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Abstract
Neural Radiance Fields (NeRF) has shown great
success in novel view synthesis due to its state-
of-the-art quality and flexibility. However, NeRF
requires dense input views (tens to hundreds) and
a long training time (hours to days) for a single
scene to generate high-fidelity images. Although
using the voxel grids to represent the radiance field
can significantly accelerate the optimization pro-
cess, we observe that for sparse inputs, the voxel
grids are more prone to overfitting to the training
views and will have holes and floaters, which leads
to artifacts. In this paper, we propose VGOS, an
approach for fast (3-5 minutes) radiance field re-
construction from sparse inputs (3-10 views) to ad-
dress these issues. To improve the performance of
voxel-based radiance field in sparse input scenar-
ios, we propose two methods: (a) We introduce
an incremental voxel training strategy, which pre-
vents overfitting by suppressing the optimization
of peripheral voxels in the early stage of recon-
struction. (b) We use several regularization tech-
niques to smooth the voxels, which avoids degener-
ate solutions. Experiments demonstrate that VGOS
achieves state-of-the-art performance for sparse in-
puts with super-fast convergence. Code will be
available at https://github.com/SJoJoK/VGOS.

1 Introduction
In 3D vision, novel view synthesis is a long-standing task that
aims to synthesize a target image with an arbitrary target cam-
era pose from given source images and their camera poses.
Recently, Neural Radiance Fields (NeRF) [Mildenhall et al.,
2020], a learning-based neural implicit representation, have
emerged as a powerful tool yielding high-fidelity results on
this task. However, NeRF requires tens to hundreds of dense
inputs and hours to days of training time to get high-quality
results. When considering real-world applications such as au-
tonomous driving, AR/VR, and robotics that lack dense data
and require real-time performance, NeRF’s limitations of re-
lying on dense input views and lengthy optimization time are
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Figure 1: The comparison between VGOS and previous methods
on the LLFF dataset in 3-view settings. Note: For a fair compari-
son, the training time of each method is measured on our machine
with a single NVIDIA RTX 3090 GPU using respective official im-
plementations. Our model outperforms previous methods both in
reconstruction speed (training time) and quality of results (PSNR)
for sparse inputs.

even more magnified.
To speed up the optimization, recent works [Sun et al.,

2022a; Chen et al., 2022a; Müller et al., 2022; Yu et al., 2022]
utilize explicit data structures to represent the radiance field,
reducing the training time to minutes. However, these data
structures designed to shorten the optimization process of the
radiance field do not consider the performance for sparse in-
puts and still require dense inputs to obtain high-quality re-
sults.

To improve NeRF’s performance on sparse inputs, several
works [Chen et al., 2021; Yu et al., 2021; Liu et al., 2022] first
pre-train a model on the multi-view images dataset of many
scenes and then use the pre-trained model and the optional
per-scene fine-tuning process to synthesize novel views for
sparse inputs. Although these works have obtained promis-
ing results, acquiring pre-training data may be expensive, and
the pre-training time is also very long. In addition, these
methods may not generalize well for domains not covered

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1414

https://github.com/SJoJoK/VGOS


Input Views

Sampled Views

Volume Rendering

Shallow
 

M
LP

Rendered Pixel

Observed Pixel

Regularizations on 

Photometric loss between

D
epth Patch 𝐷𝐷

D
ense Voxel G

rids

Activate

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Incremental
Voxel Training

𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

Figure 2: Overview of VGOS architecture. Except for the photometric loss (Equation (4)) from a given set of input images (orange views),
the depth smoothness loss (Equation (12)) is imposed on the rendered depth patches (Equation (11)) from sampled views (blue views), and
the voxel girds are regularized by the proposed color-aware voxel smoothness loss (Equation (10)). Moreover, An incremental voxel training
strategy is utilized to prevent overfitting by expanding the range of optimized voxels (red and purple voxels) incrementally.

by the pre-training data. Other works [Jain et al., 2021;
Niemeyer et al., 2022; Deng et al., 2022; Xu et al., 2022] train
the model from scratch for every new scene. To enhance the
performance for sparse inputs, some works [Jain et al., 2021;
Niemeyer et al., 2022] regularize appearance or semantics by
introducing models pre-trained on large-scale image datasets.
Although these methods can generate high-quality rendering
results, their results suffer from incorrect geometry, and the
pre-trained model increases the method’s complexity. Be-
sides, some works leverage depth maps to supervise the opti-
mization [Deng et al., 2022] or augment training images [Xu
et al., 2022]. The addition of depth information helps the
model obtain relatively correct geometry from sparse inputs,
but depth maps are not as easy to obtain as RGB images.

To overcome the aforementioned shortcomings and limita-
tions, we present an approach for fast radiance field recon-
struction from sparse inputs, namely VGOS. As shown in the
Fig. 1, our model achieves on-par high-quality results after
minutes of training time compared with the previous state-of-
the-art approaches, which take hours of per-scene optimiza-
tion or days of generalizable pre-training. Specifically, we
directly optimize the voxel grids representing the radiance
field [Sun et al., 2022a]. However, for sparse inputs, the re-
construction of the radiance field (a) is more prone to over-
fitting to the training views, and (b) the voxel grids will have
holes and floaters. In order to solve these two problems, we
propose two methods: (a) incremental voxel training strategy
and (b) voxel smoothing method. With the improvement of
the training strategy and the new regularization method, our
model achieves state-of-the-art performance for sparse input
without any pre-trained model and with only RGB images as
input.

Specifically, the incremental voxel training strategy is to

freeze the optimization of peripheral voxels at the early stage
of training and gradually thaw the peripheral voxels as the
training progresses. This strategy prevents the voxels close
to the cameras’ near planes from overfitting to the training
views, thus boosting the quality of radiance field reconstruc-
tion. The voxel smoothing method helps prevent degenerate
solutions by regularizing the depth maps rendered from un-
observed viewpoints [Niemeyer et al., 2022] and penalizing
the sharpness inside the voxel grids with the proposed color-
aware voxel smoothness loss.

In summary, the main contributions of our work can be
summarized as follows:

• We propose an incremental voxel training strategy to
prevent the voxels from overfitting to the training views
by suppressing the optimization of peripheral voxels in
the early stage of radiance field reconstruction.

• We propose a voxel smoothing method to avoid incor-
rect geometry by regularizing the dense voxel grids and
utilizing depth smooth loss , which eliminates holes and
floaters in the voxel grids, thus improving the quality of
radiance field reconstruction in sparse input scenarios.

• Extensive experiments on different datasets demonstrate
that our proposed model, even without any pre-trained
model and extra inputs, achieves one to two orders
of magnitude speedup compared to state-of-the-art ap-
proaches with on-par novel view synthesis quality.

2 Related Work
2.1 Novel View Synthesis
Novel view synthesis is a time-honored problem at the in-
tersection of computer graphics and computer vision. Previ-
ous works use light field [Levoy and Hanrahan, 1996; Shi et
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al., 2014] and lumigraph [Gortler et al., 1996; Buehler et al.,
2001] to synthesize novel views by interpolating the input im-
ages. Moreover, explicit representations, such as meshes [De-
bevec et al., 1996; Hu et al., 2021], voxels [Sitzmann et
al., 2019a], and multiplane images [Mildenhall et al., 2019;
Flynn et al., 2019], are introduced into this task. Recently,
several works [Sitzmann et al., 2019b; Niemeyer et al., 2020;
Yariv et al., 2020; Mildenhall et al., 2020] have introduced
implicit representation and corresponding differentiable ren-
dering methods due to their convenient end-to-end optimiza-
tion and high-quality results. Among these works, Neural Ra-
diance Fields [Mildenhall et al., 2020] (NeRF) achieve photo-
realistic rendering results by representing the radiance field
as a multi-layer perceptron (MLP) and differentiable volume
rendering method. Subsequent works have improved the per-
formance of NeRF in many aspects, such as training on multi-
resolution images [Barron et al., 2021], unconstrained im-
ages [Martin-Brualla et al., 2021; Chen et al., 2022b], un-
bounded scenes [Barron et al., 2022], dark scenes [Milden-
hall et al., 2022], and deforming scenes [Park et al., 2021a;
Park et al., 2021b]. However, NeRF and these variants re-
quire dense inputs to generate high-quality results, which is
not always available in real-world applications.

2.2 Fast Radiance Field Reconstruction
Although NeRF can achieve high-fidelity rendering, it takes
hours to days of training to reconstruct the radiance field for
new scenes. Several works [Sun et al., 2022a; Yu et al., 2022;
Chen et al., 2022a; Müller et al., 2022] use explicit or hy-
brid radiance field representations to reduce training time
to a few minutes. DVGO [Sun et al., 2022a] uses dense
voxel grids and a shallow MLP to represent the radiance field,
while DVGOv2 [Sun et al., 2022b] re-implements some op-
erations in CUDA to achieve improved performance. Plenox-
els [Yu et al., 2022] uses a sparse voxel grid and coeffi-
cients of spherical harmonic for view-dependent colors to re-
alize a fully explicit representation. TensoRF [Chen et al.,
2022a] achieves efficient radiance field reconstruction by de-
composing the volume field and modeling the low-rank com-
ponents. Instant-NGP [Müller et al., 2022] represents the ra-
diance field as a multiresolution hash table and small neu-
ral networks, achieving convincing acceleration using C/C++
and fully-fused CUDA kernels. However, these acceleration
methods do not reduce the dependence of radiance field re-
construction on dense inputs, while our approach performs
high-quality novel view synthesis from sparse inputs in min-
utes of optimization.

2.3 Sparse Input Radiance Field Reconstruction
Many methods have been proposed to overcome the NeRF’s
dependence on dense inputs. Several works [Yu et al., 2021;
Chen et al., 2021; Chibane et al., 2021] compensate for infor-
mation scarcity from sparse inputs by pre-train a conditional
model of the radiance field. PixelNeRF [Yu et al., 2021] and
SRF [Chibane et al., 2021] train convolutional neural net-
work (CNN) encoders to extract features of the input images.
MVSNeRF [Chen et al., 2021] uses a 2D CNN to get 2D
image features from the input images and then uses plane
sweeping to obtain a cost volume which will be processed

by a 3D CNN. These methods get promising results, but pre-
training on multi-view image datasets is expensive and time-
consuming. Besides, most of these methods require fine-
tuning on new scenes, and the performance of these methods
will decline when the data domain changes at test time.

On the other hand, a line of works [Jain et al., 2021;
Niemeyer et al., 2022; Deng et al., 2022; Xu et al., 2022]
use models pre-trained on large-scale image datasets and
depth maps to train the radiance field from scratch. Diet-
NeRF [Jain et al., 2021] uses prior knowledge about scene
semantics learned by pre-trained CLIP ViT [Radford et al.,
2021] to constrain a 3D representation. RegNeRf [Niemeyer
et al., 2022] uses pre-trained Real-NVP [Dinh et al., 2017]
to regularize the colors predicted at unseen viewpoints. DS-
NeRF [Deng et al., 2022] takes depth maps as input to su-
pervise the reconstruction of the radiance field. Besides, Sin-
NeRF [Xu et al., 2022] uses global structure prior provided
by pre-trained DINO-ViT [Caron et al., 2021] and augments
data using depth maps.

In addition, InfoNeRF [Kim et al., 2022] is a prior-free
model without any extra inputs, which regularizes the recon-
struction of the radiance field by minimizing ray entropy and
reducing information gain. However, this scheme requires the
weights of all sampled points on rays. Therefore, reducing the
number of sampling points is difficult, which is commonly
used in NeRF acceleration approaches.

In contrast, our approach is 10×-100× faster than state-
of-the-art approaches with comparable high-quality results
without expensive and time-consuming pre-train process and
without additional input or pre-trained model to increase
complexity.

3 Method
Our approach, which builds upon DVGOv2 [Sun et al.,
2022b] (Sec. 3.1), performs fast radiance field reconstruc-
tion from sparse RGB input images without any pre-trained
model. We find that unexpected overfitting and holes and
floaters of the voxel grids lead to degenerate solutions for
sparse inputs. To prevent the radiance field from overfitting
to the input views, we introduce an incremental voxel training
strategy (Sec. 3.2) that suppresses the optimization of periph-
eral voxels. Moreover, we smooth the voxels (Sec. 3.3) by
regularizing the predicted geometry from sampled views and
the shape of the explicit radiance field. We depict an overview
of our approach in Fig. 2.

3.1 Background
Neural Radiance Fields
A radiance field is a function that maps a 3D position x and
a viewing direction d to the corresponding view-dependent
emission color c and volume density σ. NeRF [Mildenhall et
al., 2020] uses MLP to parameterize this function:

MLPΘ : (x,d) → (c, σ), (1)

where Θ is the learnable MLP parameters. Note that the po-
sitional encoding [Tancik et al., 2020] is applied to x and d
before the MLP to enable the MLP to represent higher fre-
quency functions.
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To synthesize novel views, NeRF uses volume rendering
techniques. To be specific, the rendered color C(r) of a target
pixel is obtained by integrating colors and densities between
near and far bounds tn and tf along a ray r(t) = o+ td from
the camera center o through the pixel along direction d:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt, (2)

where T (t) = exp
(
−
∫ t

tn
σ(r(s))ds

)
is the accumulated

transmittance along the ray from tn to t, and σ(·) and c(·, ·)
indicate the density and color prediction of the radiance field
FΘ, respectively.

In practice, the integral is approximated by quadrature:

Ĉ(r) =
N∑
i=1

Ti(1− exp(−σiδi))ci, (3)

where Ti = exp
(
−
∑i−1

j=1 σjδj

)
, N is the number of sam-

ples points along the ray r; σi, ci are the density and color
of the ith sampled point, and δi = ti+1 − ti is the distance
between adjacent samples.

NeRF’s MLP can be optimized over a set of input images
and their camera poses by minimizing the photometric MSE
between the ground truth pixel color CGT (r) and the ren-
dered color Ĉ(r):

LPhotometric =
1

|R|
∑
r∈R

∥∥∥Ĉ(r)− CGT (r)
∥∥∥2 , (4)

where R denotes a set of rays.

Direct Voxel Grid Optimization
It is time-consuming to query the color and density of each
sampled point through MLP, so DVGO [Sun et al., 2022a]
is proposed to accelerate this process by representing the ra-
diance field as voxel grids. Such an explicit scene represen-
tation is efficient to query color c and density σ for any 3D
position x with trilinear interpolation:

σ̈ = interp
(
x,Vdensity) ,

c = interp
(
x,Vrgb) ,

σ = log(1 + exp(σ̈ + b)) ,

(5)

where the shift b = log
(
(1− αinit)

− 1
s − 1

)
is the bias term

determined by hyperparameter αinit and voxel size s, Vdensity

and Vrgb are the voxel grids storing raw density σ̈ before ap-
plying the density activation and color, respectively.

In practice, DVGO uses a coarse-to-fine training strategy.
In the fine stage, a shallow MLP is used to process viewing-
direction d and feature f from a feature voxel grid Vfeature to
model view-dependent color emission.

c = MLPΘ

(
interp(x,Vfeature),x,d

)
, (6)

where Θ is the learnable MLP parameters.
Subsequent work, namely DVGOv2 [Sun et al., 2022b],

improve DVGO by re-implementing part of the Pytorch oper-
ations with CUDA and extending it to support forward-facing
and unbounded inward-facing capturing.

𝑉𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑉𝑓𝑒𝑎𝑡𝑢𝑟𝑒

Figure 3: Visual comparisons between LTV and LCATV regulariza-
tion. LTV doesn’t utilize the information of Vfeature , while LCATV
takes advantage of the correlation between Vdensity and Vfeature .

3.2 Incremental Voxel Training
Although DVGO uses various techniques to avoid degener-
ate solutions, the radiance field will overfit to input views for
sparse scenarios. Specifically, we find that for sparse inputs,
the peripheral voxels close to the camera near planes have
high density values at the initial stage of training to repro-
duce the input views. However, the high density value of
the outer voxels hinders the optimization of the inner voxels,
which makes it difficult for the radiance field to converge to
the correct geometry so that the quality of rendering results at
novel views will decline.

We propose a simple yet non-trivial incremental voxel
training strategy to solve the above-mentioned problem. For
the voxel grids V ∈ RC×Nx×Ny×Nz representing the radi-
ance field, where C is the dimension of the modality, Nx ·
Ny ·Nz is the total number of voxels, we define an expanding
bounding box B whose corner points are Pmin, Pmax ∈ R3:

Pmin = (Pmin init × (1− r(i)))⊙ (Nx, Ny, Nz) ,

Pmax = (Pmax init × (1− r(i)) + r(i))

⊙ (Nx, Ny, Nz) ,

(7)

where Pmin init ∈ [0, 1]3 and Pmax init ∈ [0, 1]3 are
the initial ratio of the expanding bounding box B, and
r(i) = min( i

M , 1) determine the range of the bound-
ing box B, where i is the current training iteration and
M is the pre-defined max iteration steps of the incre-
ment process. We only optimize the voxels inside the
bounding box B; this training strategy freezes the opti-
mization of the peripheral voxels in the early training,
avoiding overfitting and leading to better rendering re-
sults at novel views. We set M = 256 for all scenes,
Pmin init = (0.2, 0.2, 0.2), Pmax init = (0.8, 0.8, 0.8)
for bounded inward-facing scenes and Pmin init =
(0, 0, 0.995), Pmax init = (1, 1, 1) and M = 256 for
forward-facing scenes in our experiments.

3.3 Voxel Smoothing
Although we use the incremental voxel training strategy to
alleviate the overfitting, if we only use the photometric MSE
loss (Equation (4)) to supervise the training from sparse in-
puts, the radiance field will still overfit to the input views.
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(a) NeRF (e) Ground Truth(b) DVGOv2 (c) InfoNeRF (d) VGOS

Figure 4: Qualitative comparison on Realistic Synthetic 360° in the 4-view setting. All the experiments are performed with the same inputs.
Please zoom in for more details.

To solve this problem, we propose a novel color-aware voxel
smoothness loss on the dense voxel grids and utilize the depth
smoothness loss on the sampled views to smooth the voxels.

Regularization on Dense Voxels
To prevent the outliers and noises in the explicit model, pre-
vious works [Yu et al., 2022; Chen et al., 2022a; Sun et al.,
2022b] utilize total variation (TV) loss [Rudin and Osher,
1994]:

LTV(V) =
∑
v∈V

∆(v) , (8)

with ∆(v) shorthand for the mean of the loss (L1, L2, or
Huber Loss) between the value in voxel v and its six nearest-
neighbor voxels and V indicates the voxel grids storing den-
sity, color or feature, which is indeed effective. However,
these works calculate the TV loss of density and color sepa-
rately, not taking advantage of the correlation between den-
sity and color in the explicit radiance field.

We observe that, in the radiance field, the density change
is not smooth where the color changes sharply. According
to the above observation, we propose color-aware total vari-
ance (CATV) loss, which uses the activated value in the color
voxel grid to guide TV loss of the density voxel grid and is

formulated as:
FCA(V,v) = ∆activate(v),v ∈ V ,

LCATV =
∑

v∈Vdensity

e−FCA(V
feature,v)∆(v) , (9)

with ∆activate(v) indicates that the activated values are used
calculating ∆(v). In practice, we use L1 loss in FCA, and
Huber Loss is in LCATV. Sigmoid is used in FCA to normalize
the feature values to [0, 1] and align the choices of activation
functions in DVGO. In Fig. 3, we show the differences be-
tween using LTV and LCATV to regularize Vdensity.

To ensure flexibility, we use both LTV and LCATV. There-
fore, the color-aware voxel smoothness (CAVS) loss which is
used to regularize the dense voxels is formulated as:

LCAVS = λTVFLTV(V
feature) + λTVDLTV(V

density)

+ λCATVLCATV ,
(10)

where λTVF, λTVD and λCATV are the corresponding weights.
Since computing LCAVS is time-consuming, we implement it
in CUDA kernel to speedup the process. Besides, we only
backpropagate the gradient of LCATV to Vdensity. We set
λTVD = 5 · 10−4 , λTVF = λCATV = 5 · 10−5 in coarse-stage
training and λTVD = 5·10−5 , λTVF = 10−5, λCATV = 5·10−6

in fine-stage training for bounded inward-facing scenes. For
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forward-facing scenes which only need fine-stage training,
we set λTVD = 5 · 10−5 ,and λTVF = λCATV = 5 · 10−6 .

Regularization on Sampled Viewpoints
The piecewise-smooth of geometry is a classic hypothesis
in depth and disparity estimation [Scharstein and Szeliski,
2002]. Hence we utilize the depth smoothness (DS) loss in-
troduced by RegNeRF [Niemeyer et al., 2022] on the unseen
views to improve scene geometry.

To get unobserved views, we sample camera pose p ∼ π
where π is the distribution of camera poses if π is available.
For bounded inward-facing scenes such as one from the Re-
alistic Synthetic 360◦ dataset [Mildenhall et al., 2020], π is
the uniform distribution over the hemisphere with the known
radius. For forward-facing scenes like those from the LLFF
dataset [Mildenhall et al., 2019], π is the uniform distribution
over a 2D plane with given boundaries. If π is not available,
we generate new poses by interpolating between input poses.

We can estimate depth d̂ along the ray r cast from the sam-
pled camera pose the similar way we render color in Equa-
tion (3):

d̂(r) =
N∑
i=1

Ti(1− exp(−σiδi)) . (11)

By estimating depth from sets of neighboring rays, we can
render depth patches and regularize them by the DS loss:

LDS =
λDS

|R|
∑
rc∈R

∑
(x,y)

∥∇D(x, y)∥2 , (12)

where R indicates a set of rays cast from the sampled poses,
D is the depth patch centered at rc, and λDS is the loss weight.
In practice, finite difference formula is used to compute ∇D.
We set λDS = 5 · 10−4 in coarse-stage training and λDS =
10−5 in fine-stage training for bounded inward-facing scenes.
For forward-facing scenes, we set λDS = 5 · 10−4.

3.4 Total Loss Function
The total loss function of our model is given by:

LTotal = LPhotometric + LCAVS + LDS , (13)
note that the hyperparameters to balance the regularization
terms have been included in Equation (10) and Equation (12).
Besides, LPhotometric uses the rays from the input views, and
LCAVS utilizes the rays from the sampled views.

4 Experiments
4.1 Datasets and Evaluations
We perform experiments on inward-facing scenes from the
Realistic Synthetic 360◦ dataset [Mildenhall et al., 2020] and
forward-facing scenes from the LLFF dataset [Mildenhall et
al., 2019].
Realistic Synthetic 360◦ Dataset. The Realistic Synthetic
360◦ dataset contains pathtraced images of 8 synthetic scenes
with complicated geometry and realistic non-Lambertian ma-
terials. Each scene has 400 images rendered from inward-
facing virtual cameras with different viewpoints. Following
the protocol of InfoNeRF [Kim et al., 2022], we randomly
sample 4 views out of 100 training images as sparse inputs
and evaluate the model with 200 testing images.

Model PSNR↑ SSIM↑ LPIPS↓ Training Time↓
NeRF 15.93 0.780 0.320 2 hrs∗
DietNeRF 16.06 0.793 0.306 19 hrs
PixelNeRF 16.09 0.738 0.390 3-4 days⋆+10 hrs
DVGOv2 17.19 0.767 0.223 4 mins
InfoNeRF 18.62 0.811 0.230 4 hrs
VGOS(ours) 18.91 0.825 0.205 3 mins

Table 1: Quantitative comparison on Realistic Synthetic 360° in the
4-view setting. The asterisk (∗) denotes that early-stopping is used
instead of the default setting. The star (⋆) denotes the generaliz-
able pre-training time. Bold and underline indicate the best and the
second-best values for each metric.

LLFF Dataset. The LLFF Dataset consists of 8 complex
real-world scenes captured by a handheld cellphone. Each
scene has 20 to 62 forward-facing images. We hold out
1/8 of the images as test sets following the standard proto-
col [Mildenhall et al., 2020] and report results for 3 input
views randomly sampled from the remaining images.

Metrics. We measure the mean of peak signal-to-noise ratio
(PSNR), structural similarity index measure (SSIM) [Wang
et al., 2004], and learned perceptual image patch similarity
(LPIPS) [Zhang et al., 2018] to evaluate our model.

4.2 Implementation Details
We implement our model on the top of DVGOv2 codebase
using Pytorch [Paszke et al., 2019]. Following DVGO, We
use the Adam [Kingma and Ba, 2015] to optimize the voxel
grids with the initial learning rate of 0.1 for all voxels and
10−3 for the shallow MLP and exponential learning rate de-
cay is applied.

For scenes in the Realistic Synthetic 360◦ dataset, we train
the voxel grids for 5K iterations with a batch size of 213 rays
for input views and 214 rays for sampled views in both stages.

For scenes in the LLFF dataset, we train the voxel grids for
9K iterations with a batch size of 212 rays for input views and
214 rays for sampled views in only one stage.

Please refer to the supplementary material for more details.

4.3 Comparisons
Following InfoNeRF [Kim et al., 2022], the presented met-
rics for comparisons are the average score of five experiments
with different viewpoint samples.

Realistic Synthetic 360° Dataset
We compare our model with NeRF [Mildenhall et al., 2020],
DietNeRF [Jain et al., 2021], PixelNeRF [Yu et al., 2021], In-
foNeRF [Kim et al., 2022], and DVGOv2 [Sun et al., 2022a;
Sun et al., 2022b] on the Realistic Synthetic 360° dataset in
the 4-view setting. Since PixelNeRF is pre-trained on the
DTU dataset, we fine-tuned it for 20K iterations similar to
[Deng et al., 2022] for improved performance.

Tab. 1 presents the overall quantitative results, and Fig. 4
shows the qualitative results. As the baseline, NeRF has de-
generate solutions for sparse inputs. DietNeRF and Pixel-
NeRF outperform the baseline relatively by introducing pre-
trained models. Although DVGOv2 aims to accelerate the re-
construction process, it achieves superior results to NeRF in
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Model PSNR↑ SSIM↑ LPIPS↓ Training Time↓
PixelNeRF 16.17 0.438 0.512 3-4 days⋆+10 hrs
SRF 17.07 0.436 0.529 2-3 days⋆+43 mins
MVSNeRF 17.88 0.584 0.327 1-2 days⋆+10 mins
Mip-NeRF 14.62 0.351 0.495 14 hrs
DietNeRF 14.94 0.370 0.496 18 hrs
DVGOv2 16.60 0.566 0.422 6 mins
RegNeRF 19.08 0.587 0.336 4 hrs
VGOS(ours) 19.35 0.620 0.432 5 mins

Table 2: Quantitative comparison on LLFF in the 3-view setting.
The star (⋆) denotes the generalizable pre-training time. Bold and
underline indicate the best and the second-best values for each met-
ric. Note that the training time of Mip-NeRF can be reduced to 3
hours if early-stopping is applied, but we follow the baseline imple-
ment of RegNeRF’s official code which trains Mip-NeRF for 250K
iters with a batch size of 212 rays.

Variant Inc. LDS LCAVS PSNR↑ SSIM↑ LPIPS↓
Baseline × × × 14.47 0.5684 0.5830
w/ Inc. ✓ × × 15.86 0.6303 0.5281
w/ LDS × ✓ × 16.91 0.6756 0.5104
w/ LCAVS × × ✓ 20.08 0.7939 0.4258
w/o Inc. × ✓ ✓ 18.57 0.7688 0.4404
w/o LDS ✓ × ✓ 17.84 0.7357 0.4730
w/o LCAVS ✓ ✓ × 19.79 0.7663 0.4183
Full Model ✓ ✓ ✓ 21.82 0.8220 0.3869

Table 3: Ablation study on the room scene in the 3-view setting.

sparse input scenarios, which we observe as another advan-
tage of explicit models. InfoNeRF outperforms the previous
methods in terms of all image quality metrics. However, it
takes twice the training time than NeRF and is unsuitable for
common acceleration approaches since it requires the weights
of all sampled points on rays. Our model achieves state-of-
the-art performance with an outstanding convergence speed.

LLFF Dataset
We compare our model with Mip-NeRF [Barron et al., 2022],
DietNeRF [Jain et al., 2021], PixelNeRF [Yu et al., 2021],
SRF [Chibane et al., 2021], MVSNeRF [Chen et al., 2021],
RegNeRF [Niemeyer et al., 2022] and DVGOv2 [Sun et al.,
2022a; Sun et al., 2022b] on the LLFF Dataset in the 3-view
setting. Similar to the experiments on the Realistic Synthetic
360° Dataset, we fine-tune PixelNeRF, SRF, and MVSNeRF
on each scene of the LLFF dataset to handle the domain shift
issue since these methods are pre-trained on the DTU dataset.

The overall quantitative results are presented in Tab. 2. Be-
sides, we provide the qualitative results in the supplementary
material. Our model is superior to previous works in each
metric except for LPIPS, which measures human perception.
However, pre-trained model extracting high-level information
is not used in our approach, which is a trade-off between com-
plexity and performance, leading to relatively higher LPIPS
on our model’s evaluation results.

4.4 Ablation Study
Effectiveness of Proposed Components
We conduct ablation studies on the room scene to evaluate
the contributions of each component of our proposed model.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
TVD 1e 4
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Figure 5: Comparison of LTV and LTV + LCATV on the flower scene
in the 3-view setting, with λCATV set to 0 and 5 · 10−6 separately.

Tab. 3 report the results with various combinations of the in-
cremental voxel training strategy (Inc.), LDS and LCAVS. Be-
sides, we provide more results and vision comparisons in the
supplementary material.

With (PSNR+X) indicating the PSNR improvement com-
pared to the baseline, we can observe the following:

w/ Inc. improve performance (PSNR+1.39), which demon-
strates the effectiveness of Inc.. Similarly, w/ LCAV S results
in a substantial boost in performance (PSNR+5.61), high-
lighting the effectiveness of the LCAVS regularization term.

The effects of these three components are not strictly or-
thogonal. For instance, while combining LDS and Inc. leads
to improved performance (w/o LCAVS vs. w/ Inc.), adding
LDS to a model that only utilizes LCAVS results in a decrease
in performance (w/o Inc. vs. w/ LCAVS)

The full model, which combines all three components,
achieves the best performance overall. This indicates the ef-
fectiveness of our proposed model.

Effectiveness of LCATV
We conduct ablation studies on the flower scene to evaluate
the contribution of LCATV. As illustrated in the Fig. 5, the
performance of the model is improved by adding LCATV, re-
gardless of λTVD. This demonstrate the effectiveness of the
LCATV regularization term. Note that the gradient of LCATV is
only backpropagated to Vdensity in our implementation (Equa-
tion (9)), so λTVF remains fixed at 5 · 10−6.

5 Conclusion
NeRF suffers from a long training time and the requirement
of dense inputs. To overcome the above shortages, we pro-
pose VGOS, an approach to improve the performance of the
voxel-based radiance field from sparse inputs. By directly op-
timizing voxel grids, the incremental voxel training strategy,
and the voxel smoothing method, VGOS is 10×−100× faster
than previous few-shot view synthesis methods with state-of-
the-art render quality while avoiding the degenerate solutions
for explicit radiance field methods in sparse input scenarios.
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