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Abstract
Multispectral photometric stereo (MPS) aims at
recovering the surface normal of a scene from
a single-shot multispectral image captured under
multispectral illuminations. Existing MPS meth-
ods adopt the Lambertian reflectance model to
make the problem tractable, but it greatly lim-
its their application to real-world surfaces. In
this paper, we propose a deep neural network
named NeuralMPS to solve the MPS problem un-
der non-Lambertian spectral reflectances. Specif-
ically, we present a spectral reflectance decompo-
sition model to disentangle the spectral reflectance
into a geometric component and a spectral compo-
nent. With this decomposition, we show that the
MPS problem for surfaces with a uniform mate-
rial is equivalent to the conventional photometric
stereo (CPS) with unknown light intensities. In
this way, NeuralMPS reduces the difficulty of the
non-Lambertian MPS problem by leveraging the
well-studied non-Lambertian CPS methods. Ex-
periments on both synthetic and real-world scenes
demonstrate the effectiveness of our method.

1 Introduction
Photometric stereo methods, originally proposed by Wood-

ham [Woodham, 1980] and Silver [Silver, 1980], recover de-
tailed three-dimensional (3D) surfaces from images captured
from a fixed camera under varying lighting directions, which
are commonly obtained at different timestamps. Since con-
ventional photometric stereo (CPS) methods stack images
with time-multiplexing, the target surface has to be kept static
during the multiple shots. With spectral-multiplexing, multi-
spectral photometric stereo (MPS) [Kontsevich et al., 1994]
can recover surface normals from a one-shot multispectral
image. As shown in Fig. 1, a single multispectral image for
MPS encodes observations under varying lighting directions
in different spectral bands, conveying the information about
surface normals at that timestamp. With input multispec-
tral images recorded by a multispectral camera under spectral
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Figure 1: Our NeuralMPS takes multispectral image (MSI) as in-
put, and recovers the dynamic shape (surface normal) of a non-
Lambertian surface at different timestamps.

light sources, MPS can reconstruct the 3D shapes of dynamic
objects1.

Existing MPS methods [Guo et al., 2021; Chakrabarti
and Sunkavalli, 2016; Ozawa et al., 2018; Anderson et al.,
2011b] mostly focus on the Lambertian reflectance, which
has limited ability to represent the surface appearance in real-
world. For non-Lambertian surfaces, the spectral reflectance
varies not only with the spectral band, but also the incident-
outgoing lighting directions w.r.t. the surface normal at dif-
ferent scene points. There have been a few MPS methods
working for non-Lambertian reflectance, which assumed a
specific hardware setup [Rahman et al., 2014] with two-shot
capturing or an input image containing three spectral chan-
nels with fixed spectral bands [Ju et al., 2018; Ju et al., 2020a;
Ju et al., 2020b]. Due to the restrictive capture setting and
limited surface normal estimation accuracy of existing meth-
ods, non-Lambertian MPS remains an open and challeng-
ing problem. Alternatively, non-Lambertian reflectance is
well-studied in the CPS context and great progress has been
achieved with data-driven approaches [Chen et al., 2018;
Santo et al., 2017; Yao et al., 2020; Ikehata, 2018]. How-
ever, non-Lambertian CPS methods cannot be directly ap-
plied to multispectral image observations without considering
the wavelength-dependent reflectance responses.

1Please check the supplementary video for the full sequence.
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Figure 2: Visualization of the 4 categories of reflectance assumptions in existing photometric stereo methods, where ⊗ represents Kronecker
product and 1 denotes one vector/matrix whose elements are all equal to 1. The reflectance decomposition in different photometric stereo
tasks is shown in the third row. The last column illustrates the proposed SRD model.

In this paper, we show that MPS can be reformulated
as a CPS problem by introducing a spectral reflectance
decomposition (SRD) model, which allows us to borrow
experiences from well-established CPS theory. Specifi-
cally, we assume the target surface has dominant diffuse
or speculative reflectance, which is commonly seen in real-
world materials (e.g. measured material “paper blue” and
“ilm l3 37 metallic” in Fig. 3). Under this assumption, our
SRD model can decompose the non-Lambertian spectral re-
flectance into two independent components: geometric and
spectral. The geometric component only varies with the
incident-outgoing lighting directions, which can be well-
modeled by non-Lambertian CPS methods. The spectral
component is the response w.r.t. the spectral wavelength. For
surfaces covered by a uniform material, we can entangle it
with the input light intensity as an equivalent light intensity.
In this way, the MPS problem can be formulated as an semi-
calibrated CPS problem under unknown equivalent light in-
tensities. Following the above insights, we propose a neural
network NeuralMPS to first predict the equivalent light inten-
sity including the spectral component, and then embed exist-
ing CPS methods to recover the surface normal map consid-
ering the geometric component only.

To summarize, our contributions are as follows:

• We formulate the MPS problem as a well-studied CPS
problem with unknown equivalent light intensity by in-
troducing an SRD model.

• We propose a learning-based MPS network NeuralMPS
to accurately recover surface normal under diffuse- or
specular- dominant non-Lambertian reflectance.

2 Related Works
The surface general reflectance can be modeled
by the Bidirectional Reflectance Distribution Func-
tion (BRDF) [Szeliski, 2010], which describes how much

light at each wavelength arriving at an incident direction is
emitted in a reflected direction. With a fixed view direction,
the isotropic spectral BRDF is a function R(n, l, λ) of the
surface normal n, the lighting direction l and the wavelength
λ. Therefore, the BRDF response w.r.t. the three variables
can be recorded as a cube, as shown in Fig. 2. If we apply
the BRDF response to a surface covered by uniform material
and ignore the crosstalk, the surface spectral reflectance can
be recorded as the same cube. In this section, we review
CPS and MPS approaches under Lambertian reflectance
and non-Lambertian reflectance, respectively. These four
categories are based on different simplifications on the
spectral BRDF cube. Among all the categories, we assume
distant lights with calibrated directions.

Lambertian, CPS CPS under Lambertian reflectance as-
sumption is the most classic setup. In such case, the spectral
reflectance under varying lighting directions and wavelengths
is a constant value, i.e., R(n, l, λ) = c (see Fig. 2 (a)). With-
out loss of generality, we set c = 1. Given image mea-
surements under more than 3 non-coplanar lighting direc-
tions, classical photometric stereo works [Woodham, 1980;
Silver, 1980] provided a closed-form solution to surface nor-
mal estimation.

Non-Lambertian, CPS The spectral reflectance for non-
Lambertian CPS is varying with the incident-outgoing light-
ing directions (geometric component), but omits the vari-
ation w.r.t the wavelength (spectral component). There-
fore, the spectral BRDF R(n, l, λ) = R(n, l) and the spec-
tral cube shown in Fig. 2 (b) is a Kronecker product of
an all-in-one spectral response vector and the geometric re-
sponse matrix. Existing non-Lambertian CPS methods ap-
plied parametric-based [Chen et al., 2019b; Shi et al., 2014]
or dictionary-based reflectance model [Enomoto et al., 2020;
Hui and Sankaranarayanan, 2016] to represent the geo-
metric component R(n, l). Recently, neural-based photo-
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Figure 3: Illustration of SRD on two measured BRDFs “paper blue” (diffuse dominant) and “ilm l3 37 metallic” (specular dominant) [Dupuy
and Jakob, 2018].

metric stereo methods [Chen et al., 2018; Ikehata, 2018;
Yao et al., 2020] achieved high accuracy on surface nor-
mal estimation under non-Lambertian reflectance, where the
geometric component is learned from data with diverse re-
flectances. Please refer to the two surveys [Shi et al., 2019;
Ju et al., 2022] for comprehensive reviews of non-Lambertian
CPS methods.

Lambertian, MPS In MPS, the spectral component has to
be taken into account. The Lambertian spectral BRDF keeps
constant w.r.t. geometric component but varies over different
wavelengths, i.e., R(n, l, λ) = R(λ). Therefore, the spec-
tral cube shown in Fig. 2 (c) is a Kronecker product of a
spectral response vector and an all-in-one geometric response
matrix. Different from Lambertian CPS, MPS is ill-posed
even under Lambertian reflectance. Existing methods require
additional shape priors [Anderson et al., 2011b; Anderson
et al., 2011a] or reflectance clustering [Ozawa et al., 2018;
Chakrabarti and Sunkavalli, 2016] to solve the problem. Re-
cently, Guo et al. [Guo et al., 2021] formulated the Lam-
bertian MPS problem into a well-posed one and provided a
unique solution for surface normals with image cues only.

Non-Lambertian, MPS Non-Lambertian MPS problem is
the most challenging case among the four categories, as the
spectral BRDF R(n, l, λ) is related to both wavelength and
incident-outgoing lighting directions. Therefore, the spectral
BRDF is recorded as a general cube (see Fig. 2 (d)). Exist-
ing non-Lambertian MPS methods assumed analytical BRDF
model and two-shot data capturing [Rahman et al., 2014].
However, the analytical BRDF model is limited to a small
set of materials, and the two-shot data capturing eliminates
the advantage of MPS over CPS on dynamic shape recovery.
Ju et al. [Ju et al., 2020a; Ju et al., 2020b] propose learning-
based methods to solve non-Lambertian reflectance. How-
ever, the spectral band of the input multispectral images in the
test phase is required to keep fixed in the training stage, which
limits their application to real-world scenarios. Our method
regards the spectral BRDF cube as a Kronecker product of

the spectral response vector (spectral component) and geo-
metric response matrix (geometric component). As we can
see in the following sections, such a decomposition enables
the application of off-the-shell non-Lambertian CPS methods
on the non-Lambertian MPS task.

3 Spectral Reflectance Decomposition Model
In the context of MPS, the material spectral reflectance varies
with both the incident-outgoing lighting directions and spec-
tral bands. Under a fixed view direction, it can be formulated
as a function of surface normal n, lighting direction l, and
wavelength λ. Following the dichromatic model proposed
in [Shafer, 1985], we represent the spectral reflectance as

R(n, l, λ) = Rgd(n, l)Rsd(λ) +Rgs(n, l)Rss(λ), (1)

where Rg∗ and Rs∗ represent the geometric component
and the spectral component, the subscript d and s de-
note diffuse and specular reflectance respectively. We as-
sume the non-Lambertian target surfaces are with domi-
nant diffuse (i.e., R(n, l, λ) = Rgd(n, l)Rsd(λ)) or specu-
lar (i.e., R(n, l, λ) = Rgs(n, l)Rss(λ)) reflectance. In this
way, we introduce our SRD model that disentangles the non-
Lambertian spectral reflectance into only two components:

R(n, l, λ) = Rs(λ)Rg(n, l), (2)

where the spectral component Rs(λ) is related to the wave-
length, and the geometric component Rg(n, l) is related to
the variation w.r.t. surface normal and lighting direction.

We illustrate and verify our SRD model by measured spec-
tral BRDFs [Dupuy and Jakob, 2018]. As shown in Fig. 3,
we plot measured spectral reflectances of two materials: “pa-
per blue” and “ilm l3 37 metallic” in the [360nm, 1000nm]
wavelength range, where curves in different colors show the
spectral reflectance at varying lighting direction and surface
normal pairs: (l,n). If the surface follows Lambertian re-
flectance [Anderson et al., 2011b; Esteban et al., 2011],
the spectral reflectance shown in the figure should contain
one single curve, which is not flexible to represent the real-
world spectral reflectances. To verify the effectiveness of
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Figure 4: Network structure of our NeuralMPS. The ELIE-Net is fed with image observations under varying calibrated lighting directions and
the corresponding masks for estimating equivalent light intensity, from which the images are normalized (denoted as I′) and sent to the SNE
Module for estimating the surface normal. The network parameters labeled with the “lock” symbol are shared for different image inputs.

our SRD model, we sample 195 wavelengths and 200 × 200
(l,n) pairs to build an spectral reflectance response matrix
R ∈ R195,40000. We achieve SRD by conducting SVD on R
such that

R = UΣV⊤,

rs = U1, rg = V1,
(3)

where rs ∈ R195 and rg ∈ R40000 are the decomposed spec-
tral and geometric components in the vector form obtained
from the first column of U and V, respectively. We reshape
the rg into matrix form and draw the two components in
Fig. 3. To measure the SRD accuracy, we define the fitting
energy as the ratio of the largest singular value over the sum
of all the singular values. The energy over all the 51 materials
is 80.1% for the average, 81.6% for the median, and 96.1%
for the maximum, which reveals that we can approximate the
spectral reflectance in high accuracy with the decomposed rs
and rg . We also reconstruct the spectral reflectance response
matrix R from the decomposed spectral and geometric parts.
The reconstructed spectral reflectance curves shown in Fig. 3
are shown to be close to the originally measured one.

3.1 SRD-based Image Formation Model
In this section, we show that the MPS problem is equivalent to
the CPS under unknown light intensity based on our proposed
SRD model.

Given an orthogonal multispectral camera with a linear ra-
diometric response and f spectral directional lights with cal-
ibrated lighting directions, we turn on all the spectral light
sources and capture a single multispectral image. In this
way, the f spectral bands of the multispectral image record
measurements under varying lighting directions. Consider-
ing a non-Lambertian surface with general isotropic spectral
BRDF, the image observation for one scene point under the
j-th incoming lighting can be written as follows:

mj = ejmax(n⊤lj , 0)

∫
λ

R(n, lj , λ)Cj(λ)Ej(λ) dλ, (4)

where n ∈ S2 ⊂ R3 represents the unit surface normal
vector, lj ∈ S2 ⊂ R3 and ej ∈ R+ are lighting direction and
radiance of the j-th light source, respectively, with its spectra

defined by Ej(λ) : R+ → R+. The camera spectral sensitiv-
ity at the j-th spectral band is represented by Cj(λ), and the
attach shadow is modeled by max(·, 0).

Similar to previous MPS works [Guo et al., 2021;
Chakrabarti and Sunkavalli, 2016; Ozawa et al., 2018], we as-
sume the crosstalk between spectral bands is negligible, i.e.,
observations under each spectral light can only be observed in
its corresponding camera channel. With negligible crosstalk
and the proposed SRD model shown in Eq. (2), the image
observation can be re-written as

mj = e′jRg(n, lj)max(n⊤lj , 0), (5)

and e′j is defined by

e′j = ej

∫
λ∈Ωj

Rs(λ)C(λ)E(λ) dλ, (6)

where Ωj is the j-th spectral band of the corresponding spec-
tral light and camera channel. The camera spectral sensitiv-
ity, light spectra, material spectral component, and the light
intensity are encoded in e′j . If the material spectral compo-
nent is uniform for the whole surface (e.g. monochromatic
material), e′j keeps constant for all the surface points. There-
fore, we name e′j as the equivalent light intensity. Accord-
ing to the image formation model shown in Eq. (5), given
the image measurement m and its corresponding lighting di-
rection l, the non-Lambertian MPS task can be reformulated
as estimating the surface normal n under unknown geomet-
ric reflectance Rg(n, l) and the equivalent light intensity e′j .
In this way, non-Lambertian MPS is equivalent to the non-
Lambertian CPS problem with unknown light intensities.

4 Learning-based Non-Lambertian MPS
Guided by the conclusion in the last section, we present
the NeuralMPS to solve MPS under non-Lambertian re-
flectances. As shown in Fig. 4, our NeuralMPS contains
two modules with functionalities indicated by their names:
Equivalent Light Intensity Estimation Network (ELIE-Net)
and Surface Normal Estimation (SNE) Module.

ELIE-Net ELIE-Net aims at predicting the equivalent light
intensities from observed multispectral images and the cali-
brated lighting directions. As shown in Fig. 4, image obser-
vation at each spectral channel, the corresponding calibrated
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spectral lighting direction, and the object mask are fed into
a shared encoder separately for extracting the local feature
maps. The local features of different spectral observations are
then pooled into a global one by a max-pooling layer. From
a shared decoder fed with concatenated local and global fea-
tures, the equivalent light intensity for each image observa-
tion is regressed. To supervise the ELIE-Net, we minimize
the ℓ2 distance with the ground-truth equivalent lighting in-
tensity extracted from the measured spectral BRDFs:

Lins = ∥s− ŝ∥22 , (7)

where s and ŝ correspond to the GT and predicted equivalent
lighting intensity.

SNE module With estimated equivalent lighting intensities,
we then normalize the input multispectral images at the cor-
responding spectral bands to remove the influence of spectral
components in MPS. Given these normalized image observa-
tions (I′ in Fig. 4) as well as the calibrated lighting directions,
our SNE module recovers the surface normal map by consid-
ering the geometric component only. As discussed in Sec. 3,
any existing non-Lambertian CPS methods can be used as
our SNE module. In this paper, we choose a learning-based
CPS method PS-FCN [Chen et al., 2018] as our SNE module.
For better fitting the MPS image observations, the PS-FCN as
the SNE module are re-trained on our synthetic multispectral
dataset “PS-Spectral”, as we will show in the next. Follow-
ing the training strategy of PS-FCN [Chen et al., 2018], the
loss function is defined as the cosine similarity between the
estimated and the ground-truth surface normals:

Ln =
1

p

p∑
i=1

(1− n⊤
i n̂i), (8)

where p is the number of valid pixels in the object mask, ni

and n̂i denote the ground-truth and estimated surface normal
vectors at the i-th pixel.

Difference from SDPS-Net Our method shares a similar
pipeline with the SDPS-Net [Chen et al., 2019a]. Here we
elaborate on the differences between our work and SDPS-
Net [Chen et al., 2019a]. Firstly, SDPS [Chen et al., 2019a]
focuses on the non-Lambertian uncalibrated CPS problem,
which has a completely different image formation from
the non-Lambertian MPS problem that we are working on.
Specifically, the LC-Net of the SDPS-Net [Chen et al., 2019a]
learns to estimate the lighting direction and light source irra-
diance in the uncalibrated CPS, where no assumption is made
on the non-Lambertian BRDF. However, the ELIE-Net of our
method has calibrated lighting directions as input and focuses
on predicting the equivalent light intensity, which encodes not
only the light source irradiance but also the integral of cam-
era spectral sensitivity, light spectra, and the material spectral
component. In addition, our method for the MPS task relies
on the proposed SRD assumption for non-Lambertian spec-
tral BRDF, which ease the difficulties of the non-Lambertian
MPS problem by the well-studied CPS problem.

Secondly, LC-Net [Chen et al., 2019a] recasts the
regression-based problems of lighting direction and intensity
into a classification-based one, where the continuous lighting

space is discretized into pre-defined bins and classes. How-
ever, we found equivalent light intensity has a high dynamic
range (HDR)2, as it encodes more than the light source irra-
diance. The discretization in LC-Net [Chen et al., 2019a] is
sub-optimal for accurately recovering the equivalent lighting
intensity. Therefore, we predict equivalent lighting intensity
in our MPS task in a regression manner.

“PS-Spectral” Dataset To train our NeuralMPS, we build
a synthetic training dataset with shapes coming from the
Blobby dataset [Johnson and Adelson, 2011] as well as the
Sculpture dataset [Wiles and Zisserman, 2017]. Each shape
in the dataset is rendered with 51 measured isotropic spectral
BRDFs [Dupuy and Jakob, 2018].

To build the dataset, we first render a multispectral image
tensor and its corresponding spectral reflectance tensor with
the size of [f, p, t], where f, p, t denote the number of light di-
rections, pixels in the image, and spectral bands, respectively.
In the MPS setting, each lighting direction corresponds to one
spectral band. Therefore, we randomly select f out of t spec-
tral bands to produce one multispectral image data with the
size of [f, p, f ]. In our dataset setting, we select f = 39
lighting directions distributed uniformly, and t = 195 spec-
tral bands following the same wavelength range of [Dupuy
and Jakob, 2018]. The spatial resolution of the image is set as
128 × 128. To generate the ground-truth equivalent lighting
intensity, we conduct the SVD decomposition on the spectral
reflectance tensor R with our SRD model following Eq. (3).

We also render a test dataset including two shapes:
SPHERE and BUNNY. An example of the rendered multi-
spectral images in our test dataset can be found in the supple-
mentary material.

5 Experiments
In this section, we evaluate our method on both synthetic
and real data. In Sec. 5.1, the accuracy of the pro-
posed SRD model is verified on measured spectral BRDF
database [Dupuy and Jakob, 2018] firstly. Then, in Sec. 5.2
we compare our NeuralMPS with the state-of-the-art MPS
method GO21 [Guo et al., 2021] on surface normal esti-
mation. The ablation study with and without the ELIE-Net
is also provided to evaluate the effectiveness of predicting
equivalent light intensity. Finally, in Sec. 5.3 we give the
qualitative evaluation on real-captured data to verify our ap-
plication on real scenarios.

5.1 Evaluation of the SRD Model
Our SRD model decomposes the spectral reflectance into the
geometric and spectral components via SVD decomposition.
We verify the accuracy of the SRD model on diverse mea-
sured spectral BRDFs [Dupuy and Jakob, 2018]. Specifically,
we choose a sphere shape containing diverse surface normals
and render image observations under a set of lighting direc-
tions following uniform distribution. We conduct this render-
ing process on 51 spectral BRDFs [Dupuy and Jakob, 2018].

As mentioned in Sec. 4, the spectral BRDF can be con-
centrated as a matrix R with shape of [f, p, t]. With our

2Please find more details in the supplementary material.
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Figure 5: Evaluation of spectral reflectance decomposition (upper part), and surface normal estimation for diverse materials [Dupuy and
Jakob, 2018] (lower part). Specular-dominant, diffuse-dominant, and specular-diffuse mixed material examples are labeled with A, B, and C,
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SRD model, R is decomposed into geometric component rg
of shape [f × p] and spectral component rs of shape [t] via
SVD in Eq. (3). To measure reconstruction error Er of our
SRD model, we reconstruct spectral BRDF R′ from the spec-
tral and geometric components, and calculate the Frobenius
norm of the difference between the ground-truth spectral re-
flectance and the reconstructed ones, i.e.,

Er =
1

51

∑
i

∥Ri −R′
i∥F . (9)

To show the effectiveness of our SRD model on non-
Lambertian spectral reflectance, we also evaluate the ap-
proximation error of Lambertian assumption for the spectral
BRDF. Specifically, we set the geometric component as an
all-in-one vector, i.e., rg = 1, and find the spectral com-
ponent rs in the Lambertian case that best fit rg and R via
least-square. After that, we also reconstruct the reflectance
matrix from the geometric and spectral components for the
Lambertian case.

As shown in Fig. 5 (top), the reconstructed spectral re-
flectance from our SRD model is more accurate than the
Lambertian assumption used in GO21 [Guo et al., 2021], re-
vealing the effectiveness of our SRD model for general non-
Lambertian spectral reflectance. Besides, we found that the
reconstruction errors with t = 12 bands as well as t = 195
bands have little difference. Therefore, our SRD model can
be applied to real-world multispectral cameras with limited
spectral bands.

From Fig. 5, we observed that our SRD model works
well for most materials. However, there are materials (e.g.,
“cc ibiza sunset”) showing mixed specular and diffuse re-
flectance. The spectral BRDFs for these materials violate our
SRD model that assumes the reflectance is either diffuse- or
specular- dominant, like materials “ilm l3 37 metallic” and
“paper blue”. During the training of our NeuralMPS, we drop
the last 9 materials whose reconstruction errors are larger than

ELIE-Net SNE module SPHERE BUNNY
w/o PS-FCN 7.05 13.12
w/ PS-FCN 6.27 12.89

Table 1: Ablation study of ELIENet on surface normal estimation.

0.05, which are treated as outliers of our SRD model. How-
ever, we keep the 9 materials in the test phase for a fair com-
parison and present the normal estimation results of all the 51
spectral BRDFs in the next section.

5.2 Evaluation of NeuralMPS
As shown in Fig. 5 (bottom), we evaluate the normal esti-
mation error on the SPHERE test dataset. The state-of-the-
art MPS method GO21 [Guo et al., 2021] is based on the
assumption of Lambertian reflectance, therefore the surface
normal estimation has relatively high accuracy on diffuse ma-
terials such as the “paper blue”. However, for materials with
specular reflectance, GO21 [Guo et al., 2021] cannot pro-
duce reasonable surface normal recovery, such as the case of
“ilm l3 37 metallic” and “cc ibiza sunset”. Benefited from
our SRD model and designed network for non-Lambertian
MPS, the surface normal estimation of our method is more
accurate compared with the state-of-the-art MPS method
GO21 [Guo et al., 2021] on diverse materials, demonstrat-
ing the strength of our MPS method on general spectral re-
flectance. On the other hand, we found the normal estima-
tions for the last 9 materials have relatively higher error, pos-
sibly due to the relative lower accuracy of the SRD model in
the corresponding spectral BRDFs.

Ablation study of ELIE-Net As shown in Table 1, to make
an ablation study of ELIE-Net, we evaluate the surface nor-
mal estimation error of our NeuralMPS with and without the
module on test dataset SPHERE and BUNNY. Specifically,
“w/o” or “w/” in the first column refer to the results recov-
ered from SNE module where the input images are normal-
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Ours (𝑓12) GO21(𝑓12) Ours (𝑓4) GO21 (𝑓4) CS16Surface
appearance

Figure 6: Qualitative comparison with existing MPS methods on real data. Shape distortions caused by non-Lambertian specular highlights
are emphasized in the closed-up views.

ized by a all-one vector or the estimated equivalent light in-
tensities from “ELIE-Net”. Based on the mean angular error
of the surface normal estimates over the test dataset, the ab-
sence of equivalent light intensities leads to a performance
drop in normal estimation (by 11% and 2% for SPHERE and
BUNNY). Therefore, the CPS method used in our SNE mod-
ule (“w/o ELIE-Net”) cannot be directly used for solving the
MPS task. It is necessary for non-Lambertian MPS to predict
the equivalent lighting intensity with our proposed ELIE-Net.

It’s worth noticing that the ELIE-Net and SNE module are
trained separately. Therefore the ELIE-Net can be directly
applied to SNE modules that adopt other conventional photo-
metric stereo (CPS) methods for solving multispectral pho-
tometric stereo (MPS), without the influence of a specific
network structure. This setting would be beneficial for non-
learning-based CPS works. On the other hand, the proposed
NeuralMPS can also be trained end-to-end when the SNE
module adopts learning-based CPS methods. We have our
NeuralMPS which is trained in this way tested on test dataset
SPHERE and BUNNY, and the mean angular error in degree is
6.22 for SPHERE and 9.10 for BUNNY.

5.3 Experiments on Real Data
In Fig. 6, we test our method on real multispectral images
of non-Lambertian surfaces released by GO21 [Guo et al.,
2021]. Taking the spectral images and calibrated lighting di-
rections as input, we compare our NeuralMPS with existing
MPS methods CS16 [Chakrabarti and Sunkavalli, 2016] and
GO21 [Guo et al., 2021] on surface normal recovery. As
CS16 [Chakrabarti and Sunkavalli, 2016] takes only three-
channel RGB images as input, we select the image observa-
tions with the wavelength 450, 550, and 650 [nm] to mimic
the RGB input. For GO21 [Guo et al., 2021] and our method,
we test the methods on multispectral images with 12 and 4
spectral bands (labeled as f4 and f12) to evaluate the applica-
tion on real-world multispectral cameras with varying num-
ber of spectral channels. Since the ground-truth surface nor-
mal and shape are not available in the real-world MPS dataset,
we conduct a qualitative evaluation by comparing the inte-

grated shapes from the estimated surface normal maps using
the normal integration method [Xie et al., 2014].

As shown in Fig. 6, we present the estimated sur-
face normals from existing methods and ours. Since
CS16 [Chakrabarti and Sunkavalli, 2016] mainly focuses
on Lambertian reflectance, the recovered shape is distorted
due to the specular highlights, as shown in the closed-up
views. GO21 [Guo et al., 2021] is adapted to arbitrarily
many spectral bands as the input and removes the specular
highlights and shadows as outliers with the position thresh-
olding strategy [Shi et al., 2019]. Therefore, the shape re-
coveries from GO21 (f12) are reasonable taking 12 spectral
bands as input. However, the method fails with limited spec-
tral input (GO21 (f4)), as the position thresholding strategy
prefers more data for the outlier removal. Compared with ex-
isting methods, our NeuralMPS achieves reasonable results
for all the three objects. There are no distortions caused
by specular highlights. Since our method learns the non-
Lambertian spectral reflectance from the measured spectral
BRDF dataset, rather than treating the specular highlights
as outliers, the recovered surface normal remains in good
quality even with limited spectral image inputs, as shown in
Ours (f4).

6 Conclusion
In this paper, we propose a multispectral photometric stereo
method NeuralMPS for surface normal recovery under
diffuse- or specular- dominant non-Lambertian spectral re-
flectance. The spectral reflectance decomposition model is
the key of our method, which represents spectral BRDF as
a composition of geometry components and spectral compo-
nents. In this way, the non-Lambertian MPS problem can
be recast into the well-studied non-Lambertian CPS problem
with unknown equivalent light intensity in which the spectral
component is embedded. Our NeuralMPS therefore design
the ELIE-Net to estimate the equivalent light intensity and
apply the SNE module to further achieve surface normal re-
covery under non-Lambertian spectral reflectance.
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