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Abstract
Neural connectivity reconstruction aims to un-
derstand the function of biological reconstruction
and promote basic scientific research. The intri-
cate morphology and densely intertwined branches
makes it an extremely challenging task. Most pre-
vious best-performing methods adopt affinity learn-
ing or metric learning. Nevertheless, they either
neglect to model explicit voxel semantics caused
by implicit optimization or are hysteresis to spa-
tial information. Furthermore, the inherent local-
ity of 3D CNNs limits modeling long-range de-
pendencies, leading to sub-optimal results. In this
work, we propose a coherent and unified Appear-
ance Prompt Vision Transformer (APViT) to in-
tegrate affinity and metric learning to exploit the
complementarity by learning long-range spatial de-
pendencies. The proposed APViT enjoys several
merits. First, the extension continuity-aware at-
tention module aims at constructing hierarchical
attention customized for neuron extensibility and
slice continuity to learn instance voxel semantic
context from a global perspective and utilize con-
tinuity priors to enhance voxel spatial awareness.
Second, the appearance prompt modulator is re-
sponsible for leveraging voxel-adaptive appearance
knowledge conditioned on affinity rich in spatial in-
formation to instruct instance voxel semantics, ex-
ploiting the potential of affinity learning to comple-
ment metric learning. Extensive experimental re-
sults on multiple challenging benchmarks demon-
strate that our APViT achieves consistent improve-
ments with huge flexibility under the same post-
processing strategy.

1 Introduction
Neural connectivity reconstruction is a fundamental task to
understand the function of biological reconstruction, which
can widely promote basic scientific research including elec-
trophysiology [Ascoli, 2002], cellular physiology [Donohue
and Ascoli, 2011], genetics [Livet and Weissman, 2007],
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Figure 1: Different learning formulation for neural connectivity re-
construction. (a) Metric learning methods with manual threshold
based optimization. (b) Affinity learning methods with an intuitive
yet implicit optimization. (c) Our proposed APViT absorbs the mer-
its of both metric learning and affinity learning methods by learning
long-range spatial dependencies to model spatially-aware voxel se-
mantics in an explicit and flexible optimization strategy.

etc. 3D electron microscopy (EM) is the only available
imaging instrument with the sufficient resolution to visual-
ize and reconstruct dense neural morphology without ambi-
guity. However, at this resolution, even moderately small
neural circuits yield numerous neuron numbers (e.g., typi-
cally hundreds of neuron instances in a single megapixel im-
age [Meirovitch et al., 2019a]) that are prohibitively labori-
ous for human manual annotation (e.g., normally the human
labor required to reconstruct a 1003 µm3 volume is at more
than 100,000 hours [Berning et al., 2015]). Recently, consid-
erable works [Funke et al., 2018; Januszewski et al., 2018;
Meirovitch et al., 2019b] have turned their attention to deep
neural networks in the pursuit of automatic neural connec-
tivity reconstruction. Since all neuron instances are of the
same type (i.e., biological cells), with intricate morphology
and densely intertwined branches, how to fully probe discrim-
inative information to perform accurate neuron reconstruction
is thus extremely challenging.

To tackle the neural connectivity reconstruction problem,
existing methods can be roughly categorized as object track-
ing based and boundary detection based paradigms. In the
object tracking based paradigm [Januszewski et al., 2018;
Meirovitch et al., 2016], 3D recurrent convolutional neural
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networks (CNNs) are trained to iteratively extend one neu-
ron object at a time, but this process is time-consuming and
inappropriate for large-scale applications. The boundary de-
tection based paradigm [Funke et al., 2018; Lee et al., 2017]
tends to adopt the CNN in pursuit of the relationship between
voxel pairs for perceiving neuron boundaries, which are post-
processed to yield neuron segmentation in a gradual agglom-
eration manner (e.g., mutex watershed [Wolf et al., 2018]).
Our work follows the boundary detection based paradigm
credited to achieving competitive performance (e.g., top tier
in SNEMI3D [Lee et al., 2017] neuron segmentation chal-
lenge) while sustaining an efficient pipeline for numerous
neuron objects.

In the boundary detection based paradigm, two represen-
tative methods are affinity learning and metric learning con-
ditioned on the network optimization strategy [Huang et al.,
2022]. On one hand, affinity learning methods [Funke et
al., 2018; Lee et al., 2017; Beier et al., 2017] transform the
ground truth into affinity to constrain the network to learn
the relationship between voxel pairs in an intuitive yet im-
plicit optimization manner, seeking perceptibility to spatial
position and discrimination to adjacent neuron instances with
similar appearance (see Figure 1b). However, these methods
directly output multi-channel maps as affinities, which tend
to suffer from the absence of explicit voxel semantics, lead-
ing to confusion about long-range voxel correlation (affin-
ity). On the other hand, the work [Lee et al., 2021] takes
advantage of metric learning to pull voxels belonging to the
same neuron instance together and push those of unrelated in-
stances away on top of manual threshold based optimization,
performing well in preserving instance semantic information
well, which is crucial for further improvements in accuracy
(see Figure 1a). However, hand-crafted threshold is fragile
in flexibility and robustness for different datasets. Moreover,
relying solely on the optimization of voxel embeddings in-
evitably compromises the spatial information, and this nega-
tive impact is inevitably amplified by inbuilt localized recep-
tive fields of 3D CNNs. Overall, the above analysis indicates
that affinity learning methods and metric learning methods
are naturally complementary. The former preserves the spa-
tial information well and possesses a more flexible yet im-
plicit optimization, but suffers from the absence of explicit
voxel semantics, while the latter is just the other way around.
Besides, the inherent locality of 3D CNNs limits both formu-
lations to modeling long-range dependencies and capturing
global voxel context, leading to sub-optimal results. There-
fore, it is more desirable to integrate these two formulations to
exploit their complementary potential by learning long-range
spatial dependencies to model spatial-aware voxel semantics
in an explicit and flexible optimization strategy.

Motivated by the above discussions, we propose a coherent
and unified Appearance Prompt Vision Transformer (APViT)
to enable appearance knowledge conditioned on affinity to
instruct voxels with explicit semantics from a global per-
spective based on metric learning (Figure 1c), including an
extension continuity-aware attention module and an appear-
ance prompt modulator. In the extension continuity-aware
attention module, we construct hierarchical attention cus-
tomized for neuron extensibility and slice continuity to learn

instance voxel semantic context from a global perspective and
utilize continuity priors to enhance voxel spatial awareness.
(a) Neuron extensibility. Considering that interleaved dif-
ferent neuron instances contain intricate morphology, which
tends to extend from one end of the input 3D volume to an-
other. Therefore, to endow voxel semantics with long-range
dependencies, we take advantage of the extension-aware at-
tention mechanism to aggregate global context to each voxel
position to obtain robust context-aware voxel embeddings
that can adapt to extended neuronal morphology. (b) Slice
continuity. Intuitively, the neural deformation across several
contiguous slices is always smooth and continuous. Thus, we
employ the continuity-aware attention mechanism for aggre-
gating information in a corresponding 3D spatial neighbor-
hood for each voxel location, aiming to empower the discrim-
ination to neighboring neuron instances. In the appearance
prompt modulator, we draw inspiration from the prompt-
based learning [Jia et al., 2022], which provides a general
paradigm for specific knowledge learning from offline train-
ing, and leverage voxel-adaptive appearance knowledge con-
ditioned on affinity rich in spatial information to instruct
instance voxel semantics, exploiting the potential of affin-
ity learning to complement metric learning. In specific, we
prepend a set of appearance prompts encapsulated in prompt
base to interact with voxel features by cross-attention mecha-
nism to obtain voxel-adaptive appearance prompts, achieving
appearance knowledge extraction. Then the resultant voxel-
adaptive appearance prompts are leveraged to modulate the
voxel feature rich in semantic pattern conditioned on the cal-
culated affinity to enhance spatial awareness. Besides, we
impose the diversity loss to expand the discrepancy among
prompts, enabling prompts to carry diverse and comprehen-
sive knowledge for voxel appearance. For training, we op-
timize the model with centroid-anchored contrastive learn-
ing to well structure the voxel embedding space against the
coarseness of manual threshold.

An attention-based task information modeling algorithm is
proposed. To solve the problem that the average pooling oper-
ation in traditional task embedding generation methods is too
coarse, this algorithm introduces the attention mechanism to
capture the important difference of different samples, so as
to extract more accurate task information. The algorithm uti-
lizes learnable task vectors to store task information and uses
an attention mechanism to identify and assign high weights
to critical samples, then aggregate sample features to model
task information. To verify the effectiveness of the proposed
method, extensive experiments are carried out on several stan-
dard few-shot image classification datasets. Experimental re-
sults show that the proposed attention based task information
modeling algorithm achieves better performance compared
with the existing methods. Furthermore, our APViT can adapt
to multiple post-processing operations (e.g., waterz [Funke et
al., 2018]), in other words, it could be possible to enjoy the
flexibility with a single trained model via adaptive modula-
tion of the post-processing configuration at the test time.

The contributions of our method could be summarized as
follows: (1) We propose an appearance prompt vision trans-
former tailored for the connectome reconstruction in a co-
herent and unified framework. Specifically, we design the
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extension continuity-aware attention module to construct hi-
erarchical attention customized for neuron extensibility and
slice continuity, the appearance prompt modulator to exploit
the potential of affinity learning to complement metric learn-
ing. (2) To the best of our knowledge, this is the first work to
absorb the merits of both affinity learning and metric learn-
ing formulation by learning long-range spatial dependencies
to model spatially-aware voxel semantics in an explicit and
flexible optimization strategy. (3) Extensive experimental re-
sults on multiple challenging benchmarks demonstrate that
our APViT achieves consistent improvements with huge flex-
ibility under the same post-processing strategy.

2 Related Work
2.1 Connectome Reconstruction
The reconstruction of connectomes has tremendous biolog-
ical significance for studying neuronal morphology and ac-
tivity. Deep learning-based methods have paved the way
for research, which can be roughly divided into two cate-
gories: object tracking based methods and boundary detec-
tion based methods. Among them, the object tracking based
methods [Januszewski et al., 2018; Meirovitch et al., 2016]
only reconstruct a single neuron at a time, which is inefficient
and time-consuming. In contrast, boundary detection based
methods exhibit superior performance. Among them, [Funke
et al., 2018; Lee et al., 2017] take advantage of affinity learn-
ing to separate connectomes with similar appearances. [Lee
et al., 2021] aggregates voxels belonging to the same con-
nectome with the help of metric learning and utilizes hand-
crafted threshold to optimize the reconstruction result. How-
ever, the affinity learning paradigm tends to suffer from the
absence of explicit voxel semantics, while the metrics learn-
ing one inevitably drops the spatial information, and it is
greatly affected by the artificial threshold. [Huang et al.,
2022] absorbs the merits of both affinity learning and met-
ric learning methods but fails to model long-range dependen-
cies due to the locality of 3D CNNs. Different from those
methods, we propose to integrate affinity learning and metric
learning via a unified Appearance Prompt Vision Transformer
to alleviate the above problems and accomplish the task of
connectome reconstruction in an explicit yet flexible manner.

2.2 Vision Transformer and Prompt Learning
Vision Transformer. Transformer was originally introduced
in [Vaswani et al., 2017] for machine translation. Many ef-
forts [Sun et al., 2021; Wang et al., 2022; Mai et al., 2023;
Luo et al., 2023; Wang et al., 2023; Chen and Lian, 2022]
have also been made to apply it to vision tasks, including ob-
ject detection, image classification and image segmentation.
ViT [Dosovitskiy and Beyer, 2020] applies a transformer ar-
chitecture on sequences of image patches to capture global
cues for image classification tasks, building a new foundation
for numerous vision tasks. Besides, emerging from trans-
former, prompt-based learning has been proven effective in
NLP tasks by importing language instruction (prompt) to the
input text so that the language model can perform well for
the downstream tasks. For example, VPT [Jia et al., 2022]

dynamically learns a set of trainable prompts to acquire task-
specific information. Nonetheless, the remaining problem is
that it is not suitable to learn generic prompts for scenario
adaptation. Hence we design a prompt-aware transformer to
model adaptive prompts for different connectomes.
Prompt Learning. Prompting [Liu et al., 2021] originally
refers to inserting a few instructions to the input sentences
in the NLP tasks [Gao et al., 2021]. Many recent works [Li
and Liang, ; Gu et al., 2022] propose to exploit the prompt-
ing techniques to deal with different downstream tasks or do-
mains with the combination of transformers without optimiz-
ing all of the parameters. In this paper, we prepend a set
of appearance prompts to modulate the voxel embedding for
better instructing instance voxel semantics.

3 Method
In this section, we first present the overall architecture of the
Appearance Prompt Vision Transformer (APViT) as shown
in Figure 2, and then describe each component in detail.

3.1 Overview
APViT enables appearance knowledge conditioned on affin-
ity to instruct voxels from a global perspective based on met-
ric learning, that is, exploits the complementary potential of
metric learning and affinity learning, and has four stages (in-
dexed with i). Each stage of APViT encapsulates a patch
embedding, Li extension continuity-aware attention module
(ECAM, Section 3.2), and an appearance prompt modulator
(APM, Section 3.3). For training, we optimize the model with
centroid-anchored contrastive learning (Section 3.4) to well
structure the voxel embedding space against the coarseness
of manual threshold in previous work.

In specific, given the input neuron volume I ∈ RD×H×W ,
where D, H , and W denote depth, height and width, respec-
tively. In the first stage, we first divide I into D × H

2 × W
2

patches, each of size 1 × 2 × 2. Then, we feed the flattened
patches to a linear projection and obtain embedded patches of
size DHW

22 ×C1. After that, the embedded patches are passed
through a APViT block, and the output is reshaped to a fea-
ture map F1 of size D × H

2 × W
2 × C1. In the same way, at

the beginning of each stage i, using the feature map from the
previous stage as input, we obtain the feature map Fi of size
D × H

Pi
× W

Pi
× Ci, where Pi = 2i, and i = {1, 2, 3, 4}.

3.2 Extension Continuity-aware Attention Module
Considering that all previous methods based on metric learn-
ing and affinity learning employ 3D convolutions, however,
the inherent locality of 3D CNNs limits both formulations
to modeling long-range dependencies and capturing global
voxel context, leading to sub-optimal results. Therefore, we
develop an extension continuity-aware attention module to
construct hierarchical attention customized for neuron exten-
sibility and slice continuity to learn instance voxel semantic
context from a global perspective and utilize continuity priors
to enhance voxel spatial awareness.
Extension-aware Attention. Considering that interleaved
different neuron instances contain intricate morphology,
which tends to extend from one end of the input 3D volume

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1425



P
a

tc
h

 E
m

b
ed

d
in

g

Layer Norm

Extension-aware

Attention

Layer Norm

Feed Forward

A
p

p
ea

ra
n

ce
 P

ro
m

p
t 

M
o

d
u

la
to

r

𝑫×
𝑯

𝟐
×
𝑾

𝟐
× 𝑪𝟏

× 𝑳𝟏

Stage 1

S
ta

g
e 

 2

U
p

sa
m

p
li

n
g

  
M

o
d

u
le

Raw Images

S
ta

g
e 

 3

𝑫×
𝑯

𝟐
×
𝑾

𝟐
× 𝑪𝟏

𝑫×
𝑯

𝟒
×
𝑾

𝟒
× 𝑪𝟐

𝑫×
𝑯

𝟖
×
𝑾

𝟖
× 𝑪𝟑

S
ta

g
e 

4

𝑫×
𝑯

𝟏𝟔
×
𝑾

𝟏𝟔
× 𝑪𝟒

Post-processing

Voxel Embedding

Reconstruction

Extension Continuity-aware 

Attention Module

Prompt Base
1

Retrieve

Continuity-aware

Attention

Figure 2: The overview of the APViT framework. Raw images are processed in four consecutive stages, each stage of APViT encapsulates
a patch embedding, Li extension continuity-aware attention module (ECAM, Section 3.2) to extract hierarchical features and an appearance
prompt modulator (APM, Section 3.3) to learn voxel-adaptive appearance knowledge. After the upsampling module aggregating features
from different stages, the final reconstruction result can be obtained through a post-processing step.

to another, we specially design an Extension-aware Attention
Module (AttE) to obtain semantic-rich voxel embedding with
long-range dependencies. Specifically, given the feature map
F ∈ RD×H

P ×W
P ×C (omit the subscript for brevity), we first

flatten the spatial dimensions to produce a feature sequence
F̃ = R

DHW
P2 ×C . Queries, keys and values arise from the fea-

ture sequence as follow:

Q = F̃WQ,K = F̃WK ,V = F̃WV , (1)

where WQ ∈ RC×Ck , WK ∈ RC×Ck , WV ∈ RC×Cv

are linear projections. Then we can calculate the extension-
attention weight matrix S ∈ R

DHW
P2 ×DHW

P2 with the scaled
dot-product and the output are computed by S-weighted sum-
mation on value V:

AttE(F) = SV = Softmax(
QK⊤
√
C

)V, (2)

where
√
C is a scaling factor for stabilizing the training and

the ⊤ denotes the transpose operation. Following the standard
transformer[Vaswani et al., 2017], the Eq. 2 is implemented
with the multi-head mechanism and the feed-forward network
(FFN) is further applied to obtain the final output.
Continuity-aware Attention. Intuitively, the neural defor-
mation across several contiguous slices is always smooth and
continuous. Thus, we employ the Continuity-aware Atten-
tion mechanism (AttC) for aggregating information in a cor-
responding 3D spatial neighborhood for each voxel location,
aiming to empower the discrimination to neighboring neu-
ron instances. Predefining a spatial window σ(λ) centered at
voxel λ with size of z × p× p, we denotes Fσ(λ) ∈ Rzp2×C

as the features of neighbourhood voxels and fλ as the feature
of voxel λ. Then, denoting fλ as query, Fσ(λ) as keys and
values, we can get q,K,V by:

q = fλW
Q,K = Fσ(λ)W

K ,V = Fσ(λ)W
V . (3)
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Figure 3: Illustration of the appearance prompt modulator. After
calculating the affinity of each voxel in three directions, the trans-
ferred prompts are then adaptively retrieved from the prompt base to
interact with the prompt modulator to update the voxel features.

Similar to Eq. 2, the output of AttC can be calculated by:

AttC(fλ) = Softmax(
qK⊤
√
C

)V. (4)

Treating D × H
P × H

W voxels for F in the same way, we can
get AttC(F). The above two attention layers work in parallel
and the output of them are added and fed into next extension
continuity-aware attention module.

3.3 Appearance Prompt Modulator
In order to exploit the potential of affinity learning to comple-
ment metric learning, we propose an appearance prompt mod-
ulator, leveraging voxel-adaptive appearance knowledge con-
ditioned on affinity to instruct instance voxel semantics. We
introduce a prompt base Pi = {pi

n}
Ni
n=1, where Ni refers to

the number of appearance prompts for stage i ∈ {1, 2, 3, 4}.
The prompts will be leveraged to extract appearance knowl-
edge by interaction with voxel features, then modulate the
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voxel feature conditioned on the calculated affinity, which
highly represents spatial association between voxels. In spe-
cific, as shown in Figure 3, for an arbitrary voxel a with fea-
ture f i

a, we calculate its affinity with adjacent voxel b, c, d at
3 directions, respectively. For simplicity, take b as example,
the affinity can be formulated as

Aa,b = max

(
0,

(f i
a)

⊤f i
b

∥f i
a∥2

∥∥f i
b

∥∥
2

)
. (5)

The affinity describes the similarity between two spatially ad-
jacent voxels. If the affinity is close to 1, it indicates that the
two voxels have a high probability of belonging to the same
instance; otherwise, 0 indicates different instances. We use
the voxel feature f i

a to retrieve the appearance prompts from
prompt base Pi and obtain voxel-adaptive prompts, as

p̂i
a = f i

a + Softmax

(
f i
a(P

i)⊤√
Ci

)
Pi. (6)

The voxel-adaptive appearance prompt p̂i
a is the linear com-

bination of the prompts conditioned on voxel a, and is utiliz-
ing to modulate the feature of voxel b as follow,

f̂ i
b = f i

b +Aa,b · p̂i
a. (7)

In order to enable prompts to carry diverse and comprehen-
sive knowledge for voxel appearance, we impose the diversity
loss on the prompt base P. Formally,

Ldiv =

4∑
i=1

Ni∑
m=1

Ni∑
n=1,m ̸=n

cos(pi
m,pi

n), (8)

where the cos(·, ·) denotes cosine similarity.

3.4 Training Objectives
After consecutive four stages process, the output of each stage
will be fed into an upsampling module [Hatamizadeh et al.,
2022] to restore the original size and get the final voxel em-
bedding E ∈ RD×H×W×C . To well structure the voxel em-
bedding space, we design two centroid-anchored contrastive
loss. Firstly, we calculate the centroid ei for each instance
i, by averaging the embedding of the voxels belonging to in-
stance i based on the ground truth. With the set of centroid
{ei}Ni=1 (N denotes the number of instances), we can get:

Lc1=
N∑
i=1

∑
e∈Ei

−log
exp(e⊤ei/ε)

exp(e⊤ei/ε)+
∑

e−∈E−exp(e⊤e−/ε)
,

(9)
where Ei denotes the set of voxel embeddings belonging to
instance i, E−= {ej}Nj=1

/
ei, and the temperature ε controls

the concentration level of representations. Intuitively, Eq. 9
enforces each voxel embedding e to be similar with its ground
truth (‘positive’) centroid and dissimilar with other irrelevant
(‘negative’) centroids. Another contrastive loss is proposed
for compactness by directly minimizing the distance between
each embedded voxel and its ground truth centroid:

Lc2 =
∑
e∈Ei

(1− e⊤ei)
2. (10)

Note that both e and ei are ℓ2-normalized. As a result, our
overall training objective is formulated as:

L = Lc1 + Lc2 + λdiv × Ldiv, (11)

where λdiv is the trade-off weight.

4 Experiments
4.1 Experimental Setup
Datasets. Two commonly used neuron datasets, named
CREMI [Funke et al., ] and AC3/AC4 [Arganda-Carreras et
al., 2015], are used for the evaluation of our method. CREMI
dataset is divided into three sub-datasets, each consisting of
two volumes of size 125 × 1250 × 1250 for training and
testing, respectively. We use the volume with public ground
truth as the training and testing set, which consists 100 and
25 slices, respectively. The AC3/AC4 is used for SNEMI3D
challenge, where size of AC3 is 256 × 1024 × 1024 and
AC4 consists of 100 × 1024 × 1024 voxels. Following the
SNEMI3D challenge, We use the top 80 slices of AC4 as
training set and the rest of AC4 as validation set. And the
top 100 slices of AC3 are testing set.
Implementation Details. In our APViT, the number of layers
is {1, 2, 4, 2}. The volume size of the input is anisotropic (18,
160, 160), and the patch size is (1, 2, 2) at each stage. During
training, our model is trained with batch size of 2, using the
Adam optimizer with an initial learning rate of 0.0001 for
200,000 iterations. And we constrain the output at different
resolutions for each stage with GT as an auxiliary loss where
we set λdiv = 0.1.
Evaluation Metrics. Following the conventions, V OI (vari-
ation of information) is deemed as the main evaluation metric.
We also report ARAND (adapted Rand error) to assess the
reconstruction results. Smaller values of these two metrics
indicate better segmentation performance.

4.2 Comparison with State-of-the-art Methods
Tables 1 and 2 report the neuron reconstruction performance
comparison of our method and several state-of-the-art meth-
ods on AC3/AC4 and CREMI datasets, respectively. As
shown in Table 1, we replace the feature extractors of several
methods by our APViT. The insertion of our APViT can bring
significant performance improvements to different baseline
methods. For example, when we adopt MALA [Funke et al.,
2018] as the baseline method and LMC as the post-processing
approach, the V OI and the ARAND metrics improve from
1.3857 to 1.0235 and from 0.1143 to 0.0898, respectively.
From Table 2, we can observe that our proposed APViT
outperforms all previous methods by a substantial margin.
Specifically, APViT surpasses the second-best method (PEA)
on the VOI metric by 12.01%, 13.56%, 11.81% on Cremi-A,
Cremi-B, Cremi-C, respectively.

4.3 Ablation Study and Analysis
To look deeper into our method, we perform a series of
ablation studies on AC3/AC4 dataset with waterz as post-
processing to validate the effectiveness of APViT, including
the extension continuity-aware attention module (ECAM),
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Method
Waterz LMC MWS

V OIsplit V OImerge V OI ARAND V OIsplit V OImerge V OI ARAND V OIsplit V OImerge V OI ARAND

ML-De - - - - - - - - 1.5752 0.6151 2.1903 0.1964
SuperHuman 1.0910 0.3418 1.4328 0.1685 1.1443 0.2630 1.4073 0.1221 - - - -

Ours 0.9222 0.3305 1.2527 0.1228 0.9001 0.2208 1.1209 0.0942 0.7257 0.5017 1.2274 0.1364
MALA 1.0988 0.2446 1.3434 0.1089 1.1457 0.2400 1.3857 0.1143 - - - -
Ours 0.8358 0.1945 1.0303 0.0840 0.8259 0.1976 1.0235 0.0898 0.8417 0.3399 1.1815 0.0912
PEA 0.9116 0.2934 1.2050 0.1212 0.8999 0.2506 1.1505 0.1069 0.8522 0.2322 1.0844 0.0938
Ours 0.7671 0.2093 0.9764 0.0775 0.8231 0.2054 1.0285 0.0940 0.5943 0.3842 0.9785 0.0865

Table 1: Comparisons of different methods on AC3/AC4 dataset.

Method Post-processing
Cremi-A Cremi-B Cremi-C

V OIsplit V OImerge V OI ARAND V OIsplit V OImerge V OI ARAND V OIsplit V OImerge V OI ARAND

SuperHuman
Waterz 1.0581 0.3884 1.4465 0.2167 0.8095 0.1469 0.9564 0.0443 0.9791 0.3992 1.3782 0.1563
LMC 1.0883 0.4232 1.5114 0.2438 0.8281 0.1867 1.0148 0.0468 1.0017 0.2742 1.2760 0.1202

MALA
Waterz 0.5508 0.2371 0.7879 0.1251 0.8810 0.1685 1.0496 0.0482 1.1493 0.1963 1.3456 0.1308
LMC 0.5263 0.2596 0.7859 0.1177 0.9688 0.2005 1.1694 0.0612 1.2016 0.2371 1.4387 0.1365

PEA
Waterz 0.4892 0.3001 0.7892 0.1546 0.6887 0.1978 0.8865 0.0370 1.0247 0.2255 1.2502 0.1128
LMC 0.4774 0.2917 0.7691 0.1425 0.6648 0.2183 0.8831 0.0393 0.9983 0.2490 1.2472 0.1146

Waterz 0.4447 0.2595 0.7041 0.1169 0.5793 0.2014 0.7807 0.0319 0.8839 0.2341 1.1181 0.1102
Ours

LMC 0.4336 0.2914 0.7249 0.1304 0.5777 0.2162 0.7939 0.0340 0.8719 0.2527 1.1247 0.1116

Table 2: Comparisons of different methods on CREMI dataset.
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Figure 4: Comparison between MALA and APViT (ours) on
AC3/AC4 datatset.

the appearance prompt modulator (APM), and the centroid-
anchored contrastive learning. Note that we remove all pro-
posed modules and only maintain the bald vision transformer,
and take manual threshold based optimization following [Lee
et al., 2021] as our baseline.
Effectiveness of Main Components. Table 4 summarizes
the results of module ablation studies under different con-

Model #Params V OI ARAND

CNN-based model 36.78M 1.1989 0.1685
Transformer-based model 35.43M 1.4073 0.1321
Ours 37.25M 0.9764 0.0775

Table 3: Illustration of advantages of APViT on AC3/AC4 dataset.

ECAM APM Contrastive learning V OI ARAND

1.1989 0.1932
✓ 1.0998 0.1095

✓ 1.1698 0.1313
✓ ✓ 1.0282 0.0925
✓ ✓ ✓ 0.9764 0.0775

Table 4: Ablation on main components on AC3/AC4 dataset.

figurations. (1) We ablate the ECAM to study the impor-
tance of hierarchical attention. As deteriorated results indi-
cate, customized for neuron extensibility and slice continuity
is crucial to learn voxel semantic context from a global per-
spective and utilize continuity priors to enhance voxel spa-
tial awareness. (2) Then we investigate the impact of intro-
ducing APM, and observe a absolute performance lift (from
0.1932 to 0.1313 in ARAND). The improvements can be
mainly ascribed to the strong ability of the APM to leverage
voxel-adaptive appearance knowledge conditioned on affinity
to instruct voxel semantics, exploiting the potential of affinity
learning to complement metric learning. (3) We also explore
the centroid-anchored contrastive learning. When we replace
the optimization strategy with manual threshold based opti-
mization [Lee et al., 2021], the performance of the model
is clearly degraded. This proves the necessity of contrastive
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Extension-aware attention Continuity-aware attention V OI ARAND

1.1698 0.1313
✓ 1.1310 0.1083

✓ 1.0560 0.0899
✓ ✓ 0.9764 0.0775

Table 5: Ablation on different attention mechanisms on AC3/AC4.

Window size at Stage 4 (z × x× y) VOI ARAND
1× 7× 7 1.1084 0.1415
3× 5× 5 1.0285 0.0845
5× 3× 3 1.0169 0.0795
7× 1× 1 0.9764 0.0775

Table 6: Ablation on window sizes in continuity-aware attention.

learning to well structure the voxel embedding space against
the coarseness and sensitivity of manual threshold. Without
all the proposed methods, the model has degenerated into the
baseline. The performance improvement of our final model
over the baselines is significant.
Advantages of Our Framework. To validate the advan-
tage of our framework tailored for connectome reconstruc-
tion, we perform an ablation study to investigate the impact
of 3D CNNs (3D ResUNet), pure vision transformer (UN-
ETR [Hatamizadeh et al., 2022]), and our APViT with the
same parameters, as tabulated in Table 3. We observe that
transformer-based method outperforms CNN-based methods
due to long-range dependency modeling capabilities. Fur-
thermore, our APViT achieves a significant lead, which in-
dicates that instead of simply using the vision transformer,
APViT absorbs the merits of both affinity learning and metric
learning formulation to model spatially-aware voxel seman-
tics in an explicit and flexible optimization strategy. More
importantly, it could be possible to enjoy the flexibility with
a single trained model via adaptive modulation of the post-
processing configuration at the test time.
Effectiveness of Extension Contiguity-aware Attention.
To analyze the ECAM in depth, we ablate extension-aware
attention and continuity-aware attention separately, as de-
scribed in Table 5. Adding either of the two attention mech-
anisms contributes to a remarkable performance gain. Fur-
thermore, these two mechanisms work in conjunction enables
further performance gain, benefiting from learning instance
voxel semantic context from a global perspective and utiliz-
ing continuity priors to enhance voxel spatial awareness.
Local Window Size. In Table 6, we observe that the local
window size in continuity-aware attention has a large im-
pact on reconstruction performance. Experiments show that
APViT achieves the best result at the window size of 7×1×1.
We conjecture that voxels in the z-stereoscopic direction con-
tain more connectome information, including connections be-
tween slices, thus larger size along the z-axis of the local win-
dow is more beneficial for feature extraction.
Prompt Strategy. As shown in Table 7, we ablate the com-
ponents inside the prompt assignment module. In fact, the
introduction of a prompt can be deemed as a guidepost in ar-
tificially solving incidents, i.e., guiding information, which
can strongly correct voxel features based on ECAM and en-

Numbers of prompt at each stage (from 1 to 4) VOI ARAND
(3, 3, 3, 3) 1.0125 0.0841
(6, 6, 6, 6) 1.0804 0.0956
(9, 9, 9, 9) 1.0544 0.0932

(12, 12, 12, 12) 1.1329 0.1510
(12, 9, 6, 3) 0.9764 0.0775

Table 7: Ablation on different prompt numbers at each stage.

Raw Image GT affinity
Embedding

(MALA)

Affinity

(MALA)

Embedding

(ours)

Affinity

(ours)

Figure 5: Visualization of the affinity and embedding.

hance different instance clustering to avoid foreground and
background confusion issues better, thus reducing splitting
and fusion errors. Therefore, the number of prompts selected
also plays an important role in the prompt assignment mod-
ule, directly affecting the modeling ability of prompts. Com-
pared with using a fixed number of prompts at each stage, the
flexible, prompt allocation strategy is obviously more advan-
tageous for the diverse neuron reconstruction task, yielding
significant improvements. The principal reason for this phe-
nomenon is that the feature resolution processed by each en-
coder stage is different, making it necessary to customize the
number of prompts according to different stages.

4.4 Explainable Visualization Study
We visualize the reconstruction results of various methods on
the test set of AC3/AC4. It can be seen that each method per-
forms well when reconstructing relatively simple and clear
neurons, however, when faced with entangled adjacent neu-
ron individuals, the previous methods generally perform un-
satisfactorily. In Figure 4, MALA produces more over-
segmentation results (e.g., blue and red connectomes), sepa-
rating neurons that should belong to the same label, result-
ing in split errors, while APViT is able to reconstruct the
correct neuron. The underlying reason is that the extension
continuity-aware attention module takes into account a wide
range of each neuron. Meanwhile, the continuity-aware atten-
tion mechanism takes advantage of the smoothness and conti-
nuity between slices, leading to less split error in ambiguous
areas. In Figure 5, it can be observed that the embedding is
the clear cluster corresponding to each neuron instance. And
the affinity map obtained from our voxel embeddings does
not misjudge the confusing boundaries. It indicates that the
appearance prompt modulator aggregates rich spatial infor-
mation via the voxel-adaptive appearance prompt.

5 Conclusion
In this paper, we propose we propose a coherent and uni-
fied Appearance Prompt Vision Transformer (APViT) to en-
able appearance knowledge conditioned on affinity to instruct
voxels with explicit semantics based on metric learning, in-
cluding an extension continuity-aware attention module and
an appearance prompt modulator. Extensive experimental re-
sults on challenging benchmarks show effectiveness.
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