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Abstract
We present XFormer, a novel human mesh and mo-
tion capture method that achieves real-time perfor-
mance on consumer CPUs given only monocular
images as input. The proposed network architec-
ture contains two branches: a keypoint branch that
estimates 3D human mesh vertices given 2D key-
points, and an image branch that makes predic-
tions directly from the RGB image features. At
the core of our method is a cross-modal transformer
block that allows information to flow across these
two branches by modeling the attention between
2D keypoint coordinates and image spatial features.
Our architecture is smartly designed, which en-
ables us to train on various types of datasets includ-
ing images with 2D/3D annotations, images with
3D pseudo labels, and motion capture datasets that
do not have associated images. This effectively
improves the accuracy and generalization ability
of our system. Built on a lightweight backbone
(MobileNetV3), our method runs blazing fast (over
30fps on a single CPU core) and still yields com-
petitive accuracy. Furthermore, with an HRNet
backbone, XFormer delivers state-of-the-art perfor-
mance on Huamn3.6 and 3DPW datasets.

1 Introduction
3D body capture techniques play an essential role in a wide
range of computer vision and graphics applications such
as telepresence, VR chat, virtual YouTubers, and interac-
tive gaming. However, accurate and temporally coherent
body capture may require special (and usually expensive) de-
vices, such as motion capture suits, multi-camera systems,
and depth sensors, which highly hinder its large-scale appli-
cations. To resolve this issue, researchers have developed
various methods that predict 3D body pose and mesh from
monocular RGB images [Mehta et al., 2017b; Kanazawa
et al., 2018; Kocabas et al., 2020; Mehta et al., 2020;
Sun et al., 2021; Lin et al., 2021a; Kocabas et al., 2021].
Despite remarkable progress has been made, these methods
often fail to capture accurate body motion in challenging in-
the-wild scenes, especially when real-time performance is de-
sired.

One main challenge that remains in monocular 3D body
capture is that acquiring training images with accurate 3D
body annotations is hard. As a result, researchers attempt
to use images with 2D annotations to facilitate the training.
For example, most CNN-based approaches [Kanazawa et al.,
2018; Kolotouros et al., 2019; Mehta et al., 2020; Kanazawa
et al., 2019; Lin et al., 2021a] leverage datasets annotated
with 2D keypoints (e.g., COCO [Lin et al., 2014], LSP [John-
son and Everingham, 2010], MPII [Andriluka et al., 2014])
and minimize the reprojection loss of keypoints in order to
improve the accuracy on in-the-wild images. [Kocabas et
al., 2020; Kanazawa et al., 2019] further extend the training
modality to monocular videos with ground truth or pseudo
2D keypoint labels (PennAction [Zhang et al., 2013], Pose-
Track [Andriluka et al., 2018], InstaVariety [Kanazawa et al.,
2019]) to exploit temporal information for boosting 3D mo-
tion estimation. Another line of research [Choi et al., 2020;
Martinez et al., 2017; Zhao et al., 2019] has shown that, with-
out directly using image information, 2D keypoints alone pro-
vide essential (and sufficiently good) geometric information
of 3D human pose/shape (e.g., short 2D hip joint distance
suggests skinny lower body). And directly regressing 3D
joints/mesh vertices from 2D keypoints is more effective and
easier than previously thought.

Intuitively, the semantic feature from images and 2D key-
points are complementary to each other, and it is interesting to
integrate these two representations for a better pose and mesh
reconstruction. This has been investigated by concatenat-
ing 2D keypoint heatmaps with intermediate image features
[Mehta et al., 2017b; Mehta et al., 2020], adopting a trainable
fusion scheme [Tekin et al., 2017], and using a bilinear trans-
formation for multi-modality fusion [Sun et al., 2019]. How-
ever, these methods simply combine the multi-model features
without explicitly exploiting their interactions. Meanwhile,
these fusion strategies make the models unable to be trained
on the Motion Capture data without paired images [Mahmood
et al., 2019], resulting in inadequate training.

To overcome the above limitations, we propose a real-time
3D body capture system, termed XFormer. The XFormer
enforces knowledge transfer across image features and key-
points features with a proposed novel cross-modal attention
module inspired by [Vaswani et al., 2017; Lu et al., 2019].
Specifically, as shown in Figure 1, XFormer consists of two
branches, i.e., the keypoint branch and the image branch. The
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Figure 1: XFormer system overview. We predict 3D body joints and mesh with a network consisting of an image branch and a keypoint
branch. These two branches interact with Nx XFormer blocks, with each block containing Nf front self-attention modules, Nc cross-modal
attention modules, and Nb back self-attention modules. Fimg and Fkp denote the image branch feature and the keypoint branch feature.

keypoint branch takes the 2D keypoints to regress 3D joints
and mesh vertices of the SMPL model [Loper et al., 2015],
in which the 2D keypoints are predicted from the image by a
keypoint detector or projected by the 3D keypoints from the
MoCap data. The image branch directly predicts the same
information from the input image feature. In order to effec-
tively integrate the advantages of these two branches, we feed
the keypoint representations together with the image feature
map into the proposed cross-modal attention module. By ex-
changing key-value pairs in the multi-head attention, we ob-
tain the cross attention between the 2D keypoints and the im-
age features, which enforces information communication be-
tween these two modalities. Extensive experiments in Sec-
tion 5.2 demonstrate that this framework significantly out-
performs each individual branch that only captures a single
modality.

XFormer also takes full advantage of the datasets with dif-
ferent supervision types. In the previous work like [Kocabas
et al., 2020; Kolotouros et al., 2021; Rempe et al., 2021],
the MoCap data (e.g., AMASS [Mahmood et al., 2019]), as
it does not have paired images, is only used in the discrim-
inator or as human motion priors. Thus, the strong super-
vision of 2D-3D pose mapping is ignored. In contrast, our
XFormer enjoys a “modality plug-in” characteristic, enabling
the network to learn from MoCap or synthetic data without
corresponding images. This is achieved by a modality switch,
which uses an MLP to mimic the features learned by cross-
modal attention. Therefore, 2D keypoint features can skip the
cross-modal attention and directly forward to the following
network during training when the image modality is unavail-
able. Benefiting from this design, we can train on massive
MoCap sequences even if they do not consist of any images.

With the proposed cross-modal attention and leverag-
ing MoCap datasets, Xformer significantly boosts the per-
formance when the backbone is lightweight (MobileNetV3

[Howard et al., 2019]) and achieves real-time performance on
consumer CPUs. In contrast, the accuracy of previous meth-
ods [Kocabas et al., 2020; Lin et al., 2021b; Kocabas et al.,
2021] largely drops by replacing their original heavy back-
bones (e.g., ResNet50 [He et al., 2016], HRNet [Wang et al.,
2018]) with lighter ones.

In sum, the main contributions of this paper are as follows:
1) We introduce a novel network architecture that estimates

body joints and mesh from 2D keypoints and RGB image fea-
tures, whose interactions are captured with a proposed cross-
modal attention module.

2) The proposed two-branch architecture and XFormer
blocks are designed to leverage all types of training data (2D
and 3D, with and without images) of different modalities,
which further improves its accuracy.

3) Our system with a light backbone takes less than 7ms
per frame for an input person on an Nvidia GTX 1660 GPU
and 30ms with a single thread of Intel i7-8700 CPU, obtaining
significant speedup while maintaining satisfactory accuracy.

4) Our proposed method achieves state-of-the-art quanti-
tative performance with HRNet backbone on 3D pose esti-
mation benchmarks and demonstrates significant qualitative
results in challenging in-the-wild scenes.

2 Related Work
3D Human Pose Estimation. 3D human pose estimation can
be categorized into model-free and model-based approaches.
Model-free approaches predict 3D human pose by directly
estimating 3D keypoint from images [Pavlakos et al., 2018;
Lin et al., 2021a] or detected 2D human pose [Choi et al.,
2020]. Model-based methods estimate 3D pose by predicting
body model (e.g., SMPL) parameters [Kanazawa et al., 2018;
Kocabas et al., 2020; Zanfir et al., 2021] or meshes [Lin
et al., 2021a; Lin et al., 2021b]. Our method directly pre-
dicts 3D mesh vertices of the SMPL model to leverage the
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strong non-local correlations among vertices. Few prior ap-
proaches capture 3D human pose in real-time (e.g., [Mehta et
al., 2017b; Sun et al., 2021]), as most methods use computa-
tionally demanding deep neural networks or/and require time-
consuming kinematic optimization for post-processing. Our
method adopts a lightweight backbone with XFormer block
heads, which runs much faster and occupies less memory,
making it possible to run in real-time on even mobile devices
while still performing on par with state-of-the-art methods.
Human Pose Datasets. 3D pose datasets are often cre-
ated in controlled environments [Ionescu et al., 2013] or
in a relatively small scale [Mehta et al., 2017a; von Mar-
card et al., 2018]. MoCap datasets [Mahmood et al., 2019;
Adobe, 2020], on the other hand, provide massive 3D human
motion sequences, but no corresponding images are available.
Additionally, there are several datasets with pseudo 3D shape
and pose labels. Intuitively, using all available datasets of dif-
ferent modalities (images/videos with annotated 2D/3D key-
points, fitted 3D models on unlabeled images, MoCap data
without images, etc.) could improve performance. To allow
the model to train on images with only 2D annotations, pre-
vious approaches commonly optimize the reprojection loss
of keypoints [Kolotouros et al., 2019; Mehta et al., 2020].
VIBE further takes advantage of 2D video datasets for train-
ing a temporal model and uses MoCap data in the discrimina-
tor to force the output pose more temporally coherent. Mo-
Cap data is also used to build human motion priors for pro-
ducing plausible and accurate motions [Rempe et al., 2021;
Kolotouros et al., 2021]. Similar to these methods, our
method also aims to adopt data from different modalities.
Nevertheless, we directly involve the MoCap data instead of
just in a discriminator or prior, therefore fully utilizing the 3D
information incorporated in this data.
Transformers. Our cross-modal attention is built on trans-
formers [Vaswani et al., 2017]. In the context of 3D pose
modeling, transformer-based models are used to lift 2D key-
points to 3D [Li et al., 2021; Zhao et al., 2022; Li et al., 2022;
Shan et al., 2022], jointly model vertex-vertex and vertex-
joint interactions [Lin et al., 2021a; Lin et al., 2021b], and
focus on image regions that are relevant to the pose esti-
mation [Zanfir et al., 2021]. These methods usually adopt
heavy backbones, and we empirically find that the perfor-
mance significantly drops with a lightweight backbone or
fewer transformer layers. In contrast, we use transformers
from a different perspective in that information is transferred
across keypoints and image features with cross-modal atten-
tion. This enables our model to maintain good performance
with a lightweight backbone and a single-layer transformer
encoder.

3 Method
Figure 1 summarizes our system. A lightweight feature ex-
traction backbone (Section 3.1) takes the image as input,
followed by an image branch (Section 3.1) and a keypoint
branch (Section 3.2), both of which predict 3D joints and
mesh vertices. The two branches interact with the XFormer
blocks structure (Section 3.3, Section 3.4) to exchange infor-
mation between the keypoint modality and the image modal-

ity. Finally, the outputs of two branches can be fused to bring
about more precise and stable results (Section 3.5).

3.1 Feature Extraction and Image Branch
As shown in Figure 1, we first feed the person image
I ∈ RH×W×3 into a CNN to get the grid features and a
pooled image global feature. Following [Lin et al., 2021a;
Lin et al., 2021b], we tokenize these features together with
the 3D coordinates of each mesh vertex and body joint of a
coarse template mesh for positional encoding to obtain the
image feature Fimg . Fimg is then input to the image branch
to recover 3D body mesh.

3.2 Keypoint Branch
The grid features extracted from the backbone are shared by
the keypoint branch. We then adopt a heatmap-based method
to estimate the 2D human pose. Following the common prac-
tice [Papandreou et al., 2017; Bazarevsky et al., 2020], a key-
point decoder inputs the grid features and low-level features
from the backbone to predict keypoint heatmaps and offset
maps of all 2D body keypoints, where K is the number of
body joints. Each heatmap Hk represents the confidence map
of the corresponding keypoint, and the offset map Ok repre-
sents the offset ranging in [−2, 2] to compensate for the lost
accuracy since the heatmap width and height are a quarter of
the resolution of the input image. The final predicted key-
point coordinates C ∈ RK×2 are calculated by summing the
coordinates of the maximum response value in the heatmap
and the corresponding offset map value. We then regress the
2D pose to obtain keypoint features using GCNs [Zhao et al.,
2019]. The final output of the GCN contains K keypoint fea-
tures, which are then concatenated with their corresponding
2D coordinates. We further use a mean-pooling layer to get
the keypoint global feature and concatenate it with vertices
and joints from the template mesh as in the image branch.
Combining the aforementioned features, we obtain the key-
point branch feature Fkp before inputting to the XFormer
block.

3.3 XFormer Block
We propose a model based on transformers [Vaswani et al.,
2017] to encourage the information exchange between key-
points and image branches. Unlike previous transformer-
based models [Lin et al., 2021b; Lin et al., 2021a; Li et al.,
2021; Li et al., 2022], we explicitly capture the attention be-
tween each 2D keypoint and the feature of each image lo-
cation. Moreover, these two modalities are extracted from
a shared backbone. Therefore, XFormer can be regarded as
a cross-attention mechanism (for multiple modalities) and a
self-attention mechanism (for the input image).

An XFormer block contains two types of attention mod-
ules, self-attention modules, and cross-modal attention mod-
ules. The self-attention module is a vanilla transformer en-
coder with multi-head attention that extracts the self-attended
features of each branch. The structure of our cross-modal
attention module is illustrated in Figure 2. Specifically, the
image branch feature Fimg that represents the visual features
of the corresponding image spatial locations, is taken as one
input to the cross-modal attention module. The other input is
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Figure 2: Architecture of our proposed cross-modal attention
module. We exchange the key-value pairs in the multi-head at-
tention block of two modalities to model the interactions between
image spatial features and 2D keypoints. Our cross-modal attention
has a “modality plug-in” characteristic such that we can still train
our network when the image modality is missing. When the image
data is unavailable, we can switch the cross-modal feature FMHA

kp

to the simulated feature FMLP
kp (see the “modality switch” block)

without breaking the training data flow.

the keypoint branch feature Fkp of 2D keypoints. We first ob-
tain the query, key, and value matrices for each modality (i.e.,
Qimg , Kimg , Vimg of the image modality and Qkp, Kkp, Vkp

of the keypoint modality). Then, we exchange key-value pairs
in the multi-head attention block of two modalities to get the
feature FMHA

img and FMHA
kp :

FMHA
img = softmax

(
QimgK

T
kp/

√
Ct

)
Vkp, (1)

FMHA
kp = softmax

(
QkpK

T
img/

√
Ct

)
Vimg , (2)

where Ct is a scaling factor [Vaswani et al., 2017]. With the
proposed XFormer block, the cross-modal attention matrix in
the image branch provides rich spatial information to guide
the network to focus on relevant regions given the keypoint
coordinates. Meanwhile, the cross-modal attention matrix in
the keypoint branch provides depth and semantic cues embed-
ded in the image that helps regress better human body mesh.

3.4 Modality Switch
To enable training with MoCap data that does not have the
image modality, we design a novel modality switch mecha-
nism shown in Figure 2. More specifically, we first input the
feature Fkp to an MLP (FMLP

kp = MLP(Fkp)). When im-
age data is available, we apply a consistency loss (Eqn. (9))
between FMLP

kp and FMHA
kp to supervise the MLP simulat-

ing the cross-modal attention. When training with MoCap
data without images in the keypoint branch, we switch off the
cross-modal attention and only train the MLP layer. Thus, the
final attended features F att

img and F att
kp can be written as:

F att
img = LN

(
FMHA
img + Fimg

)
, (3)

F att
kp =

{
LN

(
FMHA
kp + Fkp

)
, Fimg is available,

LN
(
FMLP
kp + Fkp

)
, otherwise,

(4)

where LN denotes the layer normalization used in the trans-
former. As a result, the Xformer block does not rely on
the presence of both modalities for training. We can drop
the image branch and use projected 2D keypoints as in-
put to the keypoint branch to train on MoCap data without
paired images, while training on such data is impracticable
for existing multi-modal 3D pose estimation approaches like
[Mehta et al., 2017b; Mehta et al., 2020; Tekin et al., 2017;
Sun et al., 2019].

3.5 Final Ensemble Result
Finally, F att

kp and F att
img are further passed through self-

attention modules to predict human mesh vertices and joints,
as shown in Figure 1. The two branches both predict 3D
joint locations, a coarse 3D body mesh with 431 vertices, and
weak-perspective camera parameters. Similar to [Lin et al.,
2021a; Lin et al., 2021b], we upsample the coarse mesh with
MLPs to obtain the full SMPL mesh with 6,890 vertices. The
estimations of two branches are fused to produce the final
joints J3D and vertices V 3D: J3D = λJ3D

kp + (1 − λ)J3D
img ,

V 3D = λV 3D
kp + (1− λ)V 3D

img , where λ is simply set to 0.5.

4 Training
4.1 Loss Functions
Our network is end-to-end trained by minimizing a total loss
Ltotal consisting of 2D keypoint detector loss Lmap, keypoint
branch loss Lkp, image branch loss Limg , and the consistency
loss Lcons.
2D Keypoint Detector Loss. We use a heatmap-based
method to predict 2D keypoints in our keypoint branch.
For the k-th keypoint, we create its ground-truth heatmap
H̄k by a Gaussian distribution with mean as the key-
point coordinate and standard variation σ = 2. Each
element of the ground-truth offset map Ōk is set to be
the offset value w.r.t. the corresponding keypoint loca-
tion when their distance is less than 2, otherwise, it is
set to zero. We minimize the L1 distance of the ground-
truth and prediction: Lmap = 1

K

∑K
i=1 wk

∣∣∣∣H̄k −Hk

∣∣∣∣
1
+

1
K

∑K
i=1 wk

∣∣∣∣Ōk −Ok

∣∣∣∣
1

, where wk indicates the weight of
each keypoint, and it is set to zero for the invisible keypoint.
3D Reconstruction Loss. We optimize our framework by
minimizing Lkp for the keypoint branch and Limg for the im-
age branch. Specifically, we follow [Lin et al., 2021a] and
formulate Lkp as the sum of vertex loss LV

kp, 3D joint loss

LJ
kp, 3D joint regression loss L

Jreg

kp , and 2D re-projection

L
Jproj

kp :

LV
kp =

1

M

M∑
i=1

∣∣∣∣∣∣V 3D
kp − V̄ 3D

∣∣∣∣∣∣
1
, (5)

LJ
kp =

1

K

K∑
i=1

∣∣∣∣∣∣J3D
kp − J̄3D

∣∣∣∣∣∣
1
, (6)

L
Jreg

kp =
1

K

K∑
i=1

∣∣∣∣∣∣WV 3D
kp − J̄3D

∣∣∣∣∣∣
1
, (7)
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Figure 3: Visual comparison of our method against the previous state-of-the-art method Graphormer. XFormer performs slightly better than
Graphormer with a large backbone. While with a small backbone, XFormer reconstructs human mesh more accurately than Graphormer. The
2D keypoints predicted by our keypoint decoder are also visualized.

L
Jproj

kp =
1

K

K∑
i=1

∣∣∣∣∣∣ΠkpJ
3D
kp − J̄2D

∣∣∣∣∣∣
1
, (8)

where V̄ 3D, J̄3D, J̄2D are the ground-truth 3D mesh ver-
tex locations, the ground-truth 3D joint locations, and the
ground-truth 2D keypoint coordinates. M is the number of
the vertices, V 3D

kp denotes the output 3D vertex locations, and
J3D
kp is the output 3D joint locations. With a pre-trained lin-

ear regressor W , the 3D locations of body joints can be in-
ferred from the 3D vertices by WV 3D

kp
[Loper et al., 2015],

and the 3D joint regression loss LJreg

kp is their L1 distance to
the ground-truth 3D locations. Πkp is the weak-perspective
camera parameters predicted by the keypoint branch, which
is used to obtain 2D projections of the 3D joints. The image
branch loss Limg is calculated in a similar fashion as Lkp.
Consistency Loss. As discussed in Section 3.3 and shown
in Figure 2, we apply a consistency loss Lcons to make the
MLP inside the cross-modal attention module simulate the
cross-modal feature FMHA

kp :

Lcons =
∣∣∣∣FMHA

kp − FMLP
kp

∣∣∣∣
2
. (9)

Lcons is only used in the keypoint branch when FMHA
kp is

available (i.e., when training on the datasets with image data).
This loss is conceptually similar to the idea of knowledge dis-
tillation [Hinton et al., 2015]—we distill the knowledge in
the cross-modal attention into an MLP layer to improve the
model accuracy and robustness. But unlike knowledge dis-
tillation, we do not stop the gradient for FMHA

kp , as the key-
point branch that learns from massive MoCap data and 3D
labels provides valuable pose/shape priors, which enhances
the performance of the image branch.

4.2 Datasets
As discussed in Section 2 and summarized in Table 2, com-
mon datasets can be divided into the following categories:
1) Image datasets with 3D annotations, such as 3DPW, UP-
3D [Lassner et al., 2017], MuCo-3DHP [Mehta et al., 2018];
2) Image datasets with 2D keypoints annotations, such as
COCO, MPII; 3) Image datasets with 2D keypoints anno-
tations and pseudo 3D human labels, such as SPIN fits on
COCO, Pose2Mesh fits on Human3.6M; 4) MoCap datasets
without images, such as AMASS. Because of our system’s
“plug-in” characteristic, we can flexibly use all these kinds of
datasets to train our network.

Each training sample is used to minimize corresponding
losses according to dataset type. Specifically, we use the
2D keypoint datasets COCO and MPII to train the network
by minimizing Lmap, LJproj

kp , LJproj

img and Lcons. As for the
image datasets with 3D annotations, they are used to train
our whole network by minimizing the total loss Ltotal. For
datasets without image data, we first generate 3D joint loca-
tions J̄3D and 3D vertices locations V̄ 3D from the ground-
truth SMPL parameters. Then, we obtain 2D keypoints J̄2D

with a random orthographic projection. This way, we gener-
ate paired 2D keypoints input and ground-truth 3D joints and
vertices output. To improve the robustness of the keypoint
branch, we employ the following data augmentations: 1) we
apply random rotations ([−30°, 30°], [−30°, 30°], [−60°, 60°]
for row, pitch, and yaw, respectively) to the global rotation
of the mesh to account for more projection variations; 2) we
apply random global shifting ([−20, 20] pixels) and scaling
([0.9, 1.1]) to the 2D keypoints. As we fully utilize abun-
dant data of different modalities across different domains, our
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Method Backbone Number of Blocks Human3.6M 3DPW
Nf Nc Nb Nx MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓ PVE↓

HMR [Kanazawa et al., 2018] ResNet50 88.0 56.8 130.0 76.7 -
SPIN [Kolotouros et al., 2019] ResNet50 - 41.1 96.9 59.2 116.4
VIBE [Kocabas et al., 2020] ResNet50 65.6 41.4 82.9 51.9 99.1
XNect [Mehta et al., 2020] SelecSLS 63.6 - 134.2 80.3 -
ROMP [Sun et al., 2021] HRNet - - 76.7 47.3 93.4
Pose2Mesh [Choi et al., 2020] HRNet 64.9 47.0 89.2 58.9 -
PARE* [Kocabas et al., 2021] HRNet 54.4 38.2 75.8 48.3 91.2
METRO* [Lin et al., 2021a] HRNet 4 0 0 3 54.0 36.7 77.1 47.9 88.2
Graphormer* [Lin et al., 2021b] HRNet 4 0 0 3 53.3 36.1 76.5 46.9 87.9
Ours-Large w/o AMASS* HRNet 1 1 2 3 53.0 35.7 75.8 46.0 87.5
Ours-Large HRNet 1 1 2 3 52.6 35.2 75.0 45.7 87.1
PARE* [Kocabas et al., 2021] MobileNetV3 72.8 46.6 96.6 58.3 114.4
Graphormer* [Lin et al., 2021b] MobileNetV3 1 0 0 1 74.6 50.1 92.4 59.0 112.8
Ours-Small w/o AMASS* MobileNetV3 0 1 0 1 71.1 45.8 87.5 56.8 105.5
Ours-Small MobileNetV3 0 1 0 1 68.2 44.2 84.7 55.1 102.6

Table 1: Performance comparison with state-of-the-art methods.“-” denotes the results that are not available. Methods with “*” are trained
with the same datasets (i.e., the first three types of datasets described in Section 4.2) for a fair comparison.

modal can predict more plausible and accurate body mesh and
joint locations. This is different from existing approaches that
only use MoCap data to train a discriminator [Kanazawa et
al., 2018; Kocabas et al., 2020] or as shape and pose priors
for regularization [Bogo et al., 2016].

5 Experiments
5.1 Main Results
Evaluation Protocol. We evaluate on the Human3.6M and
3DPW datasets following the protocols in [Kanazawa et al.,
2018; Kolotouros et al., 2019] and report Procrustes-aligned
mean per joint position error (PA-MPJPE), mean per joint po-
sition error (MPJPE) and per-vertex error (PVE).
Quantitative Evaluation. Table 1 compares our method with
the prior works on Human3.6M and 3DPW. We compare
these methods with small and large backbones. The origi-
nal PARE trains with more powerful EFT-fitted [Joo et al.,
2021] SMPL parameters on COCO, MPII, LSPET [Johnson
and Everingham, 2011] as pseudo 3D labels. To get a fair
comparison, we train PARE with the same image datasets as
Ours. As for the comparison with Graphormer, we use 3 full
XFormer blocks in Ours-Large, which has similar network
parameters. The results of Graphormer are reproduced with
the official code released by the authors. We report the best
performance of Graphormer and Xformer by running the ex-
periments three times, and we find the results of Graphormer
are more stochastic (on Human3.6M, Graphormer has a stan-
dard deviation of PA-MPJPE of 0.16, while that of Ours-
Large is only 0.05). We attribute this to the fact that XFormer
benefits from the stable complementary information provided
by the keypoint branches, but Graphormer only relies on sin-
gle modality input. Note that we do not manage to repro-
duce the results of Graphormer reported in the paper (PA-
MPJPE 34.5, MPJPE 51.2 on Human3.6M) in all three ex-
periments. For the methods with a small backbone (e.g., Mo-
bileNetV3), Ours-Small outperforms state-of-the-art methods
Graphormer and PARE with the same backbone by a clear
margin and running at a higher speed, as shown in Table 4.

Dataset Type Datasets PA-MPJPE

Image datasets
w/ 3D labels

Human3.6M

✓ ✓ ✓ ✓
UP-3D
MuCo-3DHP
3DPW

2D keypoint datasets
w/o pseudo 3D labels

COCO
✓ ✓ ✓ ✓MPII

2D keypoint datasets
w/ pseudo 3D label

SPIN fits
✓ ✓Pose2Mesh fits

MoCap datasets
w/o images AMASS ✓ ✓

Ours-Small 47.0 46.5 45.8 44.2
Ours-Large 36.9 36.4 35.7 35.2

Table 2: Ablation study on Human3.6M by varying the types of
training datasets used in our method. With the proposed modality
switch mechanism, we achieve performance improvement by taking
advantage of different types of datasets.

For the methods with a large backbone (e.g., ResNet50, Se-
lecSLS, and HRNet), Ours-Large performs better than the
other methods on pose and shape estimation. Note that our
model still performs favorably against state-of-the-art meth-
ods even if we turn off the modality switch to train without the
MoCap dataset (i.e., Ours w/o AMASS), validating the effec-
tiveness of our cross-modal attention. Powered with the abil-
ity of training with MoCap data, the performance of XFormer
is further enhanced.
Qualitative Evaluation. We conduct qualitative comparison
against previous methods, as shown in Figure 3. These vi-
sual comparisons verify that our method outperforms previ-
ous real-time methods in 3D human mesh recovery and gives
comparable results to state-of-the-art offline methods.

5.2 Ablation Study
On Different Training Datasets. As the proposed XFormer
can leverage datasets with different annotation types, we
compare on different combinations of datasets in Table 2
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Method Human3.6M 3DPW
MPJPE PA-MPJPE MPJPE PA-MPJPE

Image Branch Only 74.5 51.3 93.3 60.2
Keypoint Branch Only 72.8 50.5 94.5 61.6
w/o Consistency Loss 70.3 45.1 86.6 55.8

Single Branch with Both Tokens 71.4 49.2 91.2 58.5
Ours-Small (w/o AMASS) 71.1 45.8 87.5 56.8

Keypoint Output 68.8 45.0 85.9 56.3
Image Output 69.0 45.1 86.8 57.0
Ours-Small 68.2 44.2 84.7 55.1

Table 3: Ablation study on different settings of our small model.
Without our two-branch structure, the models trained with a sin-
gle branch drop significantly. Our cross-modal attention module
effectively models the information exchange of two branches. A
single-branch model with both tokens does perform better than in-
dividual branches but is still worse than a two-branch model with
cross-modal attention. For a better understanding of the contribu-
tion of our cross-modal attention mechanism, we also put the results
trained without the AMASS dataset. “w/o Consistency Loss” means
we remove the consistency loss. Ours Keypoint Output and Image
Output indicate that we do not use the ensemble strategy and infer-
ence with the full network (with cross-modal attention module) only
with the output of the keypoint branch V 3D

kp or the image branch
V 3D
img , respectively.

to evaluate the effect of different types of datasets. As the
first two types of datasets are commonly used in all related
works, we always turn them on. It shows the MoCap datasets
without images can bring about evident performance gain as
the modality switch mechanism enables XFormer to train on
such data. Note that state-of-the-art methods all leverage 3D
pseudo-labeled datasets, and Table 2 also shows that such
datasets benefit XFormer. Plus, dropping both the 3D pseudo
labeled and MoCap data, we still outperform the best mod-
els trained without these types of data [Kocabas et al., 2020;
Mehta et al., 2020].
On Two Branches and Cross-Modal Attention. To validate
the effectiveness of our two-branch strategy and the cross-
modal attention module, we test several single-branch mod-
els, including the model containing only an image branch
(Image Branch Only), the model containing only a key-
point branch (Keypoint Branch Only), and the model which
takes image and keypoint tokens sequentially as input (Sin-
gle Branch with Both Tokens). The results are shown in Ta-
ble 3. Furthermore, the output of each branch from the full
two-branch network still works better than the correspond-
ing single-branch network when inferencing. We attribute
these observations to two reasons: 1) the cross-modal atten-
tion module effectively models the information interactions
between the keypoint and image modalities; 2) the additional
MoCap datasets improve the generalization of the keypoints
branch, resulting in improved full network performance. The
ensemble strategy further improves performance.
On Consistency Loss. As shown in Table 3, the performance
drops if we remove the consistency loss and do not let the
MLP mimic the cross-modal attention feature. The consis-
tency loss can distill the knowledge from cross-modal atten-
tion into the MLP layer, which gains performance when train-
ing with both the image and MoCap data.
Discussions. We observe that the improvement of our

Method GPU Speed CPU Speed
(fps) (fps)

VNect [Mehta et al., 2017b] 30.3 3.1
SPIN [Kolotouros et al., 2019] 126.6 7.9
VIBE [Kocabas et al., 2020] 123.4 8.0
XNect [Mehta et al., 2020] 29.8 2.9
ROMP [Sun et al., 2021] 24.2 3.1
PARE [Kocabas et al., 2021] (MobileNetV3) 103.1 27.6
Graphormer [Lin et al., 2021b] (MobileNetV3) 142.1 32.4
Ours-Small (MobileNetV3) 154.0 37.6

Table 4: Inference time of state-of-the-art methods and XFormer.
The CPU speeds of our methods are tested with a single thread,
while VNect and XNect use multiple CPU cores.

XFormer is more notable for small backbones. We attribute
this to that for heavy backbones, both branches have the net-
work capacity of learning fairly good 3D body mesh, and
adding cross-modal attention and making use of the MoCap
dataset mildly improve the performance. As the model size
decreases, small models have lower generalization ability and
are more prone to appearance domain gap between limited
controlled environment data [Mehta et al., 2017a; von Mar-
card et al., 2018] and large-scale in-the-wild images, making
it hard to predict accurate 3D body shape directly from image
features. 2D keypoints, which are easier to estimate thanks
to well-established datasets and methods [Cao et al., 2019;
Bazarevsky et al., 2020], provide complementary informa-
tion to boost the small model’s performance. This further
validates that XFormer is suitable for light backbones in real-
time scenarios while existing methods have severely degraded
performance when the model capability decreases.

5.3 Running Time Analysis

In Table 4, we profile the running time of our method on a
desktop with an Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz
and an Nvidia GeForce GTX 1660. All CPU models are ac-
celerated with OpenVino. Our network achieves real-time
performance (154.0fps on GPU and 37.6fps on CPU). We
observe that our method achieves a good balance between
effectiveness and efficiency. Our method gives a compara-
ble reconstruction error and runs much faster compared with
most approaches (e.g., [Kolotouros et al., 2019; Kocabas et
al., 2020]). We have a similar speed to Graphormer (Mo-
bileNetV3) while obtaining much more accurate estimations.

6 Conclusion and Limitations

In this paper, we have described a fast and accurate approach
to capturing the 3D human body from monocular RGB im-
ages. We utilize all available datasets of different modalities
by designing an effective two-branch network to predict 3D
body joints and mesh jointly. The information incorporated
in these two branches interacts through a novel cross-modal
attention module. Experiments have demonstrated that our
system runs at more than 30fps on consumer CPU cores while
still achieving accurate motion capture performance.
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