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Abstract
Knowledge distillation is an effective method for
model compression. However, it is still a challeng-
ing topic to apply knowledge distillation to detec-
tion tasks. There are two key points resulting in
poor distillation performance for detection tasks.
One is the serious imbalance between foreground
and background features, another one is that smal-
l object lacks enough feature representation. To
solve the above issues, we propose a new distilla-
tion method named dual relation knowledge distil-
lation (DRKD), including pixel-wise relation distil-
lation and instance-wise relation distillation. The
pixel-wise relation distillation embeds pixel-wise
features in the graph space and applies graph con-
volution to capture the global pixel relation. By dis-
tilling the global pixel relation, the student detec-
tor can learn the relation between foreground and
background features, and avoid the difficulty of dis-
tilling features directly for the feature imbalance is-
sue. Besides, we find that instance-wise relation
supplements valuable knowledge beyond indepen-
dent features for small objects. Thus, the instance-
wise relation distillation is designed, which cal-
culates the similarity of different instances to ob-
tain a relation matrix. More importantly, a relation
filter module is designed to highlight valuable in-
stance relations. The proposed dual relation knowl-
edge distillation is general and can be easily ap-
plied for both one-stage and two-stage detectors.
Our method achieves state-of-the-art performance,
which improves Faster R-CNN based on ResNet50
from 38.4% to 41.6% mAP and improves Reti-
naNet based on ResNet50 from 37.4% to 40.3%
mAP on COCO 2017.

1 Introduction
In recent years, with the development of deep learning
technology, object detection has made great progress [Du-
an et al., 2019; Yang et al., 2019; Law and Deng, 2018;
Tian et al., 2019; Ren et al., 2015; Cai and Vasconce-
los, 2018]. The detection framework can be roughly di-
vided into two types, one-stage detector [Tian et al., 2019;
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Figure 1: Visualization of pixel-wise relation features. The second
row and the third row show common features and pixel-wise relation
features, respectively. In pixel-wise relation features, the foreground
features are highlighted, proving that pixel-wise relation distillation
can make the detector focus on the foreground.

Lin et al., 2017] and two-stage detector [Ren et al., 2015;
Cai and Vasconcelos, 2018; Law and Deng, 2018; Du-
an et al., 2019]. These deep learning methods achieve
excellent performance and far surpass traditional detection
methods [Ren et al., 2015; Lin et al., 2017; Duan et al.,
2019]. However, these deep learning methods need high
computational costs, limiting their deployment on mobile de-
vices such as robots and mobile phones. How to balance
the computational cost and detection performance is stil-
l a challenging topic. Knowledge distillation is an effec-
tive method to solve the above problem [Guo et al., 2021;
Zhang and Ma, 2021; Wang et al., 2019; Heo et al., 2019;
Chen et al., 2017]. It adopts the form of teacher-student learn-
ing to transfer knowledge from a large model to a small mod-
el. Usually, the student model can be deployed on mobile
devices directly. Since the principle of knowledge distillation
is simple and effective, it is widely used in computer vision
tasks, such as classification, segmentation [Wang et al., 2019;
Guo et al., 2021] and object detection.

However, knowledge distillation still faces many chal-
lenges in object detection [Dai et al., 2021; Zhang and Ma,
2021; Guo et al., 2021; Wang et al., 2019]. The imbal-
ance between foreground and background is an important is-
sue [Zhang and Ma, 2021; Guo et al., 2021]. Usually, the
foreground pixels are far fewer than the background pixels.
In the existing knowledge distillation methods [Wang et al.,
2019; Heo et al., 2019], the student model learns all pixel
features with the same priority from the teacher model. So
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Figure 2: Visualization of instance-wise relation matrix. We selec-
t 3 images that contain 7 instances, 13 instances, and 13 instances
respectively. The numbers on the coordinate axis indicate the in-
dex of instances in the same image. The index is sorted according
to the size of the instance in the same image. For example, index
0 refers to the smallest instance, the index 6 or index 12 refers to
the largest instance. We find that there are more mosaics between s-
mall instances which means that instance-wise relation supplements
valuable knowledge beyond independent features for small objects.
The small instance has richer relations with other size instances.

more attention will be paid to the background feature, limit-
ing the learning of the foreground feature. Since foreground
features are critical for detection, distilling all features di-
rectly results in poor performance. Some work attempts to
solve this issue. NLD [Zhang and Ma, 2021] extracts atten-
tion features for distillation to make the detector focus on the
target area. The distillation method called DeFeat [Guo et
al., 2021] attempts to distill foreground and background fea-
tures separately. These methods achieve certain results, but
do not consider the relationship between instances. Besides,
it is difficult to distill effective knowledge from small instance
features, resulting in poor performance of small object de-
tection. Current distillation methods [Zhang and Ma, 2021;
Dai et al., 2021] rarely take this issue into account, which
limits their performance.

To address the above problems, we propose dual relation
knowledge distillation (DRKD) to enable the student mod-
el to learn the relation between pixels and instances from the
teacher model. We observe that pixel-wise relation is not sen-
sitive to the imbalance between foreground and background
features and can make the detector focus on the foreground,
which is shown in Figure 1. Moreover, instance-wise rela-
tions can provide valuable knowledge beyond independent
features, especially for small objects. As illustrated in Fig-
ure 2, there are 7 objects in the first image. The numbers on
the coordinate axis indicate the index of instances in the same
image. The index is sorted according to the size of instances
in the same image. We find that there are more mosaics
between small instances which means that instance-wise re-
lation supplements valuable knowledge beyond independent
features for small objects. Thus, we design two relation distil-
lation called pixel-wise relation distillation and instance-wise
relation distillation.

The pixel-wise relation distillation is proposed to make the
detector focus on the learning of foreground features. We
adopt graph convolution to capture global pixel relations. The
graph convolution [Chen et al., 2019] captures better feature
representations than the attention module to improve model
performance. First, the features from the coordinate space
are embedded into the graph space. Then, the graph convo-

lution is applied to capture relation features in graph space.
Finally, the relation feature is projected back to the original
coordinate space. The output feature is called the pixel-wise
relation feature. By distilling the pixel-wise relation feature,
the detector can pay more attention to the learning of the fore-
ground features, as shown in Figure 1, addressing the imbal-
ance issue.

The instance-wise relation distillation is designed to get
richer representation for small instances, based on the fac-
t that the small instance has richer relations with other size
instances. First, the Embedded Gaussian function is ap-
plied to evaluate the relation of different instances, which is
widely used in the attention mechanism [Wang et al., 2018;
Fu et al., 2019]. The similarity between different size in-
stances is calculated to get the relation matrix. Besides, we
observe that different relations have different contributions to
distillation in the experiment. Thus, a relation filter module
is designed to emphasize valuable relations. The filtered rela-
tion matrix is distilled to transfer instance-wise relation from
the teacher detector to the student detector. Meanwhile, the
cropped foreground feature is used for distillation to further
improve detection accuracy in our framework. The experi-
ment proves that the detection accuracy of small objects can
be improved by instance-wise relation distillation. The con-
tributions of this work can be concluded as follows:

• We propose pixel-wise relation distillation based on
graph convolution. The graph convolution can capture
global context more efficiently than the attention mech-
anism, achieving a better distillation effect.

• We propose instance-wise relation distillation to get
richer representation for small instances. The experi-
ment proves that the detection accuracy of small objects
can be improved by instance-wise relation distillation.

• Our dual relation knowledge distillation achieves state-
of-the-art performance, which improves Faster R-CNN
based on ResNet50 from 38.4% to 41.6% mAP and im-
proves RetinaNet based on ResNet50 from 37.4% to
40.3% mAP on COCO2017. The proposed dual rela-
tion knowledge distillation is general and can be easily
applied for both one-stage and two-stage detectors.

2 Related Work
2.1 Object Detection
Recently, object detection[Duan et al., 2019; Yang et al.,
2019; Law and Deng, 2018] is widely studied. The re-
searchers first propose two-stage detectors [Ren et al., 2015;
Cai and Vasconcelos, 2018], generating candidate regions
for classification and location. Two-stage detectors usually
have higher accuracy but lower speed. The representative
methods are Faster R-CNN [Ren et al., 2015] and Cascade
R-CNN [Cai and Vasconcelos, 2018]. To solve the prob-
lem of two-stage detectors, one-stage detectors are proposed
furtherly such as SSD [Liu et al., 2016], YOLOv3 [Red-
mon and Farhadi, 2018], RetinaNet [Lin et al., 2017], and
Fcos [Tian et al., 2019] which do not require region pro-
posals and can directly obtain the final detection results.
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Figure 3: (a) The overview of the proposed dual relation knowledge distillation (DRKD). DRKD includes pixel-wise relation distillation,
instance-wise relation distillation and instance distillation. The pixel-wise relation is captured by the graph convolution module GloRe.
The instance-wise relation is modeled by calculating the similarity between instance features; (b) shows the architecture of GloRe used in
pixel-wise relation distillation; (c) shows multi-scale DRKD.

Thus, one-stage detectors have higher speed but poor perfor-
mance. To balance speed and performance, model compres-
sion is used in detection tasks, such as pruning [Han et al.,
2015; Lin et al., 2020], quantification [Zhang et al., 2021;
Gong et al., 2019], and distillation [Zhang and Ma, 2021;
Dai et al., 2021]. Among them, distillation is the most wide-
ly used. However, the distillation still faces many challenges
in the detection task. The main challenge is to solve the im-
balance issue and improve the small object detection perfor-
mance. Thus, we propose dual relation distillation.

2.2 Knowledge Distillation
Knowledge distillation is a common method of model com-
pression. It can transfer the knowledge from the teacher de-
tector to improve the performance of the student detector.
However, it is still a challenging topic to apply knowledge
distillation to object detection directly due to some problems
such as the imbalance of foreground and background, and the
small object detection problem. Some researchers attemp-
t to apply distillation to object detection. Sun et al [Sun et
al., 2020] not only distilled hidden features but also distilled
classification output and bounding box regression output to
improve detection accuracy. FGFI [Wang et al., 2019] pro-
posed a fine-grained feature imitation for anchor-based de-
tectors. It calculated the regions of the near object by the
intersection between target boxes and anchors. DeFeat [Guo
et al., 2021] decoupled features into foreground and back-
ground and distilled them separately to get better distillation

performance. General instance distillation (GID) [Dai et al.,
2021] proposed the general instance selection module and
modeled the relational knowledge between instances for dis-
tillation. Non-local distillation [Zhang and Ma, 2021] applied
non-local modules to capture global pixel relation and enables
the student to learn the pixel relation from the teacher. Differ-
ent from them, we not only distilled the pixel-wise relations
and instance-wise relations but also designed more effective
modules to extract them.

3 Method
The dual relation knowledge distillation (DRKD) is proposed
to enable the student detector to learn the pixel-wise and
instance-wise relations from the teacher detector, which is
shown in Figure 3.

3.1 Pixel-wise Relation Distillation
Pixel-wise relation distillation helps student detectors learn
the relation between foreground and background features, ad-
dressing the feature imbalance issue. The graph convolution
module, named GloRe [Chen et al., 2019], is adopted to cap-
ture the global pixel relation. It can capture global context
more efficiently than the attention mechanism [Chen et al.,
2019], achieving a better distillation effect.

Specifically, we extract multi-scale features from the back-
bone of teachers and students respectively, and feed them to
different GloRe modules for capturing the global pixel rela-
tion. After that, the pixel-wise relation features are distilled
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to transfer the global relation from the teacher to the student.
The distillation loss is shown in Equ. (1). Besides, to min-
imize the feature difference between the student and teacher
models, an adaptive convolution is added on the side of the
student model.

LPR =
1

k

k∑
i=1

‖φ(ti)− f(φ(si))‖2 (1)

where k is the number of features. ti and si refer to the feature
from the teacher and student respectively. φ represents the
GloRe module. f represents adaptive convolution.

As shown in Figure 3 (b), GloRe contains three part-
s: graph embedding, graph convolution, and reprojection.
The coordinate feature is first projected to a low-dimensional
graph feature space. For the input feature X ∈ RC×W×H ,
we first project and transform it to X ∈ RC1×HW by lin-
ear layer. After that, the graph node features V ∈ RC1×C2

can be obtained by projecting X . The projection matrix is
B ∈ RC2×HW . The projection method is a linear combina-
tion of original features, which is shown in Equ. (2). The
graph node features can aggregate information from multiple
regions.

V = XBT (2)

where B ∈ RC2×HW is learnable projection matrix. V ∈
RC1×C2 is the graph node features.

Based on graph node features, a graph convolution is used
to capture the relation between nodes, which is defined by E-
qu. (3). A denotes the adjacency matrix, which is initialized
randomly and updated with training. In the training process,
the adjacency matrix learns the weights of the edges between
nodes. The weight of edges reflects the relation of nodes.
Based on the adjacency matrix and the state update matrix,
the node features are updated to obtain the relation-aware fea-
tures.

Z = ((I −A)V )W (3)

where I ∈ RC1×C1 is an identity matrix. A ∈ RC1×C1 rep-
resents nodes adjacency matrix. V ∈ RC1×C2 is the graph
node features. W ∈ RC2×C2 represents the state update ma-
trix. Z ∈ RC1×C2 represents the relation-aware features in
graph space.

Finally, the relation-aware features are projected back to
the coordinate feature space, as shown in Equ. (4).

F = ZB (4)

where F ∈ RC1×HW is pixel-wise relation feature, B ∈
RC2×HW is learnable projection matrix, the same as Equ.
(2). Z ∈ RC1×C2 represents the relation-aware features in
graph space.

3.2 Instance-wise Relation Distillation
The instance-wise relation distillation is designed to get rich-
er representation for small instances, based on the fact that the
small instance has richer relations with other size instances.
The Embedded Gaussian function is applied to model the
similarity of instance features. Moreover, we design a relation
filter module to emphasize valuable relations. The instance-
wise relation module is shown as Figure 4.
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Figure 4: The architecture of instance-wise relation module. The
similarity of different instances is calculated to obtain the relation
matrix. A relation filter module is designed to emphasize valuable
relation.

Instance Feature Extraction
To capture instance-wise relation, we need to extract the in-
stance features. The ground truth of object coordinates is used
to extract instance features from the feature map, according
to the ratio of the input and the feature map. The extracted
instance features are resized to the same size, which is shown
in Equ. (5).

x̂ = ξ(x, c, o) (5)

where ξ represents ROI Align. x is input feature map. c
represents coordinates of ground truth. o indicates the size
of the output feature.

Instance-wise Relation Module and Distillation
As shown in Figure 4, the input feature is X ∈ RN×DKK . N
refers to the number of instances in the same image, D refers
to the channel of the instance feature, K refers to the size of
the instance feature map. The instance-wise relation module
can be represented by Equ. (6).

ψ (si, sj) =
1

τ
ewijg1(si)g2(sj), τ =

∑
∀i
ewijg1(si)g2(sj)

(6)
where si and sj refer to the instance feature. g1 and g2 refer to
fully connected layer. wij is the weight from relation matrix
W ∈ RN×N as shown in relation filter of Figure 4. ψ (si, sj)
refers to instance-wise relation feature between instance si
and sj . We define instance-wise relation distillation function
as Equ. (7).

LIR =
∑

(i,j)∈N2

‖ψ (ti, tj)− f (ψ (si, sj))‖2 (7)

where si and sj refer to the instance feature from studen-
t model and ti and tj refer to the instance feature from teach-
er model. ψ (si, sj) refers to instance-wise relation feature
between instance si and sj . ψ (ti, tj) refers to instance-wise
relation feature between instance ti and tj . f represents adap-
tive convolution.

Furthermore, instance features also help address the imbal-
ance issue between foreground and background [Guo et al.,
2021]. Instance distillation can make the detector pay atten-
tion to the learning of foreground features and accelerate the
convergence of the student detector [Dai et al., 2021]. There-
fore, we directly distill the instance features to further im-
prove the distillation performance. L2 norm loss is adopted
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Epochs Framewark Model PR IR INS mAP AP50 AP75 APS APM APL

12 One-stage Teacher(RX101) - - - 41.0 60.9 44.0 23.9 45.2 54.0
12 One-stage Student(R50) × × × 36.5 55.4 39.1 20.4 40.3 48.1
12 One-stage Student(R50) X × × 38.0 56.8 40.7 22.0 41.8 50.9
12 One-stage Student(R50) × X × 36.9 55.9 39.4 21.2 40.7 47.8
12 One-stage Student(R50) X X × 38.4 57.6 40.9 22.6 42.1 51.0
12 One-stage Student(R50) X X X 38.5 57.6 41.1 21.6 42.6 50.8
24 One-stage Student(R50) × × × 37.4 56.7 39.6 20.0 40.7 49.7
24 One-stage Student(R50) X × × 39.9 59.2 42.8 22.3 43.9 53.7
24 One-stage Student(R50) × X × 38.3 57.5 40.8 21.2 41.9 50.6
24 One-stage Student(R50) X X × 40.1 59.4 42.9 23.8 43.9 53.6
24 One-stage Student(R50) X X X 40.3 59.7 42.9 23.4 44.2 53.4
12 Two-stage Teacher(RX101) - - - 42.1 63.0 46.3 24.8 46.2 55.3
12 Two-stage Student(R50) × × × 37.4 58.1 40.4 21.2 41.0 48.1
12 Two-stage Student(R50) X × × 39.4 60.2 43.1 22.3 43.4 51.8
12 Two-stage Student(R50) × X × 38.2 59.1 41.6 22.3 41.8 49.4
12 Two-stage Student(R50) X X × 39.6 60.6 42.9 22.6 43.7 51.7
12 Two-stage Student(R50) X X X 39.7 60.5 43.1 23.5 43.4 52.3

Table 1: Distillation results of both one-stage detector RetinaNet and two-stage detector Faster RCNN on COCO2017. PR refers to Pixel-
wise Relation distillation loss, IR refers to Instance-wise Relation distillation loss, INS refers to Instance distillation loss. RX101 refers to
ResNeXt101, R50 refers to ResNet50. One-stage framework refers to RetinaNet. Two-stage framework refers to Faster RCNN.

Algorithm 1 Dual Relation Knowledge Distillation

1: Initialize LPR, LIR, and LINS to 0.
2: Calculate the loss LPR based on Equation (1).
3: Extract teacher instances t based on Equation (5).
4: Extract student instances s based on Equation (5).
5: for i in 0:length(t)
6: for j in 0:length(t)
7: Calculate Rt = ψ (ti, tj) based on Equation

(6).
8: Calculate Rs = ψ (si, sj) based on Equation

(6).
9: Calculate the loss LIR based on Equation (7).

10: Calculate the loss LINS based on Equation (8).
11: Calculate overall loss L based on Equation (9).

for distillation, which is shown in Equ. (8). The adaptive con-
volution is applied on the side of the student detector to min-
imize the feature difference between the student and teacher.

LINS =
1

n

n∑
i=1

‖ti − f(si)‖2 (8)

where n refers to the number of foreground features. ti and si
refer to the feature from the teacher model and student model,
respectively. f represents adaptive convolution.

3.3 Overall Loss Function
According to the above analysis, the overall loss function
contains four parts. Ldet is the task loss used to train the
detection model. LPR is the pixel-wise relation distillation
loss. LIR is the instance-wise relation distillation loss. LINS

is the instance distillation loss. The overall loss function is
shown in Equ. (9)

L = Ldet + λ1LPR + λ2LIR + λ3LINS (9)

where λ1, λ2, λ3 are hyperparameters used to balance differ-
ent losses. The pseudo code is shown in Algorithm 1.

4 Experimental and Results
4.1 Implementation Details
COCO2017 [Lin et al., 2014] is used to evaluate our method,
which is a challenging dataset in object detection. It contains
120k images and 80 object classes. All experiments are per-
formed on 8 Tesla P40 GPUs. The optimizer we use is SGD.
The batch size is set to 16. The initial learning rate is 0.02.
The momentum is set to 0.9 and the weight decay is 0.0001.
Unless specified, the ablation experiment usually adopts 1×
learning schedule and the comparison experiment with other
methods adopts 2× learning schedule. We consider Average
Precision as evaluation metric, i.e.,mAP ,AP50,AP75,APS ,
APM and APL.

4.2 Ablation Study
To verify the effectiveness of the proposed distillation
method, a series of ablation experiments are performed,
which is shown in Table 1. Our method is evaluated on both
the one-stage detector and the two-stage detector.

For the one-stage detector, RetinaNet based on ResNeX-
t101 [Xie et al., 2017] is chosen as the teacher detector and
RetinaNet based on ResNet50 [He et al., 2016] is selected
as the student detector. Under the training strategy of 24 e-
pochs, the student detector achieves a 37.4% mAP. Apply-
ing pixel-wise relation distillation brings an increase of 2.5%
mAP. Adopting instance-wise relation distillation achieves
an increase of 0.9% mAP. Compared to the student detec-
tor without distillation, employing the proposed DRKD in-
creases mAP by 2.9%. For small object detection, applying
pixel-wise relation distillation and instance-wise relation dis-
tillation simultaneously achieves an increase of 3.8% APS

from 20.0% APS to 23.8% APS .
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Model Distillation mAP
RX101-RetinaNet Teacher 41.0

R50-RetinaNet Student 36.5
RX101-R50-RetinaNet Non-Local 37.6
RX101-R50-RetinaNet Ours 38.0

Table 2: Comparison of different pixel relation modeling methods.
Our pixel relation modeling module has better distillation perfor-
mance than non-local.

Model Distillation Size mAP
R50-RetinaNet - - 36.5

RX101-R50-RetinaNet IR 1× 1 36.6
RX101-R50-RetinaNet IR 3× 3 36.9
RX101-R50-RetinaNet IR 5× 5 36.6
RX101-R50-RetinaNet PR+IR+INS 1× 1 37.9
RX101-R50-RetinaNet PR+IR+INS 3× 3 38.5
RX101-R50-RetinaNet PR+IR+INS 5× 5 38.3

Table 3: Distillation performance comparison of different instance
feature size settings. RX101-R50-RetinaNet indicates that the teach-
er detector is ResNeXt101 based RetinaNet, while the student detec-
tor is ResNet50 based RetinaNet.PR refers to Pixel-wise Relation
distillation loss, IR refers to Instance-wise Relation distillation loss,
INS refers to Instance distillation loss.

For the two-stage detector, Faster RCNN based on
ResNeXt101 is chosen as the teacher detector and Faster R-
CNN based on ResNet50 is selected as the student detector.
Under the training strategy of 12 epochs, the student detector
achieves a 37.4% mAP. Applying pixel-wise relation distilla-
tion brings an increase of 2.0% mAP. Adopting instance-wise
relation distillation achieves an increase of 0.8% mAP. Com-
pared to the student detector without distillation, the applica-
tion of our DRKD increases mAP by 2.3%. For small object
detection, applying DRKD achieves an increase of 2.3%APS

from 21.2%APS to 23.5%APS . Besides, experiments prove
that our pixel relation modeling method based on graph con-
volution is better than non-local, which is shown in Table 2.
The above ablation experiments prove that our method is ef-
fective on both one-stage and two-stage detectors.

Besides, we analyze the mean AP of objects with different
sizes to determine the effects of different distillation meth-
ods. As shown in Table 1, pixel-wise relation distillation
brings growth in APS , APM , and APL, indicating that it
can improve the detection accuracy of objects with different
sizes. This result verifies that the pixel-wise relation distilla-
tion helps to address the feature imbalance issue. Moreover,
based on pixel-wise relation distillation, employing instance-
wise relation distillation in 24 epochs can further increase
APS of RetinaNet by 1.5% APS from 22.3% APS to 23.8%
APS . For small object detection, applying pixel-wise relation
distillation and instance-wise relation distillation simultane-
ously achieves an increase of 3.8% APS from 20.0% APS

to 23.8% APS . Our experiment proves that the detection ac-
curacy of small objects can be improved significantly when
using both two relation distillations.

Model Distillation Filter mAP
RX101-RetinaNet Teacher - 41.0

R50-RetinaNet Student - 36.5
RX101-R50-RetinaNet IR × 36.6
RX101-R50-RetinaNet IR X 36.9
RX101-R50-RetinaNet PR+IR+INS × 38.3
RX101-R50-RetinaNet PR+IR+INS X 38.5

Table 4: Validity verification of relation filtering module in instance-
wise relation distillation. PR refers to Pixel-wise Relation distilla-
tion loss, IR refers to Instance-wise Relation distillation loss, INS
refers to Instance distillation loss.

λ1 mAP λ2 mAP λ3 mAP
0.006 37.9 0.001 36.7 0.005 38.4
0.004 38.0 0.002 36.8 0.006 38.5
0.002 37.7 0.004 36.9 0.008 38.4
0.001 37.2 0.006 36.8 0.01 38.3

Table 5: Hyper-parameter sensitivity study of λ1, λ2, and λ3, with
RetinaNet on COCO 2017.

4.3 Instance Feature Size Selection
Since the instance-wise relation is modeled based on instance
features, the size of instance features may affect the perfor-
mance of distillation. Therefore, experiments are performed
to select the appropriate foreground feature size, which is
shown in Table 3. Three different feature sizes, including
1 × 1, 3 × 3, and 5 × 5, are set up in the experiment. When
only using instance-wise relation distillation, the 3 × 3 fea-
ture size achieves the best result 36.9% mAP, which exceeds
baseline by 0.4% mAP. When using three distillation meth-
ods, the 3× 3 feature size also gets the best result. Therefore,
the 3× 3 size is selected in all experiments.

4.4 Relation Filter Experiment
The relation filter module is set to highlight important in-
stance relations. Related experiments are performed to verify
its effectiveness, which is shown in Table 4. When only us-
ing instance-wise relation distillation, applying relation filter
results in a 0.3% mAP increase. Based on our DRKD with-
out relation filter, employing the relation filter brings a 0.2%
mAP increase. The above results prove the effectiveness of
the relation filter module.

4.5 Hyperparameter Selection
To obtain the best distillation performance, we analyze the
sensitivity of hyperparameters. A series of experiments are
set up to determine the value of λ1, λ2, and λ3 in Equ. (9).
RetinaNet is chosen to select parameters for the one-stage de-
tector. As shown in Table 5, when λ1 is 0.004, pixel-wise
relation distillation gets the best performance. When λ2 is
0.004, instance-wise relation distillation gets the best perfor-
mance. When λ3 is 0.006, instance distillation achieves the
best performance. For two-stage detectors, λ1 and λ3 are
multiplied by 0.25 and 0.3 respectively on the basis of the
above values to obtain the best results.
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Framewark Method Backbone mAP AP50 AP75 APS APM APL

Cascade Mask RCNN Teacher RX101 47.3 66.3 51.7 28.2 51.7 62.7
Faster RCNN Baseline R50 38.4 59.0 42.0 21.5 42.1 50.3
Faster RCNN EDKD [Chen et al., 2017] R50 38.7 59.0 42.1 22.0 41.9 51.0
Faster RCNN FGFI [Wang et al., 2019] R50 39.1 59.8 42.8 22.2 42.9 51.1
Faster RCNN Overhaul [Heo et al., 2019] R50 38.9 60.1 42.6 21.8 42.7 50.7
Faster RCNN NLD(ICLR-21) [Zhang and Ma, 2021] R50 41.5 62.2 45.1 23.5 45.0 55.3
Faster RCNN GKD(ECCV-22) [Tang et al., 2022] R50 41.5 61.9 45.1 23.5 45.1 55.4
Faster RCNN DRKD (Ours) R50 41.6 62.4 45.3 24.2 45.3 55.3

Cascade Mask RCNN Teacher RX101 47.3 66.3 51.7 28.2 51.7 62.7
Grid RCNN Baseline R50 40.4 58.4 43.6 22.8 43.9 53.3
Grid RCNN NLD(ICLR-21) [Zhang and Ma, 2021] R50 42.6 61.1 46.1 24.2 46.6 55.8
Grid RCNN DRKD (Ours) R50 43.0 61.8 46.5 25.1 46.5 56.3

Cascade Mask RCNN Teacher RX101 47.3 66.3 51.7 28.2 51.7 62.7
Dynamic RCNN Baseline R50 39.8 58.3 43.2 23.0 42.8 52.4
Dynamic RCNN NLD(ICLR-21) [Zhang and Ma, 2021] R50 42.8 61.2 47.0 23.9 46.2 57.7
Dynamic RCNN DRKD (Ours) R50 43.0 61.6 47.3 24.1 46.3 57.6

RetinaNet Teacher RX101 41.0 60.9 44.0 23.9 45.2 54.0
RetinaNet Baseline R50 37.4 56.7 39.6 20.0 40.7 49.7
RetinaNet Overhaul [Heo et al., 2019] R50 37.8 58.3 41.1 21.6 41.2 48.3
RetinaNet NLD(ICLR-21) [Zhang and Ma, 2021] R50 39.6 58.8 42.1 22.7 43.3 52.5
RetinaNet FRS(NIPS-21) [Du et al., 2021] R50 40.1 59.5 42.5 21.9 43.7 54.3
RetinaNet DRKD (Ours) R50 40.3 59.7 42.9 23.4 44.2 53.4
RetinaNet Teacher RX101 41.0 60.9 44.0 23.9 45.2 54.0
RepPoints Baseline R50 38.6 59.6 41.6 22.5 42.2 50.4
RepPoints NLD(ICLR-21) [Zhang and Ma, 2021] R50 40.6 61.7 43.8 23.4 44.6 53.0
RepPoints FGD(CVPR-22) [Yang et al., 2022] R50 41.3 - - - 45.2 54.0
RepPoints DRKD (Ours) R50 41.7 62.5 44.9 24.3 45.6 55.0

Table 6: Comparison between our methods and other state-of-the-art distillation methods. RX101 refers to ResNeXt101, R50 refers to
ResNet50.

4.6 Comparison with State-of-the-art Methods
To verify the excellent performance of the proposed method,
our DRKD is compared with other state-of-the-art distillation
methods on COCO2017. The experimental results are shown
in Table 6. Since our DRKD can be applied to both one-
stage and two-stage detectors, we verify it on these two types
of detectors. The experimental results show that our DRKD
exceeds the current most advanced methods, achieving the
state-of-the-art performance.

For the two-stage detector, the Cascaded Mask RCNN with
ResNeXt 101 is selected as the teacher detector. Faster RC-
NN [Ren et al., 2015], Dynamic RCNN [Zhang et al., 2020],
and Grid RCNN [Lu et al., 2019] are chosen as the student
detector. The backbone of the student detector is ResNet50.
Without distillation, Faster RCNN achieves 38.4% mAP. The
application of our DRKD brings an increase of 3.2% mAP.
FGFI [Wang et al., 2019] achieves 39.1% mAP, which is
2.5% mAP worse than our method. DRKD also exceeds
GKD [Tang et al., 2022], NLD [Zhang and Ma, 2021]. Be-
sides, Grid RCNN without distillation achieves 40.4% mAP.
NLD [Zhang and Ma, 2021] is a state-of-the-art distillation
method, which gets 42.6% mAP. Our DRKD obtains 43.0%
mAP, exceeding NLD 0.4% mAP. For Dynamic RCNN, D-
KRD achieves 43.0% mAP which is higher than all other
methods.

For the one-stage detector, RetinaNet with ResNeXt101 is
selected as the teacher detector. RetinaNet [Lin et al., 2017]
with ResNet50 is chosen as the student detector. Without

distillation, RetinaNet achieves 37.4% mAP. Applying our
DRKD brings an increase of 2.9% mAP, achieving 40.3%
mAP. The mAP of DRKD is higher than that of FRS and
NLD. Besides, RepPoints [Yang et al., 2019] without distil-
lation achieves 38.6% mAP. Applying our DRKD brings an
increase of 3.1% mAP. The accuracy of the student detector
even exceeds the teacher detector by 0.7% mAP. It also ex-
ceeds FGD by 0.4% mAP. The above results show that our
distillation method achieves state-of-the-art performance on
both one-stage and two-stage detectors.

5 Conclusion
In this paper, we propose dual relation knowledge distilla-
tion. In it, the pixel-wise relation distillation helps to address
the feature imbalance issue. Also, the instance-wise relation
distillation is proposed to get a richer representation for s-
mall instances. We observe that the small instance has richer
relations with other size instances. The experiment proves
that the detection accuracy of small objects can be improved
significantly by using our DRKD. The proposed distillation
method is general and can be easily applied for both one-stage
and two-stage detectors.
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