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Abstract

Acoustic non-line-of-sight (NLOS) imaging aims
to reconstruct hidden scenes by analyzing reflec-
tions of acoustic waves. Despite recent develop-
ments in the field, existing methods still have lim-
itations such as sensitivity to noise in a physical
model and difficulty in reconstructing unseen ob-
jects in a deep learning model. To address these
limitations, we propose a novel cross-modal knowl-
edge distillation (CMKD) approach for acoustic
NLOS imaging. Our method transfers knowl-
edge from a well-trained image network to an au-
dio network, effectively combining the strengths
of both modalities. As a result, it is robust to
noise and superior in reconstructing unseen objects.
Additionally, we evaluate real-world datasets and
demonstrate that the proposed method outperforms
state-of-the-art methods in acoustic NLOS imag-
ing. The experimental results indicate that CMKD
is an effective solution for addressing the limita-
tions of current acoustic NLOS imaging methods.
Our code, model, and data are available at https:
//github.com/shineh96/Acoustic-NLOS-CMKD.

1 Introduction
Non-line-of-sight (NLOS) imaging [Kirmani et al., 2009] is
a method for reconstructing objects or scenes that are hidden
from the line-of-sight of an observer. Conventional NLOS
imaging methods [Velten et al., 2012; Heide et al., 2014;
O’Toole et al., 2018] primarily utilize optical systems in order
to infer the properties of hidden scenes. These are achieved
by analyzing indirect measurements, such as reflections of
optic waves. However, acoustic signals can also be used for
NLOS imaging, providing an alternative approach to the anal-
ysis of optical signals. Acoustic signals are immune to inter-
ference or noise from external sources, such as light or radio
frequency radiation. Furthermore, the audible frequency sig-
nal exhibits robustness to noise within a specific frequency
band, owing to its wide frequency range of 20 Hz to 20 kHz.
This makes acoustic NLOS systems more robust and reliable
in noise environments, or in situations where the reflections
of the optical waves may be distorted or attenuated. In con-

Figure 1: Typical acoustic NLOS setup. The speaker directs acoustic
signals toward the hidden space and the microphone measures the
three-bounce signals reflected off the hidden objects.

trast, optical NLOS systems may be affected by noise, which
can reduce the quality of the reconstructed image.

Recently, NLOS imaging methods that utilize acoustic
characteristics have been proposed. [Lindell et al., 2019a]
proposed a physical model for analyzing acoustic time-of-
flight, inspired by seismic imaging. However, NLOS systems
typically measure three-bounce reflected signals, as shown in
Fig. 1. These signals have low signal intensity, a long travel
distance, and high levels of environmental noise. Further-
more, the measurements may be affected by ambient noise,
interference, or multipath effects, which can degrade the ac-
curacy and reliability of the time-of-flight estimates. As a re-
sult, this approach has only been verified with data collected
in a space that is isolated with acoustic foam panels and does
not reflect acoustic signals other than these of the relay wall.

To address the limitations of the physical model, [Jang et
al., 2022] proposed an end-to-end deep learning model that
reconstructs the depth map by extracting the features of hid-
den scenes from the relative intensity and the arrival time de-
lay of the reflected signal. The model utilizes an encoder with
a hierarchical structure to extract acoustic signals from multi-
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Figure 2: Cross-modal knowledge distillation model transfers
knowledge from a well-trained image teacher to an audio student.
During inference, the model reconstructs the hidden scene using
only audio as input.

channel audio and the reconstruct hidden scenes in a space
where no soundproofing system has been implemented. How-
ever, the model is limited in its ability to reconstruct unseen
objects that are out of distribution with respect to the trained
objects.

In general, knowledge distillation [Hinton et al., 2015]
has been shown to improve the generalization performance
of a target student model by transferring the knowledge of
a verified teacher model [Stanton et al., 2021]. Addition-
ally, several studies [Aytar et al., 2016; Albanie et al., 2018;
Gan et al., 2019; Valverde et al., 2021] have demonstrated
that knowledge distillation between different modalities, such
as from image to audio, can further enhance the performance
of the target model. Based on these findings, we design a
model that is optimized for acoustic NLOS imaging that is
intended to be robust to noise and capable of reconstructing
unseen objects. To achieve this, we propose a cross-modal
knowledge distillation (CMKD) approach that transfer the
knowledge of a well-trained image network to an audio net-
work.

The utilization of CMKD allows the strengths of each
modality to be used optimally. Image data faithfully rep-
resent visual details and spatial information, whereas audio
effectively capture dynamic information and potentially use-
ful temporal information. By combining these strengths, the
model could achieve better performance than by using either
modality alone [Zhao et al., 2018; Gao et al., 2020]. Fur-
thermore, this method enables the model to better general-
ize to unseen objects and makes the target network robust to
noise [Sarfraz et al., 2021].

The CMKD framework consists of an image teacher net-
work and an audio student network shown in Fig. 2. The
image teacher network is initially trained to perform the trans-
formation of an RGB image into a depth map. Subsequently,
the audio student network is trained to convert multi-channel
audio to a depth map, and to leverage the distilled knowledge

from the frozen image teacher network. During inference, the
audio student network is able to reconstruct the depth map of
a hidden scene using only reflected acoustic signals as input,
without any additional image information.

To facilitate this task, we collect a large dataset of 3,600
corresponding frames that consist of RGB images, depth
maps, and multi-channel audio. We also construct an acoustic
system with eight speaker and microphone arrays and collect
64 channels of reflected signals by transmitting and receiv-
ing audible signals (20 Hz to 20 kHz) in a space where no
soundproofing system has been implemented. We use this
self-collected experimental data to confirm the robustness of
our model to noise generated in real-world scenarios.

We compare the performance of our approach with state-
of-the-art methods using acquired data. We demonstrate su-
perior performance in reconstructing both trained and unseen
objects. We also present detailed ablation studies to highlight
the significance of the proposed techniques. The main contri-
butions of this work are as follows:

• To the best of our knowledge, this is the first instance
where CMKD has been applied to NLOS imaging in
general, not just in the acoustic domain.

• We collect a new acoustic NLOS dataset and make it
available to the public. We hope that this dataset will
contribute to the advancement of research in the field of
acoustic NLOS.

• Our model demonstrates robustness to real-world noise
and enhances the generalization performance on unseen
objects, and it outperforms current state-of-the-art mod-
els.

2 Related Work
2.1 NLOS Imaging
NLOS imaging has numerous potential applications, includ-
ing autonomous driving, medical imaging, and rescue oper-
ations [Maeda et al., 2019]. A variety of hardware systems,
such as pulse lasers and high-resolution detectors [Velten et
al., 2012; Liu et al., 2020; Wu et al., 2021], time-of-flight
cameras [Heide et al., 2014; Kadambi et al., 2016], conven-
tional cameras [Chen et al., 2019; Henley et al., 2020], Li-
DAR systems [Zhu and Cai, 2022], and speaker-microphone
arrays [Lindell et al., 2019a; Jang et al., 2022], have been
used for NLOS imaging. Additionally, several methods have
been proposed, including time-of-flight-based models [Vel-
ten et al., 2012; Heide et al., 2014] that use directivity and
wave-based models [Lindell et al., 2019b] that use diffrac-
tion. However, NLOS imaging is an ill-posed problem with
a low signal-to-noise ratio, due to the fact that it relies on the
analysis of three-bounce reflected signals [Geng et al., 2021].
This can make it challenging to achieve high-quality recon-
struction of the hidden scene.

To address this problem, several NLOS imaging methods
that use deep learning [Chen et al., 2019; Grau Chopite et al.,
2020; Shen et al., 2021] have been proposed. These methods
have been successful in reconstructing hidden scenes by dis-
tinguishing noise and extracting meaningful features. How-
ever, it is important to note that the performance of deep
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Figure 3: Overview of acoustic NLOS imaging using a cross-modal knowledge distillation (CMKD) framework. This framework consists of
two main components: an image teacher network and an audio student network.

learning models heavily relies on the quantity and quality
of the dataset. In particular, it is difficult to construct large
datasets using optical equipment for NLOS imaging. This
is primarily due to the directivity of light, which results in a
long collection time of 1 - 5 minutes per sample using point-
by-point scanning. As a result, most deep learning methods
rely on synthesized data for training and evaluation, as it can
be impractical to collect large amounts of real-world data. In
contrast, we reduce the collection time to 25 seconds by using
an acoustic system that can scan hidden spaces at once. This
enables the collection of a larger and higher-quality dataset,
which is crucial for the performance of deep learning models.

3 Methodology
In this section, we provide a detailed description of the overall
framework and the role of each component, as well as the
knowledge transfer method between the two modalities and
the loss function used for network learning.

The goal of this framework is to reconstruct the depth map
for the hidden scene by transferring knowledge from an im-
age modality to an audio modality. To achieve this, we use an
RGB image as the teacher modality and multi-channel audio
as the student modality. We employ a two-phase approach,
where the first phase involves training the teacher network to
transform an RGB image to a depth map. Then, in the sec-
ond phase, the weights of the well-trained teacher network
are frozen, and a student network is trained to convert multi-
channel audio to a depth map using the distilled knowledge
supplied by the teacher network.

3.1 Cross-Modal Knowledge Distillation
In our approach, we use this method to transfer the knowledge
of a well-trained RGB image to depth network to the audio to
depth network, with the goal of improving the reconstruction
performance of the audio network. During training, we learn
both the image and audio modalities, but during inference,
we only use the audio modality. This approach allows us to
effectively transfer the knowledge of the image network to
the audio network, resulting in improved performance.

To facilitate CMKD, the translators of the two sub-
networks are designed to have the same structure. We com-
pare three cases of transferring knowledge from the im-
age teacher network to the audio student network: encoder
knowledge, decoder knowledge, and whole network knowl-
edge. The results show that transferring only the knowl-
edge of the encoders leads to the greatest improvement in
the performance of the audio network. The detailed results
of this experiment can be found in the supplementary mate-
rial. Based on these findings, we present optimal conditions
for CMKD in acoustic NLOS imaging.

3.2 Network Architecture
The network architecture consists of two main components:
an image teacher network and an audio student network.

Image Teacher Network
The image teacher network is a translator that converts RGB
images into depth maps. We adopt a U-Net [Ronneberger et
al., 2015] structure auto-encoder as the translator network.
The U-Net has been shown to perform well on the task of

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1407



monocular depth estimation [Alhashim and Wonka, 2018],
which involves converting each pixel of an RGB image to a
depth value.

The U-Net translator consists of an encoder that extracts
features from an RGB image and a decoder that reconstructs
the latent vector as a depth map. The encoder and decoder
are symmetrical, and the high-dimensional information from
the encoder is transmitted to the decoder through skip con-
nections. This image network learns the knowledge that is
required to convert RGB images to depth maps.

Audio Student Network
The audio student network consists of three main compo-
nents: a feature extractor optimized for multi-channel audio
input, a translator that converts the extracted audio features to
a depth map, and a discriminator that distinguishes whether
the estimated depth map is real or fake. The feature extrac-
tor is responsible for extracting meaningful features from the
multi-channel audio input, these features are then passed to
the translator. The translator uses these features to reconstruct
the depth map of the hidden space. The discriminator is used
to evaluate the quality of the reconstructed depth map and
distinguish between real and fake examples.

The audio network feature extractor is designed specifi-
cally to manage multi-channel audio data that are acquired
from various locations. The audio data are acquired using an
8×8 grid of vertically arranged speaker-microphone pairs that
move horizontally. To extract features from the 1D time series
data, we apply a short-time Fourier transform to convert the
data into a 2D spectrogram having dimensions of 256×512.
The resulting 4D audio data (8×8×256×512) are input into
the network and passed through eight encoding blocks that
extract features using 3D convolution operations [Tran et al.,
2015] and two fully connected layers that transform the la-
tent vector to the input form for the next network. Each en-
coding block consists of a 3D convolutional layer, a 3D batch
normalization layer, and a ReLU activation function. This
network effectively extracts features from the 4D audio data
while preserving the location information.

The translator in the audio network has the same structure
as the image network, which allows for the transfer of knowl-
edge from the image network to the audio network. This
structure, which is based on the RGB image to depth map
translator, helps to improve the reconstruction performance
of the audio network. In addition, the student translator is ini-
tialized with the pre-trained weights of the teacher network in
order to accelerate learning and further improve reconstruc-
tion performance.

We adopt the discriminator structure from Pix2Pix [Isola
et al., 2017]. The discriminator serves the purpose of distin-
guishing whether the estimated depth map is real or fake. The
discriminator aligns the distribution of the prediction depth
map with the ground truth depth map.

3.3 Objective
Image Teacher Network
The image network is trained using only the depth Loss,
which is the pointwise l1 error between the estimated depth
map and the actual depth map. The objective of the image

network is as follows:

G∗
t = min

Gt

LDepth(Gt), (1)

where, Gt is a teacher network generator that translates the
RGB image to the depth map.

Audio Student Network
The audio network employs knowledge distillation to en-
hance the performance of the conditional adversarial network
for audio to depth map translation. Therefore, it is trained
by integrating the loss for the conditional adversarial net-
work with the loss for the knowledge distillation. We utilize
a conditional adversarial network loss based on the Batvi-
sion [Christensen et al., 2020] and we measure the depth
map reconstruction error using the pointwise L1 error. The
GAN loss is determined by the least-squares loss [Mao et al.,
2017]. In order to align the audio network with the image
network, the distance between the feature map distributions
of each translator encoding block should be minimized. Our
network is designed to minimize this distance as measured by
the Kullback-Leibler divergence (KL divergence) [Hinton et
al., 2015]. The objective of the audio network is as follows:

G∗
s = min

Gs

max
Ds

1

2
LGAN (Ds) + LGAN (Gs)+

αLDepth(Gs) + βLKD(Gs), (2)

where, Gs is the generator of the student network, and Ds is
the discriminator of the student network. α and β are balanc-
ing weights. We set α to 100 and β to 0.01.

4 Experiment
In this section, we describe the data acquisition system for
acoustic NLOS imaging and the details of the experimental
setup using the acquired dataset. We then evaluate the per-
formance of CMKD approach for NLOS imaging and com-
pare it with state-of-the-art methods for both LOS and NLOS
acoustic imaging. We demonstrate the superiority for unseen
object reconstruction and present detailed ablation studies to
highlight the contributions of techniques in our method.

4.1 Data
The data used in the experiments and evaluations were self-
collected and are representative of real-world scenarios. Us-
ing self-acquired data, rather than synthetic or simulated data,
enhances the external validity of the results and makes it more
likely that the results can be generalized to real-world scenar-
ios. In this subsection, we describe the experimental setup,
data acquisition equipment, and processes used in this study
on acoustic NLOS imaging.

We conduct the experiments in a space without sound-
proofing. The experimental setup includes an occluder that
separates the scanning space from the hidden space shown
on the left side of Fig. 4. The right side of Fig. 4 illus-
trates the configuration of the acoustic system. The system
consists of eight sets of speakers and microphones, an audio
interface, and a power amplifier. A translation stage is po-
sitioned at a 45-degree angle to the relay wall, to move the
speaker-microphone array horizontally.
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Figure 4: Experimental setup for NLOS imaging (left) and the con-
figuration of the acoustic system for data acquisition (right).

In the acoustic data acquisition process, we employ a se-
quential emission method. This method emits linear chirp
signals by eight speakers in the audible frequency range (20
Hz to 20 kHz), each lasting for 0.1 seconds. To acquire the
acoustical data, eight microphones were placed at intervals
of 10 cm, with the speakers emitting linear chirp signals se-
quentially for a total of 0.8 seconds. The reflected signal is
recorded simultaneously on all eight microphones for a du-
ration of 0.9 seconds at a sampling rate of 48 kHz, where
the time required for the last emitted signal to be reflected
back is 0.1 seconds. The acoustic data were then collected at
eight points, with the speaker-microphone array moving hor-
izontally at intervals of 5 cm. Along with the acoustic data,
we also acquired RGB images and depth maps as the ground
truth for the hidden scene.

We acquired data using 30 different kinds of objects, in-
cluding mannequins, plastic models, and other objects. The
mannequins were posed differently for each class, and the
plastic models were made to have various shapes such as hex-
ahedrons and pyramids. Other objects included items such as
paper boxes, backpacks, and plastic signs. Fig. 5 shows some
examples of the target objects that were used for data acqui-
sition. Each object is acquired 120 times at different angles
and positions, resulting in a total of 3,600 time-synchronized
RGB images, as well as depth maps and multi-channel audio.

4.2 Experimental Settings
Data Split
During the training process, we utilize only the mannequin
and plastic model data. The data for the training objects are
divided into 1920 samples for training, 240 samples for val-
idation, and 240 samples for testing. The remaining objects,
which are not used for training, are utilized to evaluate the
model performance on unseen object reconstruction with a
total of 1200 data samples

Evaluation Metric
To evaluate the performance of methods for the depth map
reconstruction of hidden scenes, we utilize metrics commonly
used in depth estimation tasks [Alhashim and Wonka, 2018].

It is important to note that all data were acquired with the
same background, and the size of the object region is only
about 10% of the background region on average. Therefore,
if the entire depth map is evaluated, a network that performs
well on estimating the depth of the background may appear
superior to a network that accurately predicts the depth of the

Figure 5: Target objects used for data acquisition are divided into
training objects and unseen objects. Training objects include man-
nequins and plastic models, while unseen objects include bags, plas-
tic signs and various types of mannequins that are different from the
training mannequin.

target object. To address this issue, we evaluate the depth map
reconstruction error for the object region only, excluding the
background.

4.3 Baselines
We compare the performance of CMKD method with both
LOS and NLOS acoustic imaging approaches. A physical
model [Lindell et al., 2019a] reconstructs a hidden scene
based on the analysis of acoustic time-of-flight. A Batvi-
sion [Christensen et al., 2020] is a state-of-the-art deep learn-
ing method for LOS acoustic imaging, which consists of an
audio feature extractor, an auto-encoder, and a discrimina-
tor. A hierarchical audio encoder (HAE) [Jang et al., 2022]
is a deep learning method for NLOS acoustic imaging that
extracts audio features through the HAE that considers the
location characteristics of multi-channel audio.

4.4 Experimental Results
We conduct experiments on both trained and unseen objects
from the acquired dataset. We compare the performance
of our method with several state-of-the-art acoustic imaging
baseline methods using both quantitative and qualitative eval-
uation.

Quantitative Evaluation
In order to perform a quantitative evaluation, we evaluate the
reconstruction error for only the object region to use depth
estimation metrics. The physical model has limited capability
for high resolution depth map reconstruction, which makes it
difficult to directly compare it with other models. Therefore,
we compare quantitative evaluations of proposed model with
those of other baseline models

In Tab. 1, CMKD shows the best performance in terms of
quantitative evaluation on both trained and unseen objects. In
particular, the threshold accuracy (δi), which represents ac-
curacy within certain tolerances, of our method shows a 10 -
20% improvement over that of other methods. Although the
RMSE of our model is slightly higher than that of other mod-
els, the difference is small, ranging from 1 - 5%. Other meth-
ods tend to blur areas where objects are expected to be, as
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Trained Objects Unseen Objects

Approach Rel(↓) RMSE(↓) δ1(↑) δ2(↑) δ3(↑) Approach Rel(↓) RMSE(↓) δ1(↑) δ2(↑) δ3(↑)

Batvison 5.311 0.288 44.3 56.5 64.2 Batvison 8.345 0.373 31.9 43.7 51.4
HAE 3.539 0.288 49.4 60.4 67.8 HAE 7.803 0.399 36.4 46.6 53.4
CMKD (Ours) 2.994 0.293 57.2 65.9 71.7 CMKD (Ours) 7.094 0.392 40.0 49.9 56.2

Table 1: Results of the quantitative evaluation. The left side represents the results for trained objects, and the right side represents the results
for unseen objects. Rel is the relative error, and RMSE is the root mean square error. δi is the percentage of pixels for which the depth
estimates are within a certain range of the true depths. “↑” means that higher is better and “↓” means that lower is better.

Figure 6: Visualized results of the qualitative evaluation. The left side shows the results for trained objects, and the right side shows the
results for unseen objects. CMKD model is able to clearly reconstruct the shape of both trained and unseen objects. In contrast, the baseline
models either produce blurry reconstructions or fail to detect the unseen objects.

they focus on reducing pixel-wise loss. This is further demon-
strated in the qualitative results.

Qualitative Evaluation
In this subsection, we qualitatively evaluate the performance
of CMKD framework for acoustic NLOS imaging. Fig. 6
shows the visualized results for depth map reconstruction for
trained and unseen objects, respectively.

Our experiments are conducted in a non-soundproofed en-
vironment with ambient noise and overlapping reflections,
which can be challenging for the physical model. However,
deep learning models, including our model, accurately recon-
struct the background due to their ability to learn from data
with the same background.

In the case of trained objects, both Batvision and HAE ap-
proximate the location of hidden objects and reconstruct their
shapes. However, these baseline models sometimes fail to
accurately detect object locations and the shapes of their re-
constructions are not always clear. In contrast, CMKD model
accurately estimates both the shape and distance of the hid-

den object, and it accurately detects the area where the object
is located.

Additionally, we evaluate the generalization performance
of these models through experiments on unseen objects.
While most deep learning-based methods detect the areas
where hidden objects are located, Batvision struggles to accu-
rately estimate object shapes and tends to reconstruct blurry
depth maps. HAE reconstructs box-shaped objects rela-
tively well, but performs poorly on untrained objects of other
shapes. In contrast, CMKD model accurately reconstructs
both the position and shape of the object thanks to the trans-
fer of knowledge from the image teacher network, which is
not utilized by the other methods.

Other deep learning baselines rely on the pixel-wise loss.
However, in some cases, using the pixel-wise loss function
may lead to a blurry reconstruction because the model is un-
able to capture fine-grained details or sharp edges in the im-
age. This can occur if the model does not have enough ca-
pacity or if the training data are not representative of the test
data. In contrast, our model utilizes knowledge distillation
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Figure 7: Poor reconstruction results on unseen objects. Deep
learning models are limited in their ability to reconstruct objects
that differ in material and type from the trained objects. However,
our model still shows better reconstruction results than the baseline
models.

loss, which focuses on predicting the shape of the hidden ob-
ject by transferring knowledge from the image network and
results in more distinct shapes in the reconstructed depth map.

Fig. 7 shows the poor reconstruction results on unseen ob-
jects that differ in material from the trained objects. However,
even in these cases, other models either fail to predict the po-
sition of the object or produce a blurry reconstruction, while
our model still accurately estimates the position of the hidden
object and relatively accurately reconstructs its size. There is
a limitation in acoustic NLOS imaging as the reflected sig-
nal can vary significantly depending on the material or type
of hidden objects. This issue can potentially be addressed by
increasing the diversity of collected objects, as the types of
trained data are limited and tend to have similar shapes, ma-
terials, and sizes. In our future research, we aim to address
this issue by expanding our data acquisition to encompass a
broader range of objects with varying shapes, materials, and
sizes.

Ablation Study

Extractor KD Rel(↓) RMSE(↓) δ1(↑) δ2(↑) δ3(↑)

(a) 3D CNN X 7.888 0.399 31.6 42.0 49.1
(b) 2D CNN O 8.027 0.397 36.8 46.9 53.7
(c) HAE 7.479 0.396 36.8 46.8 53.4
(d) 3D CNN 7.094 0.392 40.0 49.9 56.2

Table 2: Results of ablation studies. (a) Performance when knowl-
edge distillation is not applied to the audio network structure. (b),
(c) Performances when the audio feature extractor is replaced with a
2D CNN and a hierarchical 2D CNN, respectively. (d) Our method
using a 3D CNN feature extractor and knowledge distillation.

In Tab. 2, we present the results of ablation studies which
were conducted to evaluate the effectiveness of the techniques
used in CMKD method. The results are presented in the form
of a comparison between different configurations. The com-
parison of configurations (a) and (d) demonstrate the effect
of knowledge distillation, whereas the comparison of config-
urations (b), (c) and (d) demonstrate the performance of each
feature extractor. We can observe that using the 3D CNN

feature extractor and incorporating knowledge distilled from
the image network significantly improves the reconstruction
of hidden objects in acoustic NLOS imaging. These findings
confirm the effectiveness of the techniques and structures im-
plemented in the proposed model.

5 Conclusion
In this paper, we propose a method for improving the per-
formance of acoustic NLOS imaging systems. While pre-
vious approaches to acoustic NLOS imaging have encoun-
tered limitations, such as vulnerability to noise and difficulty
in reconstructing unseen objects, our method uses CMKD
to transfer knowledge from a well-trained image network
to an audio network. This enables the resulting model to
be robust to noise and to enhance the generalization perfor-
mance on unseen objects. Our experimental results show
that CMKD method outperforms state-of-the-art methods in
acoustic NLOS imaging and demonstrates superior perfor-
mance in reconstructing unseen objects. Additionally, the re-
sults of the ablation studies demonstrate the suitability of the
techniques and structures implemented in the proposed model
for acoustic NLOS imaging. Overall, we provide a promis-
ing solution for acoustic NLOS imaging, and has potential for
various practical applications in the future.
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