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Abstract
Object detection on panoramic/spherical images
has been developed rapidly in the past few years,
where IoU-calculator is a fundamental part of var-
ious detector components, i.e. Label Assignment,
Loss and NMS. Due to the low efficiency and non-
differentiability of spherical Unbiased IoU, spheri-
cal approximate IoU methods have been proposed
recently. We find that the key of these approx-
imate methods is to map spherical boxes to pla-
nar boxes. However, there exists two problems
in these methods: (1) they do not eliminate the
influence of panoramic image distortion; (2) they
break the original pose between bounding boxes.
They lead to the low accuracy of these methods.
Taking the two problems into account, we pro-
pose a new sphere-plane boxes transform, called
Sph2Pob. Based on the Sph2Pob, we propose (1)
an differentiable IoU, Sph2Pob-IoU, for spherical
boxes with low time-cost and high accuracy and (2)
an agent Loss, Sph2Pob-Loss, for spherical detec-
tion with high flexibility and expansibility. Exten-
sive experiments verify the effectiveness and gen-
erality of our approaches, and Sph2Pob-IoU and
Sph2Pob-Loss together boost the performance of
spherical detectors. The source code is available
at https://github.com/AntXinyuan/sph2pob.

1 Introduction
For the demand of comprehensive environment perception in
emerging applications such as as robotics [Kang and Cho,
2019; Zhang et al., 2021] and automatic driving [Yang et al.,
2021a; He et al., 2021], object detection can be naturally ex-
tended from planar images to panoramic images, because the
latter have the whole 360◦ view with richer information in a
compact form. Unlike planar images, panoramic images usu-
ally take the sphere as the imaging surface and are stored in
the ERP-format [Snyder, 1997] based on polar-coordinates in

∗This work was done when Hang Xu & Qiang Zhao were at ICT.
†Corresponding author.

Figure 1: Consistency comparison between Unbiased-IoU [Dai et
al., 2022a] and other approximate IoU for spherical boxes in dif-
ferent cases. From left to right are respectively Sph-IoU [Zhao et
al., 2020], Fov-IoU [Cao et al., 2022] and our proposed Sph2Pob-
IoU; while from top to bottom are respectively cases corresponding
all-latitudes, low-latitudes and high-latitudes. R refers to the Cor-
relation Coefficient. Our methods achieve the best consistency with
Unbiased-IoU in all cases.

many works [Chou et al., 2020; Xu et al., 2022], so object
detection on them is also called spherical (object) detection.

To tightly enclose objects on spherical images, mainstream
method usually replace planar rectangular boxes with spher-
ical rectangular boxes, which is also known as the Bounding
Field of View (BFoV) [Chou et al., 2020; Dai et al., 2022a]
directly defined on the sphere rather than plane. However, as
is shown in Figure 2(a), this representation introduces some
extra challenges about IoU calculation and Loss design for
spherical detection. On the one hand, the calculation of spher-
ical IoU has not been well solved, due to the complexity of
intersection between two spherical boxes, which limits com-
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Figure 2: Overview of our proposed Sph2Pob for spherical object detection. (a) In conventional paradigm, IoU and Loss are directly
calculated for spherical boxes. (b|c) In proposed paradigm, spherical boxes are transformed to planar oriented boxes, and then IoU and Loss
are indirectly calculated. The latter overcomes the nondifferentiable issue of spherical IoU and enriches Loss design for spherical detection.

ponents relying on IoU, such as Label Assignment and NMS.
From the previous literatures, some approximation of spher-
ical IoU, such as Sph-IoU [Zhao et al., 2020] and Fov-IoU
[Cao et al., 2022] sacrifice too much accuracy due to simplis-
tic approximation strategies. In contrast, Unbiased-IoU [Dai
et al., 2022a] innovatively provides an accurate IoU, but it
needs a complex DFS algorithm to handle special cases, mak-
ing the whole calculation tough to either accelerate in parallel
or differentiate. On the other hand, researchers almost have
no choice but naive L-n Loss during training because of the
complex spherical natures, and let alone popular IoU-based
Loss since the Unbiased-IoU mentioned before is undiffer-
entiable. According to the research [Yu et al., 2016], this
inconsistencies between the L-n Loss and the IoU metric lead
to suboptimal trained models.

In this paper, we explore a novel paradigm to comprehen-
sively boost object detection on spherical images from the
perspectives of IoU and Loss with the power of methods for
planar oriented boxes, as is shown in Figure 2(b|c). Review-
ing Sph-IoU [Zhao et al., 2020] and Fov-IoU [Cao et al.,
2022], we discover that their key insight is to move spheri-
cal boxes to the equator, which is the line with no distortion
on ERP-images. Then, the spherical boxes are regarded as
planar boxes, and the spherical IoU is approximated by pla-
nar IoU. However, in order not to change the relative position
of the two spherical boxes, Sph-IoU and Fov-IoU actually
move the middle of two centers to the equator of the ERP-
images, as is shown in Figure 3(a|b). It means that the cen-
ters of the two spherical boxes are not at the equator in most
cases, resulting in distortion in the spherical boxes. More-
over, we discover that there exists a dynamic and coupled an-
gle (internal angle) between two intersecting spherical boxes,
as is shown in Figure 2(b), which is another special rotation
distinguished from orientations of objects (external angle).
Taking the two problems into account, we propose a sphere-
plane boxes transform algorithm, called Sph2Pob, based on

spherical geometric transformation, where the boxes are ex-
actly moved to the equator and are easier to map to planar
oriented boxes, and the internal angle between two spheri-
cal boxes is calculated precisely. Due to the concise logic,
the algorithm is easy to accelerate and differentiate. Based
on Sph2Pob, spherical IoU can be approximately calculated
through IoU for planar oriented boxes [Ma et al., 2018;
Zhou et al., 2019]. As is shown in Figure 1, our Sph2Pob-IoU
is superior to other methods even in the most hard cases (high-
latitudes). In addition, we can also construct agent Loss based
on Sph2Pob for spherical detection through Loss for planar
oriented boxes [Yang et al., 2021c; Yang et al., 2022b]. This
not only makes spherical IoU-based Loss possible, but also
greatly enriches alternative of Loss for spherical detection.
Overall, our contribution can be summarized as following:

• By analyzing the problems of previous approximate
spherical IoU methods, we propose a sphere-plane
boxes transform, called Sph2Pob, which makes spher-
ical boxes can be treated as planar oriented boxes.

• We propose an differentiable approximate IoU for spher-
ical boxes based on Sph2Pob with low time-cost and
high accuracy, which can extend spherical IoU into mul-
tiple components, i.e. Label Assignment, Loss, NMS.

• We propose an agent Loss for spherical detection based
on Sph2Pob with high flexibility and expansibility,
which enriches Loss design for spherical detection.

• Extensive experimental results verify the effectiveness
and generality of our approach, from which spherical de-
tectors can get a significant boost.

2 Related Works
2.1 Spherical Object Detection
In spherical object detection, objects are distributed over
spherical images covering the whole 360◦ view with richer
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semantic information and higher practical value. However,
spherical imaging surfaces tend to distort objects, which
causes the difficulty of object detection from another as-
pect. To address these issues, researchers usually introduce
additional adaptive priors to existing conventional detectors
through intricate designs. Multikernel [Wang and Lai, 2019]
and Reprojection R-CNN [Zhao et al., 2020] are two-stage
approaches whose pipeline is inherited from Faster RCNN
[Ren et al., 2015], while Sphere-CenterNet [Dai et al., 2022a]
and R-CenterNet [Xu et al., 2022] are based on correspond-
ing single-stage methods for faster detection speed.

However, there exists some more pressing problems in
foundational components of spherical detectors, such as La-
bel Assignment, Loss and NMS, due to Intersection over
Union (IoU) for spherical boxes. It is easy for planar rect-
angular boxes to calculate IoU, but intractable for spheri-
cal rectangular boxes. No accurate IoU [Zhao et al., 2020;
Cao et al., 2022] is proposed until SphIoU[Dai et al., 2022a],
but it still has obvious flaw. On the one hand, the Sph-IoU
has a complex logic relied on 64-bit high-precision float com-
putation in its offical implement. In addition, it uses a DFS
algorithm that is tough to parallelize and does not support
CUDA acceleration, which slows down the training and eval-
uation of the entire network. On the other hand, the whole
calculation is non-differentiable, which prevents training ben-
efiting from IoU-based Loss, such as IoU [Yu et al., 2016],
GIoU [Rezatofighi et al., 2019], DIoU [Zheng et al., 2020]
and CIoU [Zheng et al., 2021] Loss. In addition, it is hard to
design other practical Loss due to spherical complexity, so the
detectors only use naive L-n Loss during the training phase,
which leads to poor detection performance.

2.2 Planar Oriented Object Detection
As a hot spot in research about object detection recently, pla-
nar oriented object detection has attracted wide attention in
several real scenario, such as aerial images [Dai et al., 2022b],
scene text [Dai et al., 2021], face pose [Zhang et al., 2020],
etc. In contrast to the popular undirected object detection,
oriented object detection requires predicting a rotated rectan-
gular box (x, y, w, h, a) with an additional angular parameter
a, but introduces more challenges due to the boundary and
square-like issues [Yang et al., 2022a]. Fortunately, there are
many solutions to address these issues, especially from the
perspective of Loss function, such as IoU-Smooth L1 [Yang
et al., 2018], CSL [Yang and Yan, 2020], GWD [Yang et
al., 2021b], KLD [Yang et al., 2021c], KFIoU [Yang et al.,
2022b], and so on. As for IoU of planar oriented rectangular
boxes, although it also faces many computational challenges,
there are some excellent solutions, i.e. RotatedIoU [Ma et al.,
2018] and differentiable SkewIoU[Zhou et al., 2019].

3 Methodology
3.1 Overview
To solve the distortion position & internal angle problems ex-
posed from Sph-IoU and Fov-IoU, we propose a new sphere-
plane boxes transform method, called Sph2Pob. Firstly, we
ensure the centers of the two spherical boxes are strictly at

(b) (c)(a)

Figure 3: Different approximate calculation of spherical box IoU by
moving boxes to the equator without change of (a) longitude dif-
ference [Zhao et al., 2020] and (b) arc length between boxes centers
[Cao et al., 2022]. Apart from relative position information, our pro-
posed method (c) also keeps relative pose information.
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Figure 4: Spherical boxes and two types of rotation. (a) Spherical
box BFoV. (b) Spherical box RBFoV with external angle γ. (c)
The non-parallel longitude lines lead to the formation of the internal
angle ∆ of the two boxes.

the equator of the ERP image to avoid the influence of distor-
tion. Secondly, we calculate the exact internal angle between
two spherical boxes by pose vectors of boxes, as is shown in
Figure 3(c). Finally, we propose a new approximate IoU and
Loss based on Sph2Pob for spherical image object detection.
The overview of our method is shown in Figure 2.

3.2 Rethink Orientation of Spherical Boxes
Spherical Bounding Box
A scheme of spherical bounding box is Bounding Field of
View (BFoV) BS(θ, ϕ, α, β) [Chou et al., 2020; Dai et al.,
2022a], where (θ, ϕ) is the center position, (α, β) are the
width & height of the bounding box, as is shown in Fig-
ure 4(a). The recent works [Xu et al., 2022; Xu et al., 2023]
find that the objects in spherical images often appear with
arbitrary orientations, and the BFoV cannot compactly out-
line oriented instances. Therefore, Rotated Bounding Field of
View (RBFoV) BS(θ, ϕ, α, ϕ, γ) is proposed as the spherical
bounding box, where γ refers to the rotation angle of BFoV
around center vector n(θ, ϕ), as is shown in Figure 4(b).

However, we find that in addition to the external angle γ
about the orientation of the object, there is an internal angle
between spherical bounding boxes whose center points are
not at the same longitude, as is shown in Figure 4(c). This
angle is yielded by the intrinsic nature (longitude lines are not
parallel) of spherical images and boxes, and does not depend
on the orientation of object. It is an ignored but important
factor in current researches for approximated spherical IoU.

Internal Angle
BFoVs are strictly aligned with coordinate axes. Although
the latitude lines are parallel to each other and perpendicular
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Algorithm 1 Sph2Pob

Input: Two spherical boxes BS
i (θi, ϕi, αi, βi, (γi))

Output: Two planar boxes BP
i (xi, yi, wi, hi, ai)

1: Compute position ni and pose pi via Equation 1, 2.
2: Construct spherical geometric transformation R.
3: Transform ni,pi to n̂i, p̂i with R.
4: Compute internal angle ∆ via Equation 8.
5: Map boxes B̂

S
i to planar boxes. BP

i via Equation 9
6: (optional) Modify ai of BP

i with external angle γi.
7: return BP

1 ,B
P
2 .

to the longitude lines anywhere, the longitude lines are not
parallel beyond the equator and converge at the poles, which
results in the rotation of spherical boxes coupled with each
other, as is shown in Figure 4(c). We call the angle of rotation
as internal angle.

For a BFoV BS = (θ, ϕ, α, β) , we denote the position of
the box by the center vector n, where

n = n(θ, ϕ) = [nx, ny, nz]⊤

= [sin(ϕ) cos(θ), sin(ϕ) sin(θ), cos(ϕ)]⊤
(1)

Then, we can represent the pose of the box by the tangent
vector p of its center along the direction of longitude, where

p = p(θ, ϕ) =
∂n(θ, ϕ)

∂ϕ
= [px, py, pz]⊤

= [cos(ϕ) cos(θ), cos(ϕ) sin(θ),− sin(ϕ)]⊤
(2)

If the centers of the two boxes are at the same latitude, the
internal angle ∆ can be calculated based on the pose vectors
p1 and p2 of the two boxes, i.e.

∆ = arccos(p1 · p2) (3)

where · denotes the vector inner product.
Moreover, the internal angle coupled between two boxes

dynamically changes with latitude and longitude, where lati-
tude determines the lower bound, while longitude difference
determines the upper bound. Extremely, the angle ∆ = 0
(minimum) always holds on when two boxes are located at
the equator (ϕ1 = ϕ2 = π/2), and it reaches maximum
|θ1 − θ2| at the pole (ϕ1 = ϕ2 ∈ {0, π}).

3.3 Sph2Pob: Sphere-Plane Boxes Transform
Sph2Pob is a boxes transform from sphere to plane. It con-
sists of two parts, i.e. Spherical Geometric Transformation
and Spherical-Planar Mapping, and we describe it in Al-
gorithm 1. Given two BFoVs BS

1 = (θ1, ϕ1, α1, β1) and
BS

2 = (θ2, ϕ2, α2, β2), the output of Sph2Pob is two pla-
nar oriented boxes BP

1 = (x1, y1, w1, h1, a1) and BP
2 =

(x2, y2, w2, h2, a2).

Spherical Geometric Transformation (SGT)
To make the center points of the two spherical boxes strictly
on the equator of the ERP image to avoid the influence of
distortion, we apply a rotation transformation R to the sphere,

(a) (b) (c)

α, β

arc

tangent

chord

Figure 5: Technical details of Sph2Pob. A spherical rotation trans-
formation R is used to move spherical boxes to from (a) anywhere
to (b) the equator, where the arc between the two centers lie on the
equator. (c) Three projected edges, i.e. tangent, arc and chord.

making the arc between the two centers lie at the equator, as is
shown in Figure 5(b). For unified operation, we supply extra
constraints including i) letting midpoint of the arc lie in x-
axis-vector (1, 0, 0)⊤ and ii) letting B1

S on the left of B2
S .

The rotation matrix is as following:

R = [vx,vy,vz]
⊤
=

[
n1+n2

∥n1+n2∥ ,
n1−n2

∥n1−n2∥ ,vx × vy

]⊤
(4)

where n refers to the position vector of BS , and × denotes
the vector cross product. By the way, vx ≡ n( θ1+θ2

2 , ϕ1+ϕ2

2 )
always keeps, and even avoids the extra standardization due
to the uniqueness of Euclidean coordinates.

At this time, the two spherical boxes can be moved to the
equator strictly without any loss of both relative position and
pose information. The position vector n̂ of the new spherical
box can be calculated as follows:

n̂(θ̂, ϕ̂) = R n(θ, ϕ) (5)
As can be seen from equation 3, the internal angle ∆ is

determined by the pose vector. Therefore, we first acquire the
pose vectors (p̂1, p̂2) of two new spherical boxes:

[p̂1, p̂2] = R [p1,p2] (6)
where p1 and p2 are the pose vectors of the original spherical
boxes, as is shown in Figure 5(a). Then, as is shown in Fig-
ure 5(b), the internal angle ∆ of two boxes equivalent to the
direct angle between the new pose vectors p̂1 and p̂2:

∆ = arccos(p̂1 · p̂2) (7)
To facilitate IoU calculation and Loss design, we decomposed
the internal angle ∆ into each box by a reference vector p̂ref
(the pose vector of the middle of two centers), i.e.

∆ = ∆1 +∆2

= arccos(p̂1 · p̂ref ) + arccos(p̂2 · p̂ref )
(8)

Spherical-Planar Mapping (SPM)
After being moved to the equator, the new spherical boxes
B̂

S
i = (θ̂i, ϕ̂i, α̂i, β̂i) in the ERP image are close to oriented

planar boxes in shape, as is shown in Figure 2(c). Then we
map them to the planar counterpart further. We can get the
planar rotated boxes BP

i = (xi, yi, wi, hi, ai) as follows:

xi = θ̂i/2π ·W
yi = ϕ̂i/π ·H
wi = f(α̂i)

hi = f(β̂i)

ai = ∆i = arccos(p̂i · p̂iref )

, i = 1, 2 (9)
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where W and H refer to the width and height of the ERP im-
age, θ̂i and ϕ̂i refers to the latitude and longitude correspond-
ing to the transformed position vector n̂i, and f(·) represents
the edge projection methods, such as arc, chord and tangent,
as is shown in Figure 5(c). In the ablation study, we test these
edge projection methods, details will be shown in Table 3.

Sph2Pob-Transform for RBFoV
Given two RBFoVs B1

S = (θ1, ϕ1, α1, β1, γ1) and B2
S =

(θ2, ϕ2, α2, β2, γ2), the output of Sph2Pob is still two
planar boxes B1

P = (x1, y1, w1, h1, a1) and B2
P =

(x2, y2, w2, h2, a2), where (xi, yi, wi, hi) are the same as in
equation 9. Due to external angle is equivalent to planar ro-
tation angle in ERP-images, the angle ai can be obtained by
simple addition:

ai = ∆i + γi, i = 1, 2 (10)

It can be found that our method is compatible with the two
spherical bounding boxes BFoV and RBFoV.

3.4 A New Paradigm for Spherical Detection
Training of Spherical Detectors with Planar Methods
Common object detectors can be divided into two types, i.e.
anchor-based and anchor-free ones, where the former adopts
boxes (also called anchors) as priors, while the latter adopts
points as priors. In general, anchor-based detectors performs
better than anchor-free detectors, but they need calculate IoUs
between anchors and ground-truth-boxes to assign pos / neg
labels to anchors, and only positive samples are used in Loss
calculation for boxes-prediction. Thus, the accuracy of IoU
directly affect the sample quality and and subsequent training
effect. By the way, time-cost of IoU should be considered
due to the huge number of anchors (typical 200k). In addi-
tion, Loss design also significantly affect the training effect,
regardless of the type of detectors.

So the transform from spherical boxes to planar oriented
boxes is actually a huge leap forward, and we can utilize the
power of planar oriented methods to comprehensively boost
spherical detection from the perspectives of IoU and Loss.

IoU Approximation of Spherical Boxes
Sph2Pob-Transform first brings a new IoU approximation
method. IoU for planar oriented boxes [Ma et al., 2018; Zhou
et al., 2019] has been studied extensively, and some main-
stream deep learning frameworks have also implemented ef-
ficient differentiable CUDA operator for it. Using these op-
erators, we can calculate the IoU of the spherical boxes indi-
rectly, i.e

IoUS(BS
1 ,B

S
2 ) ≈ IoUP(Sph2Pob(BS

1 ,B
S
2 )) (11)

Later, we will verify through experiments that this IoU has
tiny approximation error and high computational efficiency,
so it can directly replace the existing slow SphIoU in various
components, including Label Assignment, Loss and NMS.

Agent Spherical Loss based on Planar Boxes
Due to proposed differentiable Sph2Pob-Transform, those
well-done IoU-based Loss [Yu et al., 2016; Rezatofighi et al.,
2019; Zheng et al., 2020; Zheng et al., 2021] commonly used

on the plane can be introduced into spherical detection. Fur-
thermore, the existing [Yang et al., 2021b; Yang et al., 2021c;
Yang et al., 2022b] and future Loss designed for the planar
oriented detection can also be easily introduced here, i.e.

LossS(BS
1 ,B

S
2 ) ≈ LossP(Sph2Pob(BS

1 ,B
S
2 )) (12)

The agent Loss is extremely flexible and extensible, greatly
enriching methods for spherical detection. From the macro-
scopic perspective, spherical detection can be regarded as a
special case of planar oriented detection in a sense.

4 Experiments
4.1 Datasets
360-Indoor [Chou et al., 2020] is a classic real-world
dataset for spherical object detection. It consists of 3,335 in-
door spherical images and 89,148 spherical box annotations
(BFoV of 4 parameters) among 37 categories. Before 360-
Indoor, evaluations were made with synthetic data, which did
not reflect the complex scenes of the real world.
PANDORA [Xu et al., 2022] is a recently released real-
world dataset with oriented spherical box annotations. It con-
sists of 3,000 spherical images and 94,353 oriented boxes an-
notations (RBFov of 5 parameters) among 47 categories.

By default, the proportion of the train/valid/test set is 1/2,
1/6, and 1/3 in the two datasets, and the images are all resized
to 512×1024 from 960×1920.

4.2 Evaluation Metrics
Methods are evaluated using the standard COCO style Aver-
age Precision (AP) [Lin et al., 2014], which is also the con-
vention throughout the field of object detection. Following
current mainstream works in spherical detection [Chou et al.,
2020; Xu et al., 2022], we adopt AP50 as main metric, while
AP & AP75 are just auxiliary metric. Naturally, these APs
here are calculated based on spherical IoU to adapt to the
spherical boxes. Even though our proposed Sph2Pob-IoU has
high consistency with Unbiased-IoU [Dai et al., 2022a], we
still use Unbiased-IoU to compute the IoU for evaluation to
make a fair comparison.

4.3 Implementation Details
All approaches are implemented in PyTorch [Paszke et al.,
2017] with mmcv/mmdet/mmrotate [Chen et al., 2019;
Zhou et al., 2022] repository, and we make adaptation to the
models for spherical boxes with 4/5-parameters. We use 4
NVIDIA 2080Ti GPUs with a batch size of 16 and a input res-
olution of 512×1024. SGD is adopted to optimize the models
with momentum set to 0.9 and weight decay set to 0.0005.
All evaluated models are trained for 120 epochs with an ini-
tial learning rate of 0.001 which is then divided by 10 at 80
epochs and again at 110 epochs. All other settings follow the
default settings recommended in mmdet.

4.4 Comparisons with State-of-the-art
We make a comprehensive comparison between our proposed
Sph2Pob algorithm and other State-of-the-art methods from
three aspects, i.e. IoU consistency, IoU time-cost, and perfor-
mance of detectors trained with IoU-calculators.
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Method Consistency Time-cost Detection
Rall↑ Rlow↑ Rhigh↑ Tcpu↓ Tcuda↓ AP↑ AP50 ↑ AP75 ↑

Sph 0.7819 0.9922 0.4274 0.0364 0.0033 10.7 24.3 7.8
Fov 0.9600 0.9974 0.8860 0.0372 0.0034 10.9 25.0 7.9

Sph2Pob 0.9989 0.9990 0.9988 2.2275 0.0096 11.5 25.7 8.2

Unbiased 1.0000 1.0000 1.0000 46.4417 - - - -

Table 1: Comprehensive comparison between our proposed
Sph2Pob algorithm and other State-of-the-art methods.

Angle Error↓(mean±std) R↑

original 0.0025±0.0086 0.9946
equator 0.0016±0.0042 0.9989
project 0.0017±0.0043 0.9987

Table 2: Approximate error and
correlation coefficient of IoU
with different angle calculation.

Edge Error↓(mean±std) R↑

arc 0.0016±0.0042 0.9989
chord 0.0023±0.0063 0.9974

tangent 0.0086±0.0192 0.9681

Table 3: Approximate error and
correlation coefficient of IoU
with different edge projection.

Consistency between Unbiased-IoU and different
approximate-IoU. To compare the consistency between
unbiased-IoU and different approximate methods, we de-
sign a experiment, as is shown in Figure 1 and Table 1.
We randomly generate 10, 000 box-pairs in three cases,
and calculate Unbiased-IoU [Dai et al., 2022a] and three
approximate-IoUs. In addition, we calculate Pearson
Product-Moment Correlation Coefficient R to describe the
consistency quantitatively. We can find that our methods are
significant superior to previous method with higher consis-
tency, and our Sph2Pob-IoU is very stable even in the most
difficult high-latitude case, in which other methods show
varying degradation. In detail, FoV-IoU is more accurate
than Sph-IoU due to better retention of relative position
information, but it is inferior than our Sph2Pob-IoU due to
the lack of precise relative position and pose information,
which is vital especially in high-latitude case.
Time cost of different IoU-calculators. Apart from con-
sistency, computational speed should be taken into consid-
eration for the practical application of IoU in training. We
performed time-cost tests for the various IoU calculations in
two devices, i.e. CPU and CUDA, as is shown in Table 1.
Note that Unbiased-IoU does not support CUDA accelera-
tion due to its inherent defect. Here, we randomly gener-
ate 1, 000, 000 box-pairs in all-latitude case as we did in the
previous consistency experiment, and record the total compu-
tational time(unit: second) of IoU for these box-pairs. Ac-
cording to Table 1, Sph-IoU and Fov-IoU is slightly fast but
with a huge sacrifice of accuracy; while Unbiased-IoU is ac-
curate, but consumes too much time. Limited by the current
mainstream implementation of IoU for planar oriented boxes,
our Sph2Pob-IoU computes slowly on the CPU, but achieves
speed comparable to Sph-IoU and Fov-IoU on CUDA. Ob-
viously, our Sph2Pob-IoU keeps the best balance between
speed and accuracy, which gives it a practical advantage.
Performance of detectors with different IoU-calculators.
Detection performance is the focus of attention in practical
applications, so we also compare the performance of detec-
tors trained with different IoU-calculators in various com-
ponents, as is shown in Table 1. Note that both Sph-IoU
and Fov-IoU are designed for BFoV rather than RBFoV, so

Label Loss NMS 360-Indoor PANDORA
Assignment AP↑ AP50 ↑ AP75 ↑ AP↑ AP50 ↑ AP75 ↑

9.8 22.2 7.0 10.4 23.8 6.9
✓ 10.2 23.0 7.8 10.3 24.3 6.6

✓ 11.0 25.4 7.8 10.6 24.5 6.9
✓ 9.8 22.1 6.8 10.4 23.9 6.9

✓ ✓ 11.5 25.7 8.2 10.5 25.3 7.0
✓ ✓ ✓ 11.6 26.1 8.4 10.6 25.7 7.1

Table 4: Ablation study of different components with our proposed
Sph2Pob-IoU. Unchecked components use planar IoU in ERP.

we just compare these methods on 360-Indoor dataset. As
for Unbiased-IoU, nondifferentiable operators can block IoU-
based Loss, and slow computation makes Label-Assignment
unacceptably time consuming, so we have to provide a empty
result. It shows that our method can more effectively improve
the detection performance than others.

4.5 Ablation Studies for Sph2Pob
Different internal angle calculation. We conduct an ex-
periment to explore the effect of the internal angle calcula-
tion method on the Sph2Pob-IoU, as is shown in Table 2. We
calculate the IoU approximation error and correlation coeffi-
cient with 1, 000, 000 random all-latitude box-pairs based on
the three different angle calculation methods, i.e. original,
equator and project. The original refers to calculate internal
angle at the original boxes’ positions (Figure 4(a)), whether
the boxes are at the same latitudes or not. The equator refers
to calculate at the equator after moving boxes (Figure 4(b)),
and the project refers to append extra projection for pose vec-
tor onto the yOz plane before the angle calculation at the
equator. The results show that original is clearly worse than
other two ways, but equator is almost on a par with project.
It implies it necessary to move to the equator even if only
for calculation of the internal angle. In fact, both equator
and project satisfy the hidden requirement that internal angle
should be zero when the boxes are at the same longitude line,
but only original dose not.

Different edge projection. We perform another experi-
ment to explore the effect of the edge projection method on
the Sph2Pob-IoU, as is shown in Table 3. We adopt the same
metrics as internal angle calculation experiment based on the
three edge projection methods, i.e. arc, chord and tangent, as
is shown in Figure 4(c). The results show that simple arc is
sightly superior to chord, and surpasses tangent with a large
margin. This may be because the tangent is longer a lot than
the corresponding arc/chord when field-of-view α, β is large.

Baselines with/without Sph2Pob. We use one-stage
anchor-based detector Retinanet [Lin et al., 2017] with adap-
tion for spherical detection as base detector in following ex-
periments. Here, we provide two baselines trained with naive
L1 Loss for spherical boxes and Sph2Pob-L1 Loss for trans-
formed planar boxes. As is shown in Table 5, the latter is
just slightly worse than the former, which verifies the trans-
form does not hurt boxes information a lot, and stronger Loss
could compensate this decline.

Different components with Sph2Pob-IoU. Benefiting
from low computational cost and high consistency, our
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Loss 360-Indoor PANDORA
AP↑ AP50 ↑ AP75 ↑ AP↑ AP50 ↑ AP75 ↑

L1 10.2 23.0 7.8 10.3 24.3 6.6

L1† 9.9 21.9 7.7 10.1 23.7 6.8

GWD† [Yang et al., 2021b] 6.8 14.5 5.6 5.9 12.3 5.0
KLD† [Yang et al., 2021c] 9.5 21.5 6.8 10.3 23.5 7.1
KFIoU† [Yang et al., 2022b] 8.5 19.7 6.2 9.6 23.2 5.6

IoU† [Yu et al., 2016] 9.8 22.1 6.8 10.4 24.8 6.9
GIoU† [Rezatofighi et al., 2019] 10.5 23.9 7.8 10.3 24.7 6.8
DIoU† [Zheng et al., 2020] 11.0 24.6 8.2 10.4 24.8 7.0
CIoU† [Zheng et al., 2021] 11.5 25.7 8.2 10.5 25.3 7.0

Table 5: Performance of detectors with different Losses. The Losses
with mark† utilize our proposed Sph2pob-Transform, which come
from planar oriented detection.

Detector Loss 360-Indoor PANDORA
AP↑ AP50 ↑ AP75 ↑ AP↑ AP50 ↑ AP75 ↑

Faster R-CNN L1 12.5 28.1 9.1 11.0 27.8 6.2
CIoU† 12.9 29.1 9.4 11.3 28.6 7.1

SSD L1 10.8 27.6 6.3 9.5 25.8 4.6
CIoU† 12.0 28.7 8.0 10.5 26.9 6.0

FCOS L1 8.8 20.2 6.7 7.7 19.7 4.4
CIoU† 9.2 21.0 7.0 8.8 21.2 5.6

Table 6: Performance of different detectors with our Sph2Pob-Loss.
The methods with mark† utilize our proposed Sph2pob-Transform

Sph2Pob-IoU can be applied to multiple components of
spherical detection, i.e. Label Assignment, Loss and NMS,
not limited to evaluation as previous Unbiased-IoU [Dai et
al., 2022a]. Before this, methods usually use IoU of pla-
nar enclosed rectangular boxes in ERP-images to serve these
components. Table 4 shows that our Sph2Pob-IoU can com-
prehensively improve spherical detection from two aspects
(Label Assignment and Loss), but fails to significantly im-
prove from NMS. This may be because NMS just filter out
redundancy boxes based on IoU, and a coarse IoU is enough
to identify them.
Different Losses with Sph2Pob transform. Limited by
complex spherical nature, only L1 Loss is available in prac-
tice of spherical detection. Luckly, flexible Sph2Pob trans-
form allows us to easily use Losses designed for planar ori-
ented detection. To compare with more SOTA Losses, we
introduce some non-IoU-based Losses (GWD, KLD, KFIoU)
for training detectors, as is shown in Table 5. They are rep-
resentative works for planar oriented detection recently, but
proposed for remote sensing images rather than natural scene
images. Maybe this gap causes poor performance in our set-
ting. By contrast, IoU-based Losses (especially CIoU-Loss)
outperform other Losses in different degree as our expecta-
tion, which verifies that our method is simple but effective.
Different detectors with Sph2Pob-Loss. To verify the
generality of our methods, we compare the performance of
different detectors with our Sph2Pob-Loss. We choose three
typical detectors (with adaption for spherical detection), in-
cluding two-stage anchor-based detector Faster-RCNN [Ren
et al., 2015], one-stage anchor-based detector SSD [Liu et
al., 2016] and one-stage anchor-free detector FCOS [Tian et
al., 2019]. As is shown in Table 6, simply replacing the Loss
with Sph2Pob-Loss can improve all detectors, and it shows
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It is recognized as wrong sofa with coarse bbox. It is recognized as wrong sofa with coarse bbox. 

It is recognized as bed with more campact bbox. It is recognized as wrong table but with more campact bbox. 

The cablinet is rotated with some angle.

The lighs are very small.

The potted plant is befroe 
the transparent window.

The lighs are missing in prediction.

The potted plant is 

The lighs are captured in prediction.

missing in prediction.

The potted plant is 
captured in prediction.

The bbox is  coarse with wrong angle.

It has more campact bbox with right angle.

Figure 6: Qualitative comparison on the 360-Indoor and PANDORA
dataset. The detector is the RetinaNet with different Losses. The
methods with mark† utilizes our proposed Sph2pob-Transform. It
is recommended to zoom in 5×(500%) at least for visual details of
qualitative samples.

that our approach is simple but very universal.

Qualitative Results. We provide some visualized results
for qualitative comparison between detectors trained with
naive L1 Loss and Sph2Pob-CIoU Loss to verify the effec-
tiveness of our approach. As is shown in Figure 6, the detec-
tor trained with Sph2Pob-Loss usually predicts more compact
boxes enclose objects. It has more possibility to capture small
objects even in high-latitude regions, which is hard to realize
when training with L1 Loss. In addition, our method can pre-
dict more precise external angle for oriented objects, benifit
from the combination with planar oriented methods.

5 Conclusion
By analyzing the problems of previous approximate spherical
IoU methods, this paper proposes a sphere-plane boxes trans-
form, called Sph2Pob, making spherical boxes can be treated
as planar oriented boxes. Based on the Sph2Pob, our pro-
posed differentiable IoU for spherical boxes, Sph2Pob-IoU,
has low time-cost and high accuracy. Besides, an agent Loss
for spherical detection, Sph2Pob-Loss, is easily constructed
based on the Sph2Pob, which makes the choices of Loss for
spherical detection get richer. Extensive experiments also
verify the effectiveness and universality of our approaches,
and we hope that spherical detection will advance along with
planar oriented detection from now on.
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