the discrimination and domain-
invariance of expression features are all enhanced, which im-
proves the performance of cross-domain FER. (3) With well-
designed supervised learning strategies, the network modules
are able to joint learning efficiently. Extensive experiments
are conducted on different datasets. And the analytical results
demonstrate the effectiveness and superiority of our method.

2 Related Work
2.1 Cross-Domain Facial Expression Recognition
To address the prevalent domain discrepancies among differ-
ent FER datasets, some cross-domain FER algorithms have
been recently proposed. For instance, Zhu et al. [Zhu et
al., 2016] propose a discriminative feature adaptive method to
learn a feature space to represent facial images from different
domains. Li et al. [Li and Deng, 2018] present a Deep Emo-
transfer Network to reduce the bias among the datasets. Chen
et al. [Chen et al., 2021] integrate graph propagation with
adversarial learning mechanisms to learn domain-invariant
holistic-local features for cross-domain FER. Li et al. [Li and
Deng, 2020] propose a deep Emotion-Conditional Adaption
Network to learn domain-invariant representations. However,
the above methods require depending on the target domain
data (without labels) to analyze the domain distribution shift.
Li et al. [Li et al., 2022] present a Deep Margin-Sensitive
representation learning framework to extract multi-level fea-
tures. But it depends highly on the supervision information
on the target domain data since it needs to generate accu-
rate pseudo-target labels. DLP-CNN [Li et al., 2017b] aims
to enhance feature discrimination by maximizing the inter-
class dispersion while preserving local closeness. Zavarez et
al. [Zavarez et al., 2017] analyze the performance impact
of fine-tuning with cross-database methods. Ji et al. [Ji et
al., 2019] propose an intra- and inter-class feature fusion net-
work for FER across datasets. However, these approaches do
not consider the influence of identity information on expres-
sion representation, thus limiting the discriminative power of
expression features.

Different from the above approaches, we focus on the
cross-domain FER when the target domain data is inacces-
sible, which is a more difficult case. We eliminate the depen-
dence on identity during domain-invariant expression feature
learning to improve the performance of cross-domain FER.

2.2 Domain Generalization
To overcome the problems of domain shift and lack of target
domain data, DG is introduced. It aims to use the data from
single or multiple related but different source domains to train
the model that can generalize well to unseen target domains.
It is evident that the DG model must depend only on the
source domain to learn the domain-invariant representation.
DG methods have been applied to many tasks, such as ob-
ject recognition [Li et al., 2018], image segmentation [Huang
et al., 2021a], and face anti-spoofing [Wang et al., 2022].
Researchers categorize existing DG methods into different
groups based on design motivations [Zhou et al., 2021a],
e.g., Domain Alignment [Shao et al., 2019], Ensemble Learn-
ing [He et al., 2016], Learning Disentangled Representations,

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1214



etc. Here we only briefly review the DG methods relevant to
Learning Disentangled Representations. For example, Chen
et al. [Chen et al., 2016] utilize information-maximizing gen-
erative adversarial networks to learn disentangled representa-
tions. Chattopadhyay et al. [Chattopadhyay et al., 2020] sug-
gest learning domain-specific masks and encourage masks to
learn a balance of domain-invariant and domain-specific fea-
tures. Piratla et al. [Piratla et al., 2020] propose a CSD that
jointly learns public and domain-specific components. Since
the facial expression is closely entangled with identity infor-
mation, it is difficult for the above DG methods to disentan-
gle them when learning the domain-invariant representation.
Identity and expression representations are not disentangled,
which limits the discriminative ability and generalization per-
formance of expression features.

In contrast to the above DG methods, we analyze and con-
sider the effect of identity information for the cross-domain
FER task. Domain labels and generated Fourier phase infor-
mation images are leveraged to disentangle features, which
facilitates the model to learn domain-invariant, separable, and
discriminative expression features.

3 Methodology
Forcing the entire model or features to be domain-invariant
during cross-domain FER is challenging. We relax this con-
straint by allowing some parts to be domain-specific, i.e.,
learning disentangled representation. Intuitively, we learn
three independent potential subspaces of the domain, expres-
sion, and identity information from facial images. In addition,
the adversarial way is utilized to assist the model in learning
domain-invariant and discriminative expression features.

3.1 Overview
Given a training set Ds = {D1,D2, · · · ,DS} from multiple
source domains, our goal is to learn a domain-agnostic FER
model that is expected to perform well on the disjoint and
unseen target domains Dt. There are Nj labeled facial ex-
pression images {(xji , y

j
i )}

Nj

i=1 in the j-th source domain Dj ,
where xji and yji ∈ {0, 1, · · · ,K} (K = 6 means the number
of expression categories is 7) represent the input images and
expression labels, respectively. The facial expressions in Dt
will be recognized during the inference stage.

As shown in Figure 2, there are three encoders in our pro-
posed network architecture for processing the input facial im-
age: domain encoderEd, expression encoderEe, and identity
encoder Eid. The domain encoder Ed is designed to extract
the domain representation fd from the input image, and the
classifier Cd performs the domain classification task based
on this representation. The expression representation fe is
extracted by the expression encoder Ee, followed by the ex-
pression classifier Ce for performing FER. The identity en-
coder Eid extracts the facial identity representation fid from
the images, while the decoder De is used to reconstruct the
guarantee. The image still retains high-level semantics af-
ter disentangling the domain information, which can ensure
further disentanglement of expression and identity represen-
tations. Inspired by the semantic preservation property of
the Fourier phase component [Oppenheim and Lim, 1981;

Xu et al., 2021], the phase-only reconstructed images (X̂) and
phase information discriminator Dp are taken to guarantee
the high-level semantics invariance of the images (Xp) recon-
structed by the decoder De. The additional identity discrimi-
nator Did controls the distribution of identity features and fa-
cilitates the smooth transformation of expressions. Once the
joint learning of the above modules is completed, the cross-
domain FER task can be accomplished simply through infer-
ence with Ee and Ce.

3.2 Learning Image Domain Representation
To address the domain-generalized FER, we suggest learn-
ing image domain representation from expression images. As
shown in Figure 2, the learning of the domain representa-
tion is implemented by the Ed and Cd. Where the Ed is
expected to describe information about background, illumi-
nation, resolution, etc. And the Cd recognizes the image
domain j (j ∈ {1, 2, · · · , S}) based on such features fd
(fd = Ed(x)). It indicates which source domain the input
image comes from. We define the domain classification loss
Ldom as follows.

Ldom = −
S∑
j=1

Nj∑
i=1

mj ∗ log(Cd(Ed(xji ))), (1)

wheremj denotes the ground truth of the image domain label.
Moreover, we provide additional supervision to ensure that

the domain representation learned by Ed and Cd do not con-
tain expression information. Specifically, with the deploy-
ment of the expression classifier Ce, we let Ce take the fea-
tures fd. And the Ce is not expected to perform expression
recognition on the domain features. Therefore, we provide
the following auxiliary confusion loss Lconfdom .

Lconfdom =

S∑
j=1

Nj∑
i=1

||Ce(Ed(xji ))−
1

K
||22. (2)

With the above Ldom and Lconfdom , our proposed framework
can disentangle the domain features from the input expres-
sion images. In addition, the deployment of Ed and Cd also
facilitates expression and identity learning.

3.3 Learning Expression and Identity
Representations

Since identity information is useless for cross-domain FER,
we propose to decouple it, which improves the discrimination
of expression features. Extracting expression and identity
representations separately from the input image is the main
component of our approach. With the identity and domain
representations correctly disentangled from the input image,
our learned expression features can be effectively applied to
recognize facial expressions in unseen target domains.

For the learning of expression features, as shown in Figure
2, the expression encoderEe and classifierCe are deployed in
our framework to achieve this goal. Ee is expected to extract
expression features (fe = Ee(x)). Ce classifies expressions
of the input image based on the features fe. To better sepa-
rate each expression, we utilize the simplified LMCL function
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Figure 2: The framework of our method. Our network aims to extract domain features fd, identity features fid, and expression features
fe from the input facial images. To ensure the disentanglement of these features while improving the discriminative of expression features,
domain encoder Ed, domain classifier Cd, expression encoder Ee, expression classifier Ce, identity encoder Eid, identity discriminator Did,
decoder De, and phase information discriminator Dp are jointly deployed. Once the training is complete, we can apply the Ee and Ce for
cross-domain FER.

[Wang et al., 2018] as the objective function, i.e., the expres-
sion classification loss Lexp is defined as follows.

Lexp = −
S∑
j=1

Nj∑
i=1

log(
e
α(WT

y
j
i

Ee(x
j
i )−m)

e
α(WT

y
j
i

Ee(x
j
i )−m)

+
∑
k 6=yji

eα(W
T
k Ee(x

j
i ))

),

(3)
where α is the hyperparameter. W =
{Wk | k = 0, 1, · · · ,K} represents the parameters of
the Ce. The separation between the features of each ex-
pression can be further enforced by introducing the margin
m.

Similarly, to further ensure that the expression features
would not contain any image domain information, we pro-
vide additional supervision — the expression confusion loss
Lconfexp , defined as follows:

Lconfexp =
S∑
j=1

Nj∑
i=1

||Cd(Ee(xji ))−
1

S
||22. (4)

For the learning of identity, the identity encoder Eid is de-
signed to learn the mapping of facial image to identity rep-
resentation (fid = Eid(x)). The high-level semantics of the
image needs to be preserved after disentangling the domain
representation, which facilitates the disentanglement of iden-
tity and expression information. We leverage the semantic
preservation property of the Fourier phase component to pro-
vide support for preserving the high-level semantics. Note
that using only Fourier phase information for cross-domain

FER is not satisfactory because it still suffers from the inter-
ference of identity information. As shown in Figure 3, the
facial images from different domains are processed in the fol-
lowing two ways. One way is the reconstruction of image
with amplitude information by setting the Fourier phase com-
ponent to a constant. The other is the reconstruction of im-
age with phase information by setting the Fourier amplitude
component to a constant. It can be seen that the Fourier phase
information reconstructed image retains the semantics of the
original image.

For example, the Fourier transformation F (x) of a single
channel image x is formulated as:

F (x)(u, v) =

H−1∑
h=0

W−1∑
w=0

x(h,w)e−j2π(
h
H u+

w
W v). (5)

The amplitude and phase components are denoted as:

A(x)(u, v) =
[
R2(x)(u, v) + I2(x)(u, v)

]1/2
, (6)

P (x)(u, v) = arctan

[
I(x)(u, v)

R(x)(u, v)

]
, (7)

where R(x) and I(x) denote the real and imaginary part of
F (x), respectively. Set amplitude to be a constant. The con-
stant we use here is the standard deviation of amplitude.

Â(xji ) = std(A(xji )) =
[
E(A(xji )− E(A(xji )))

2
]1/2

.

(8)
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The constant amplitude spectrum is combined with the orig-
inal phase spectrum to form a new Fourier representation, as
shown in the following formula:

F (x̂ji )(u, v) = Â(xji )(u, v) ∗ e
−j∗P (xj

i )(u,v). (9)

It is then sent to the F−1(x) to generate the image, i.e., the
reconstructed image with Fourier phase information is repre-
sented as follows. F−1(x) is the inverse Fourier transforma-
tion that maps the spectral signal back to the image space.
F (x) and F−1(x) can be calculated with the FFT algorithm
[Nussbaumer, 1981] efficiently.

x̂ji = F−1(F (x̂ji )(u, v)). (10)

Then, we adopt the idea of generative adversarial and take
the identity features fid and expression features fe as the in-
put to the decoder De which is designed to recover (gener-
ate) the images reconstructed with Fourier phase information.
The discriminator Dp is designed to distinguish the fake im-
ages generated byDe from the real Fourier phase information
reconstructed images. Besides, De and Dp assist the expres-
sion encoder Ee and the identity encoder Eid in learning the
disentanglement representation from facial images, i.e., their
deployment contributes to the disentanglement of fid and fe.
The min-max objective function is defined as follows:

min
De

max
Dp

E[logDp(x̂
j
i )] + E[log(1−Dp(De(Ee(x

j
i ), Eid(x

j
i ))))].

(11)
Furthermore, we provide phase information similarity loss to
ensure that the output image of decoderDe shares expression
and identity representations with the input phase information
reconstructed image.

Lsimp =
S∑
j=1

Nj∑
i=1

||x̂ji −De(Ee(x
j
i ), Eid(x

j
i ))||

2
2. (12)

The identity discriminatorDid imposes a uniform distribu-
tion on the identity features fid, which contributes to smooth
the expression transformation. Assume that Prior(f) is the
prior distribution and f∗id ∼ Prior(f) represents the random
sampling process from Prior(f). The min-max objective
function adopted is presented in the following formula:

min
Eid

max
Did

E[logDid(f
∗
id)] + E[log(1−Did(Eid(x

j
i )))].

(13)
Similar to the design of domain and expression features,

we need to ensure that the identity representation learned by
the Eid does not contain domain and expression information.
With the deployment of Cd and Ce, we propose the following
identity confusion loss Lconfid :

Lconfid =
S∑
j=1

Nj∑
i=1

(||Ce(Eid(xji ))−
1

K
||22 + ||Cd(Eid(x

j
i ))−

1

S
||22).

(14)
Together with the above classification loss, adversarial

loss, similarity loss, and confusion loss, we train our pro-
posed framework to be able to disentangle identity and ex-
pression representations. Finally, the expression representa-
tion we learned is domain invariant and discriminative owing

(b) (c)(a)(a)

Domain
2

Domain
1

Figure 3: (a) Original images from different domains. (b) Re-
construction of images with Fourier amplitude information (set the
phase component to a constant). (c) Reconstruction of images with
Fourier phase information (set the amplitude component to a con-
stant).

to the disentanglement of the image domain and identity in-
formation. Therefore, our model can be effectively general-
ized to FER across different domains.

In summary, our overall objective function is defined as
follows:
min
Eid,De

max
Did,Dp

E[logDid(f
∗
id)] + E[log(1−Did(Eid(x

j
i )))]

+ E[logDp(x̂
j
i )] + E[log(1−Dp(De(Ee(x

j
i ), Eid(x

j
i ))))]

+ Lexp + Ldom + Lconfexp + Lconfdom + Lconfid

+ λLsimp + τTV (De(Ee(x
j
i ), Eid(x

j
i ))),

(15)
where TV (·) represents the total variation that effectively
eliminates ghost artifacts. The coefficients λ and τ balance
smoothness and resolution. The network is trained and up-
dated by the above formula. Once the training of our network
architecture is complete, only the expression encoder Ee and
classifier Ce will be utilized to perform cross-domain FER.
That is, Ee is applied to extract domain-invariant and dis-
criminative expression features. Then those features are fed
into Ce for facial expression prediction.

4 Experiments
4.1 Datasets
JAFFE [Lyons et al., 1998]: The JAFFE (denoted as J) is
a laboratory-controlled facial expression database that con-
tains 213 samples from 10 Japanese females. Each person
has 3-4 images that are annotated with seven basic facial
expressions (anger/AN, disgust/DI, fear/FE, happiness/HA,
neutral/NE, sadness/SA and surprise/SU). We follow previ-
ous works [Chen et al., 2021] to use the entire dataset for the
training and test sets.

Oulu-CASIA [Zhao et al., 2011]: The laboratory-
controlled Oulu-CASIA (denoted as O) is a database of 2,880
image sequences from 80 subjects captured with two imaging
systems under three different illumination conditions. These
subjects are labeled with seven basic facial expressions. As
in [Li et al., 2022], we use 1,920 images from Oulu-CASIA
VIS which is obtained by selecting the last three frames and
the first frame (neutral expression) from 480 videos with the
VIS system under normal indoor illumination.

RAF-DB [Li et al., 2017b]: The RAF-DB (denoted as R)
is a real-world database consisting of around 30,000 facial
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images annotated with seven basic or eleven compound ex-
pressions. In the experiment, we select images labeled with
seven basic expressions, 12,271 of which are used for training
and 3,068 for testing. In addition, RAF-DB 2.0 [Li and Deng,
2020] (denoted as R2.0) is an extension of the current RAF-
DB database. A subset of R2.0 contains 14, 216 images that
are utilized as source data in the experimental comparisons.

SFEW 2.0 [Dhall et al., 2011]: The in-the-wild database
SFEW 2.0 (denoted as S) is the benchmark dataset for the
SReco sub-challenge in EmotiW 2015 [Dhall et al., 2015].
Each image is assigned one of the seven basic expressions.
We use 958 images for training and 436 images for testing.

4.2 Experimental Results
Leave-One-Domain-Out Results
Following [Li et al., 2017a], we first perform the leave-one-
domain-out evaluation. Specifically, we train our model using
labeled images from multiple source domains and choose the
best model on the validation splits of the training set. For
testing, we evaluate the selected model on a retained target
domain. For example, ”O&R&S to J” means that O, R, and S
are treated as the source domains, and J is used as the target
domain. As shown in Table 1, we provide the experimental
results for different backbones (ResNet-18 and ResNet-50).
We use a network consisting of theEe and Ce as the baseline.
And we compare our approach with some state-of-the-art DG
methods that are not specifically designed for cross-domain
FER. The superiority of our approach demonstrates that train-
ing model to disentangle expression and identity features can
improve its performance on unseen domain images.

Comparison with Other Cross-Domain FER Methods
Following the setup of previous works [Chen et al., 2021;
Li et al., 2022], we compare the proposed method with other
cross-domain FER approaches, and the results are shown in
Table 2. Since our model uses domain labels, the training set
requires multi-source domain data. To be consistent with the
size of training set in other methods, we select a subset of the
multi-source domain (R and O) to be our training set. Also,
the selected source and target domains are not overlapped. It
can be seen that our method outperforms the existing meth-
ods. Other cross-domain FER methods still have limited
cross-domain recognition performance due to their reliance
on identity information. Our method achieves impressive re-
sults even though the target domain is not accessed during
training. The comparison shows that our proposed model can
learn expression features with strong discriminative ability by
disentangling expression-irrelevant information. Therefore,
the cross-domain FER performance is improved.

Ablation Study
To demonstrate the importance of each module in our pro-
posed framework, we conduct the following ablation studies
on different target domains. As shown in Table 3, we provide
experimental results of models “a” (Baseline (Ee, Ce)), “b”
(Baseline+Ed, Cd), “c” (Baseline+Eid, Did, Dp, De), and
“f” (Ours), respectively (the backbone is ResNet-50). The
comparison of models “b” and “a” confirms that the disen-
tanglement of image domain features assists our model in
extracting domain-invariant facial content. The comparison

Method O&R&S to J J&R&S to O J&O&S to R J&O&R to S
ResNet-18

Baseline 46.54 50.01 56.05 40.04
Jigen [Carlucci et al., 2019] 51.77 55.03 58.99 41.93
DDAIG [Zhou et al., 2020] 54.69 56.75 59.87 42.40
CSD [Piratla et al., 2020] 51.09 55.85 59.13 42.27
FACT [Xu et al., 2021] 57.32 58.41 59.99 43.38
CIRL [Lv et al., 2022] 59.07 59.96 60.34 45.61

Ours 70.06 62.95 70.95 57.68
ResNet-50

Baseline 49.87 52.59 58.01 41.96
Jigen [Carlucci et al., 2019] 52.04 55.97 59.93 42.37
DDAIG [Zhou et al., 2020] 55.11 57.62 60.31 43.41
CSD [Piratla et al., 2020] 52.01 56.74 60.08 43.10
FACT [Xu et al., 2021] 58.63 59.77 61.18 45.13
CIRL [Lv et al., 2022] 60.03 60.75 62.96 47.32

Ours 71.72 67.83 74.94 60.12

Table 1: Comparison with the state-of-the-art DG methods on the
different target domains (%).

Method Backbone Source set J S

DFA [Zhu et al., 2016]
ResNet-18 R 42.25 38.30

ResNet-50 R 44.44 43.07

LPL [Li et al., 2017b]
ResNet-18 R 53.99 49.31

ResNet-50 R 53.05 48.85

FTDNN [Zavarez et al., 2017]
ResNet-18 R 50.23 49.31

ResNet-50 R 52.11 47.48

DETN [Li and Deng, 2018]
ResNet-18 R 52.11 42.25

ResNet-50 R 55.89 49.40

ICID [Ji et al., 2019]
ResNet-18 R 48.83 47.02

ResNet-50 R 50.70 48.85

AGRA [Chen et al., 2021]

ResNet-18 R 61.03 52.75

ResNet-50
R 61.50 56.43

R2.0 62.44 -

ECAN [Li and Deng, 2020]
ResNet-18 R 52.11 48.21

ResNet-50 R 57.28 52.29

DMSRL-RF [Li et al., 2022] ResNet-50 R2.0 68.54 -

Ours
ResNet-18 Subset of (R + O) 64.57 53.84

ResNet-50 Subset of (R + O) 70.03 57.55

Table 2: Comparison with other cross-domain FER methods on the
different target domains (%).
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Figure 4: The influence of our introduced Did. And the importance
of the Did for our model can be observed.

of models “c” and “a” verifies that the disentanglement of
identity information helps our model focus on facial expres-
sion, thus improving the discriminative ability of expression
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Method O&R&S to J J&R&S to O J&O&S to R J&O&R to S

Baseline (Ee, Ce) 49.87 52.59 58.01 41.96

Baseline+Ed, Cd 65.48 60.03 67.56 53.95

Baseline+
67.75 63.22 70.63 56.54Eid, Did, Dp, De

w/o confusion loss 69.27 65.04 71.93 57.81
w/o Lsim

p + TV (·) 71.69 67.68 74.75 59.98

Ours 71.72 67.83 74.94 60.12

Table 3: Analysis of the modules (and losses) for our network ar-
chitecture. The evaluation reveals that each module (and loss) con-
tributes to the effectiveness of our overall architecture (%).

features. Moreover, the effectiveness of leveraging Fourier
phase information to help disentangle identity features is also
demonstrated. The comparison of models “f” and “a” shows
that our proposed representation disentanglement network
can learn domain-invariant and discriminative expression fea-
tures, thus bringing significant improvements. Models “d”
(w/o confusion loss) and “e” (w/o Lsimp +TV (·)) are ablation
studies of the loss function, illustrating the effectiveness of
our introduction of confusion loss, similarity loss, and TV (·).
In addition, the identity discriminator Did is introduced to
smooth the transformation of expressions. As shown in Fig-
ure 4, we provide the experimental results before and after the
introduction of the Did. The effectiveness of introducing the
Did can be observed.

Visualization
We visualize the extracted expression features to reflect their
domain invariance. Furthermore, to enforce the disentangle-
ment among features, the auxiliary confusion loss is intro-
duced. Therefore, we provide the t-SNE [Van der Maaten
and Hinton, 2008] visualization results as in Figure 5. Here
we choose R as the target domain and perform leave-one-
domain-out experiments (J&O&S to R, backbone is ResNet-
50). Specifically, we train without and with confusion loss,
respectively, and then obtain the trained Ee and Ce. During
testing, the images in the target domain (we choose around
100 facial images per expression) is randomly selected as the
input of the trained Ee to extract expression features. The ac-
quired features are visualized separately in Figure 5. We can
see that our approach can well capture the domain-invariant
expression features. Also, the introduction of the confusion
loss helps to improve the performance of cross-domain FER.

Our method extracts expression features by disentangling
identity and domain information. To further verify its ef-
fectiveness, we use the Grad-CAM [Selvaraju et al., 2017]
algorithm to obtain the class activation mapping visualiza-
tions. We select O and R as the target domain for the leave-
one-domain-out experiments (J&R&S to O and J&O&S to R,
backbone is ResNet-50). The class activation maps for each
expression in different domains is shown in Figure 6. The
image regions that the model focuses on during the cross-
domain FER can be seen. The (a) and (b) denote models ”b”
and ”f” (Ours) in Table 3. We find that model ”b” can focus on
the facial region without the influence of domain information.
And model ”f” can locate more expression-related potential
interesting areas by disentangling the identity features. That

(a) w/o confusion loss (b) w/ confusion loss

Figure 5: The t-SNE visualization of expression features under the
cases without and with confusion loss. Different colors represent
different expressions. It is clear that our method has good cross-
domain FER performance. And confusion loss can contribute to
improving the discrimination of expression features.

AN

Domain 
1

DI FE HA NE SA SU

(a)

Domain 
2

(b)

(a)

(b)

Figure 6: Grad-CAM visualization of different expressions on dif-
ferent domains. Each column displays each facial expression. Do-
mains 1 and 2 (rows 1 and 4) denote the original facial images (after
face detection) from different domains (O and R). The (a) (rows 2
and 5) and (b) (rows 3 and 6) show the test results for models ”b”
and ”f” (Ours) in Table 3. Our method disentangles the domain and
identity information so that the learned expression features exhibit
good domain invariance and discrimination.

is, our whole disentanglement model can focus on domain-
invariant and more discriminative facial regions. Therefore,
the performance of cross-domain FER is improved.

5 Conclusion
In this paper, we attempt to solve the more challenging task of
cross-domain FER not being able to access the target domain
data. We propose a representation disentanglement model
capable of extracting domain, identity, and expression fea-
tures based on the idea of DG. To ensure the disentanglement
among features, we use the semantic preservation property of
the Fourier phase component to provide support for preserv-
ing the high-level semantics of the image. In addition, we
introduce classification loss, adversarial loss, similarity loss,
and confusion loss, respectively. And the training is imple-
mented by our designed objective loss function. Extensive
experiments on multiple datasets demonstrate the effective-
ness of our method.
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