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Abstract
Reliable outlier detection is critical for real-world
deployment of deep learning models. Although
extensively studied, likelihoods produced by deep
generative models have been largely dismissed as
being impractical for outlier detection. First, deep
generative model likelihoods are readily biased by
low-level input statistics. Second, many recent so-
lutions for correcting these biases are computation-
ally expensive, or do not generalize well to com-
plex, natural datasets. Here, we explore outlier de-
tection with a state-of-the-art deep autoregressive
model: PixelCNN++. We show that biases in Pix-
elCNN++ likelihoods arise primarily from predic-
tions based on local dependencies. We propose two
families of bijective transformations – “stirring”
and “shaking” – which ameliorate low-level biases
and isolate the contribution of long-range depen-
dencies to PixelCNN++ likelihoods. These trans-
formations are inexpensive and readily computed
at evaluation time. We test our approaches exten-
sively with five grayscale and six natural image
datasets and show that they achieve or exceed state-
of-the-art outlier detection, particularly on datasets
with complex, natural images. We also show that
our solutions work well with other types of gener-
ative models (generative flows and variational au-
toencoders) and that their efficacy is governed by
each model’s reliance on local dependencies. In
sum, lightweight remedies suffice to achieve robust
outlier detection on image data with deep genera-
tive models.

1 Introduction
Deep discriminative models confidently misclassify test sam-
ples far removed from their training distributions [Hendrycks
and Gimpel, 2017]. By contrast, deep generative models
(DGMs) offer a potentially promising approach for identi-
fying outliers. DGMs model the likelihood distribution of
the in-distribution (ID) training data and should, in princi-
ple, assign lower likelihoods to unfamiliar, out-of-distribution
(OOD) samples. In practice, however, DGMs can assign

higher likelihoods to OOD samples because of biases arising
from low-level image statistics [Ren et al., 2019; Nalisnick et
al., 2019a; Choi et al., 2018; Xiao et al., 2020].

In our work1, we analyze biases in likelihoods produced
by a state-of-the-art DGM: PixelCNNs [Van Den Oord et al.,
2016]. PixelCNNs are a type of deep autoregressive model
that computes the likelihood of an image as a factorized
product of the conditional likelihood of its sub-pixels [Van
Den Oord et al., 2016]. The likelihood for each pixel is mod-
eled based on the context of preceding sub-pixels using con-
volutional networks (Fig. 1a-b). We examine the more re-
cent PixelCNN++ model [Salimans et al., 2017]. Despite its
ability to produce accurate reconstructions and generate real-
istic samples, PixelCNN++’s likelihoods are also readily bi-
ased and unreliable for outlier detection [Ren et al., 2019;
Serrà et al., 2020; Nalisnick et al., 2019a].

We investigate the origin of the biases in PixelCNN++
likelihoods and propose effective solutions for correcting for
these biases. Our contributions are as follows:

• We show that biases in PixelCNN++ likelihoods arise
primarily from an over-reliance of the model on local
dependencies in the image.

• We devise two efficient solutions based on readily com-
puted bijective transformations of the input samples.
These enable correcting for biases arising from local de-
pendencies and pinpointing the component of the likeli-
hood arising from long-range dependencies.

• The solutions we propose are computationally inexpen-
sive to implement. Moreover, they can be applied post
hoc during evaluation time and do not require retraining
the model or training multiple (background) models.

• We evaluate our solutions extensively using 11 inlier (5
grayscale and 6 natural image) datasets and 15 evalua-
tion (7 grayscale and 8 natural image) datasets and show
that they match or exceed state-of-the-art outlier detec-
tion performance [Ren et al., 2019; Serrà et al., 2020].

1Code associated with this paper is available at: https://github.
com/coglabiisc/googleresearch/tree/main/pixelcnn ood

The full version of this paper, including Appendices, is available
at: https://arxiv.org/abs/2208.13579
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Figure 1: Biases with PixelCNN++ likelihoods. (a) PixelCNN++ model architecture. We use one more hierarchy, including a nested set of
4×4 convolutional layers, compared to the original PixelCNN++ model. Green and purple blocks: vertical and horizontal stacks, respectively.
Solid arrows: convolutional connections; curved, dashed arrows: short-cut connections. (b) PixelCNN++ models the likelihood of the current
pixel xi based on the preceding rows and columns of pixels. (c) (Left) Larger the scale of the predicted logistic, the higher the uncertainty,
and the lower the likelihood for the target pixel xt. (Right) The higher the deviation between the mode of the predicted logistic and xt, the
higher the reconstruction error, and the lower the likelihood for the target pixel. (d) PixelCNN++ model trained on the CIFAR10 datasets
reconstructs both CIFAR10/ID and SVHN/OOD samples well. (e-f) PixelCNN++ reconstruction error (e) and average predicted scale (f)
distributions for CIFAR10/ID (blue) and SVHN/OOD (orange) test samples. Surprisingly, SVHN/OOD samples have lower reconstruction
error and scale as compared to CIFAR10/ID. (g) PixelCNN++ log likelihood distributions. SVHN/OOD samples get higher log-likelihoods
than CIFAR10/ID samples. (h) ROC curve for outlier detection using PixelCNN++ likelihoods for CIFAR10/ID and SVHN/OOD. The curve
is bowed downwards, indicating anomalously higher likelihoods for OOD than ID samples.

2 Related Work
While considerable past work addresses outlier detection in
supervised settings [Lakshminarayanan et al., 2017; Liang et
al., 2018], we focus here exclusively on the unsupervised set-
ting where no labels are available. Unlike previous deep,
one-class classification approaches [Andrews et al., 2016;
Ruff et al., 2018], we do not employ class label information
either for training or validation.

Perhaps the most relevant approach for our study is the
Input Complexity (IC) metric of [Serrà et al., 2020]. This
study characterized an identity relationship between the neg-
ative log-likelihood and image complexity, revealing a major
source of bias. An elegant outlier detection score was then
formulated by simply subtracting image complexity from the
negative log-likelihood, with complexity being quantified as
the compression length based on standard compressors (e.g.,
JPEG, PNG, or FLIF). In a later section, we analyze the IC
metric and showcase key failure cases that violate the as-
sumptions underlying this approach.

A second, relevant study [Ren et al., 2019] showed that
a greater number of zeros in test image backgrounds bi-
ased PixelCNN++ likelihoods toward higher values. This
study proposed training an additional background model with
noise-corrupted images to compute a likelihood ratio that
factored out the contribution of background information to
the likelihood. In addition to being computationally expen-
sive, due to the requirement of training multiple models, this
metric did not perform well with our (simpler) PixelCNN++
model architecture, as we show subsequently.

A third, related study [Bergman and Hoshen, 2020] pro-

posed an open set detection method, GOAD, that computes
an anomaly score based on random affine transformations.
Yet, unlike GOAD our methods involve only bijective trans-
formations that isolate long-range dependencies in the like-
lihood ratio (see Sections. 3.4 and 3.5). Moreover, GOAD
requires the transformations to be applied both during train-
ing and evaluation time whereas our approach requires trans-
formations to be applied during evaluation time alone. Our
method can, therefore, be applied to likelihoods generated by
pre-trained generative models also.

Similarly, other approaches involving generative ensem-
bles (e.g., WAIC, [Choi et al., 2018]) or principled statis-
tical tests (e.g., typicality, [Nalisnick et al., 2019b]) are ei-
ther computationally expensive or do not perform well with
singleton test samples, unlike our approach.

A few studies have examined outlier detection with other
classes of generative models like variational autoencoders
(VAEs) or flow models. For example, [Xiao et al., 2020]
developed a “Likelihood Regret” score for robust outlier de-
tection with VAEs. Yet, this score is expensive to compute
because an optimization must be performed by retraining
the VAE’s encoder for each sample at test time. Similarly,
[Chauhan et al., 2022] developed an efficient correction for
biases in VAE visible distributions (e.g., Bernoulli) for robust
outlier detection. Both of these approaches cannot be readily
extended to PixelCNN++ models. Moreover, [Kirichenko et
al., 2020] showed that simple modifications to the architec-
ture of normalizing flows could enable learning semantic fea-
tures, thereby ameliorating low-level biases. Yet, their modi-
fication is specific to flow models and involves fully retraining
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the modified model. On the other hand, our approach works
with a fully trained model directly at evaluation time.

Additionally, our approach resembles standard data aug-
mentation methods, albeit superficially. For instance, [Yun et
al., 2019] augment data by cutting and pasting image patches
among training images, enabling efficient network regular-
ization in supervised or weakly-supervised settings. Our ap-
proach, on the other hand, uses bijective transformations to
isolate long-range dependencies in an unsupervised setting.

3 De-Biasing PixelCNN++ Likelihoods
3.1 What Factors Contribute to the Bias in

PixelCNN++ Likelihoods?
To analyze the bias in PixelCNN++ likelihoods, we first an-
alyzed the factors contributing to it. To model pixel likeli-
hoods, PixelCNN++ employs a categorical distribution ap-
proximated by a discretized mixture of logistics [Salimans et
al., 2017]. Variations in logistic likelihoods can be readily at-
tributed to two sources. One source involves the location pa-
rameters (modes) of the underlying mixture of logistics: the
model’s best guess of the target pixel value. Accurate pre-
diction of the target pixel value yields a higher log-likelihood
(Fig. 1c, left). A second source involves the scale parame-
ters (variances): the model’s uncertainty with predicting the
target pixel. A lower scale parameter (greater certainty) for a
mode coinciding with the target pixel value yields higher log-
likelihoods (Fig. 1c, right). Thus, more accurate predictions
(lower reconstruction error) and more confident (less uncer-
tain) predictions of the correct target pixel value both con-
tribute to higher PixelCNN++ likelihoods.

We analyzed these two factors for a PixelCNN++ model
trained with CIFAR10 images (ID) and tested with SVHN
images (OOD) (see Fig. 1d for reconstructions). The Pixel-
CNN++ model trained on CIFAR-10 (ID) images, surpris-
ingly reconstructs SVHN images (OOD) both with lower
error (Fig. 1d and 1e, blue/SVHN vs. orange/CIFAR-10)
and with higher confidence (lower average scale, Fig. 1f,
blue/SVHN vs. orange/CIFAR-10). Paradoxically, these two
factors yielded “higher likelihoods” for SVHN/OOD than for
CIFAR-10/ID samples (Fig. 1g-h). Similar results were also
observed with grayscale data (FMNIST/ID vs MNIST/OOD).
We investigated the reasons behind these trends.

3.2 Can Global Complexity Fully Explain the Bias
in PixelCNN++ Likelihoods?

Are biases in PixelCNN++ likelihoods fully explained by dif-
ferences in overall image complexity [Serrà et al., 2020]?
Pixel values in less complex images are easier to model be-
cause of the stronger spatial correlations among adjacent pix-
els. Therefore, the comparatively lower complexity of im-
ages in datasets like MNIST or SVHN may permit more ac-
curate and more confident predictions of sub-pixel values in
these datasets, thereby inflating their likelihoods. Based on
this logic, [Serrà et al., 2020] showed that PixelCNN++ neg-
ative log likelihoods exhibit a near-identity relationship with
image complexity. They proposed an elegant OOD score that
involved simply subtracting the complexity estimate (L(x))

Figure 2: Compressed lengths have a many-to-one relationship
with PixelCNN++ likelihood. Compressed length, measured with a
PNG compressor, plotted against log-likelihood generated by a Pix-
elCNN++ trained on CIFAR-10 for different OOD datasets (differ-
ent colors, see text). A wide range of compressed lengths occurs
for the same model likelihood (dashed vertical line) and vice-versa
(dashed vertical line).

from the negative log-likelihood (NLL) to account for this
“complexity bias”.

To further explore this assumption, we plotted normal-
ized compressed lengths (L(x)) using a PNG compressor
against log-likelihoods (log p(x)) computed with a Pixel-
CNN++ model trained with the CIFAR10 dataset. Although
we observed a strong negative correlation between com-
pressed lengths and log-likelihoods for OOD data comprised
of natural images, this relationship was violated for other
kinds of data. Specifically, “constant” images – in which
all pixels were of a uniform color – revealed a nearly flat
relationship (Fig. 2, red points): compressed lengths were
virtually identical even as log-likelihoods varied over sev-
eral orders of magnitude (log p(x) = ∼-20000 to 0) depend-
ing on the image color (Fig. 2, inset). By contrast, images
with repeating color sequence patterns across pixels showed
the opposite trend: compressed lengths varied over two or-
ders of magnitude (L(x) = ∼250 to 25000) without a sub-
stantial change in the log-likelihood (Fig. 2, purple, brown,
pink, and gray points). In other words, widely different log-
likelihoods occurred for images with identical compressed
lengths (Fig. 2, dashed horizontal line). Conversely, images
with similar log-likelihoods exhibited widely different com-
pressed lengths (Fig. 2, dashed vertical line).

Similar results were observed with other types of com-
pressors (e.g., JPEG, FLIF) and also when considering the
“best” compressor (minimum compression length, L(x)=
min(L1(x), L2(x), . . . )). In other words, the assumption
on which the IC metric is predicated – that the compres-
sion length provides a reliable estimate of the negative log-
likelihood under an unbiased, universal model – appears to
not hold true across all types of images.

3.3 Do Local Dependencies Contribute to the Bias
in PixelCNN++ Likelihoods?

In addition to global complexity, could local dependencies
across pixels bias PixelCNN++ likelihoods? We explored

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1442



Figure 3: PixelCNN++ relies heavily on local dependencies for
prediction. (a) A PixelCNN++ model was trained on CIFAR10/ID
and tested on SVHN/OOD. Ablation experiments were performed
by removing the outermost (local dependency) or innermost (long-
range dependency) blocks. Blocks of matching sizes (e.g., 8 × 8)
were ablated jointly (matching colors). In turn, additional ablations
were performed by removing each set of short-cut connections. (b)
Effect of ablating convolutional blocks on model likelihood. Or-
ange, blue, and green: contribution of the 4×4, 8×8, and 16×16
blocks, respectively. (c) Effect of ablating short-cut connections on
model likelihood. Orange, blue, green, and red: contribution of
the 4×4, 8×8, 16×16, and 32×32 short-cut connections, respec-
tively. (d). A PixelCNN++ model was trained on CelebA/ID and
tested on GTSRB/OOD. We expect log-likelihoods of original and
inverted images to be more similar for GTSRB/OOD samples than
for CelebA/ID samples. (e) Log-likelihoods of the inverted images
plotted against their original counterparts for CelebA/ID and GT-
SRB/OOD. (Inset) Difference between log-likelihoods of original
and inverted samples (∆LL) is higher for CelebA/ID than for GT-
SRB/OOD.

the hypothesis that PixelCNN++ leverages local dependen-
cies to generate accurate and confident predictions. For exam-
ple, both SVHN and MNIST images typically comprise digits
with relatively simple features embedded in a fairly uniform
background. By acquiring knowledge of simple local features
like edges and contours, the model can accurately predict sub-
pixel values in adjacent pixels. In fact, this could happen even
for OOD images, using knowledge of the local neighborhood,
without learning the long-range structure of the data.

We tested this hypothesis using simple ablations to a stan-
dard PixelCNN++ model (Fig. 3a). In the model, the inner-
most parts of the network capture long-range dependencies
over longer spatial scales – a direct consequence of using
strided convolutions over progressive layers [Salimans et al.,
2017]. In our PixelCNN++ model, in addition to the 8×8

and 16×16 CNN layers in the standard model, we introduced
another sequence of 4×4 layers in the innermost part of the
network (Fig. 3a, orange block).

We tested the effect of progressively removing nested hier-
archies of the innermost 4×4, 8×8, and 16×16 convolutional
layers on model likelihoods. Precisely in line with our hy-
pothesis, removing the 4×4 layers (Fig. 3b, orange triangle)
produced virtually no change in the log-likelihoods (LLs) for
OOD data (SVHN OOD vs CIFAR-10/ID). Yet, ablating the
8×8 (Fig. 3b, blue triangle) or 16×16 (Fig. 3b, green triangle)
innermost blocks produced substantially greater reductions in
likelihoods. In other words, the model relied primarily on lo-
cal dependencies when making predictions with OOD data.
By contrast, for ID test data, even just removing the 4×4
block (Fig. 3b, orange circle) produced a noticeable change
in the likelihoods, indicating that the model had learned to ex-
ploit long-range dependencies when making predictions with
ID data. These progressive changes in likelihoods were ac-
companied by progressively higher reconstruction errors and
more uncertain predictions in the model. Removing the short-
cut connections, at different levels, in turn, yielded similar re-
sults, with the largest reduction in likelihoods occurring when
the outermost layer (32×32) connections (Fig. 3c, red sym-
bols) were removed. As before, ablating the innermost layers
had a more significant effect on ID likelihoods than OOD data
(Fig. 3c, circles vs triangles).

In sum, the PixelCNN++ model relied strongly on local
dependencies for accurate and confident predictions. Yet, re-
moving network components that captured long-range depen-
dencies (innermost layers) produced larger changes in likeli-
hoods for ID than for OOD samples. We sought to exploit
these differences for efficient outlier detection.

3.4 Isolating the Contribution of Long-Range
Dependencies to PixelCNN++ Likelihoods

Given the strong bias in PixelCNN++ likelihoods induced
by local dependencies, we asked whether removing contri-
butions of local dependencies or isolating contributions of
long-range dependencies would de-bias PixelCNN++ likeli-
hoods. To this end, we explored simple transformations to
the input images that would preserve local dependencies but
systematically perturb long-range dependencies. We hypoth-
esized that perturbing long-range (but not local) dependencies
would produce a stronger degradation of the likelihood for ID
data as compared to OOD data.

To illustrate this idea, we explore a transformation by “in-
version”. Because the PixelCNN++ model has a specific or-
der of scanning and predicting pixels in the image (upper left
to lower right), upon inversion, characteristic image features
fall into a context unfamiliar to the model. For example, in-
verting an image of a face positions the eyes below the nose,
and the nose below the mouth (Fig. 3d, top). A PixelCNN++
model trained, for example, on a dataset with face images
(e.g., CelebA) would then predict pixels in an inverted face
image less accurately and with higher uncertainty than pixels
in a standard, upright face. As a result, the model would yield
lower likelihoods for inverted CelebA images rather than up-
right images. We hypothesized that this would not occur for
OOD images (e.g., GTSRB). In this case, the model is un-
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Figure 4: Robust outlier detection with “stirring” and “shaking”. (a) Examples of “stirring” transformations. (b) Change in PixelCNN++
LL after “stirring”, (red) as compared with rotations, applied individually (CIFAR10/ID). (c) ROC curve for outlier detection for CIFAR10/ID
vs SVHN/OOD case using vanilla log-likelihood (blue) and “stirring” (orange). (d) Examples of “shaking” transformations (e, f) Same as in
(b) and (c), but for “shaking”. (g) Specific sub-category of CIFAR10/ID images (columns) that were assigned among the highest and lowest
vanilla log-likelihoods log p(x) (top 2 rows), following “stirring” (middle 2 rows) or following “shaking” (bottom 2 rows).

likely to rely on long-range predictions for either the upright
or the inverted GTSRB images because both categories of
images are equally unfamiliar (Fig. 3d, bottom). Thus, the
model should yield equivalent likelihoods for both inverted
and upright GTSRB images.

We tested and confirmed this hypothesis with the Pixel-
CNN++ model trained on the CelebA dataset. The model
yielded systematically lower likelihoods for inverted faces
than for upright faces in the ID data (Fig. 3e, blue points). In
contrast, the model yielded virtually identical likelihoods for
OOD (GTSRB) images (Fig. 3e, orange points). Therefore,
one solution for outlier detection is to simply subtract the log-
likelihood of the original image from that of the perturbed
(inverted) image to isolate the contribution arising from long-
range dependencies. With this reasoning, we propose an “out-
lier detection score” as follows:

log pLR(x) = log pθ(x)− log pθ(x
′)

where θ represents the PixelCNN++ model parameters, x
represents the test sample (image, in this case), x′ repre-
sents the same test sample after a perturbation that preserves
local dependencies but disrupts long-range dependencies,
log pθ(x) represents the log-likelihood of sample yielded by
the PixelCNN++ model and log pLR represents a component
of the log-likelihood that depends primarily on long-range de-
pendencies in the model. This formulation can also be con-
strued as a log-likelihood ratio between the original and per-
turbed samples, assuming factorizable contributions of local
and long-range dependencies to the overall likelihood. We
expect to observe a larger log pLR for ID data than OOD data.

Central to the success of this approach is identifying trans-
formations that preserve local dependencies while disrupting
long-range ones. We identify and explore two families of
transformations that we call “stirring” and “shaking”.

3.5 Bijective Transformations for Robust Outlier
Detection with PixelCNN++

Stirring. We extend the inversion solution by incorporating
a family of 7 geometric transformations, including 3 rotations
of the original image (by 90◦, 180◦ or 270◦), lateral inversion
(mirror reflection about the vertical midline), and 3 rotations
of the reflected image (again, by 90◦, 180◦ or 270◦). The
log pLR is summed across all 7 transformations to yield the
final outlier detection score. We term the collection of these
transformations as “stirring” (Fig. 4a). Because the individ-
ual transformations contribute additively, “stirring” produced
a larger change in likelihoods for the perturbed images com-
pared to the upright images (Fig. 4b, red density) than indi-
vidual rotations (Fig. 4b, blue, orange, and green densities).
“Stirring” may, thus, enable robust outlier detection for im-
ages with distinct axes of symmetry.

Shaking. We consider a second class of bijective transfor-
mations that involve dividing the images into patches and
shuffling these patches randomly. We consider three ways to
achieve this: i) splitting the image in half along the horizontal
midline, ii) splitting the image in half along the vertical mid-
line, and iii) splitting the images into four quarters along the
horizontal and vertical midlines (Fig. 4d). These permit a to-
tal of 9 unique derangements – random permutations in which
no patch is located in its original position. log pLR is summed
across all 9 derangements to yield the final outlier detection
score. We term the collection of these derangements as “shak-
ing” (Fig 4d). Again, “shaking” produced a larger change in
likelihoods for the perturbed images compared to the upright
images than individual derangements (Fig. 4e).

Conditional correction. Our outlier detection score is a ra-
tio of the logarithm of two probability densities: pθ(x) and
pθ(x

′). When pθ(x) is a very small numerical value, the like-
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Figure 5: Outlier detection performance: Grayscale data. Outlier detection AUROC values for PixelCNNs trained with grayscale image
datasets (ID, columns) and tested with other grayscale datasets (OOD, rows). Last row: average AUROC; gray shading: range of AUROC
values. Blue: log-likelihood (LL), uncorrected; Orange: “Stirred” LL; Green: “Shaken” LL; Red: Input Complexity (PNG); Purple: Input
Complexity (Best); Brown: Likelihood Ratio. Numbers in bold: best performance.

lihood of the perturbed sample x′, pθ(x′) would also be com-
parably small numerically. In this case, it is likely, that the es-
timation of log pLR would be noisy and far from accurate. To
avoid such noisy estimates, we adopt a pre-filtering strategy
based on identifying outliers with the model log-likelihood
alone, following which “stirring” and “shaking” corrections
are applied. We perform ablation experiments to estimate the
contribution of this conditional correction.

4 Experiments
We trained PixelCNN++ models on each of five grayscale
image datasets: MNIST, FashionMNIST, EMNIST Letters,
Sign Language MNIST, and CLEVR [Deng, 2012; Xiao
et al., 2017; Cohen et al., 2017; Johnson et al., 2017;
Sign Language MNIST, 2017]. Each of these models was
tested against six OOD datasets, including the other four
datasets and noise and constant images. Similarly, we
trained PixelCNN++ models on each of six natural image
datasets - SVHN, CelebA, CompCars, GTSRB, CIFAR10,
and LSUN (classroom) [Netzer et al., 2011; Liu et al., 2015;
Yang et al., 2015; Stallkamp et al., 2011; Krizhevsky, 2009;
Yu et al., 2015]. Each model was tested against seven OOD
datasets, including noise and constant images.

We report the area under the ROC curve (AUROC) be-
tween the respective test sets of the ID and OOD datasets in
a 7×5 grid for grayscale and an 8×6 grid for natural image
data. All results reported include the conditional correction.

4.1 Outlier Detection Performance with “Stirring”
and “Shaking”

For illustration, we compare outlier detection performance of
log pLR with “stirring” with the vanilla log-likelihood. We
obtained state-of-the-art AUROCs (∼95%) for the particu-
larly problematic case of CIFAR10 ID versus SVHN OOD
(Fig. 4c). Moreover, typical exemplars were assigned among
the highest log pLR (Fig. 4g, middle), whereas this was not
the case using the vanilla log-likelihoods (Fig. 4g, top).

This superlative performance was observed across all other
comparisons comprising both grayscale and natural image
datasets. In almost all cases, “stirring” (Fig. 5 and Fig. 6,
orange symbols) outperformed vanilla LL (Fig. 5 and Fig. 6,
blue symbols). “Stirring” achieved a performance near-
ceiling in most of the grayscale cases. In the challenging
cases of FMNIST/ID, CIFAR10/ID, and LSUN/ID, “stirring”
achieved AUROCs of 95 and above. Overall, with “stir-
ring”, we saw an average AUROC improvement of ∼14% for
grayscale images and ∼57% for natural images.

We also obtained similar results with log pLR computed
from “shaken” images. Again, “shaking” improved out-
lier detection for the challenging case of CIFAR10/ID ver-
sus SVHN/OOD (Fig. 4f). In general, outlier detection with
“shaking” improved across both grayscale and natural im-
ages (Fig. 5 and Fig. 6, green symbols), as compared to that
with vanilla log-likelihoods. Overall, outlier detection perfor-
mance improved, on average, by ∼14% for grayscale images
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Figure 6: Outlier detection performance: Natural image data. Same as in Figure 5 but for natural image datasets.

and ∼47% for natural images, indicating marginally worse
improvements than with “shaking”. Interestingly, with “stir-
ring”, color information played a major role in determining
atypical exemplars (Fig. 4g, lower).

4.2 Comparison with Competing Methods
We compare our results with two state-of-the-art methods –
Likelihood Ratios [Ren et al., 2019], and Input Complex-
ity [Serrà et al., 2020] – the two most relevant competing
approaches for state-of-the-art outlier detection with Pixel-
CNN++ (see section 2).

Our methods comfortably outperformed likelihood ratios
(Fig. 5 and Fig. 6, filled red symbols) in all cases. “Stir-
ring” performed ∼48% better on average for grayscale im-
ages and ∼80% better for natural images than likelihood ra-
tios. Similarly, “shaking” performed ∼49% better, on aver-
age, for grayscale images and ∼69% better for natural images
than likelihood ratios. The OOD detection numbers that we
report for likelihood ratios are poorer than those reported by
[Ren et al., 2019], who used a more complex model architec-
ture; these results suggest that the success of the likelihood
ratio metric is architecture dependent.

Our metrics also outperformed or performed comparably
with Input Complexity computed using the PNG compressor
(Fig. 5 and Fig. 6; IC-PNG, brown symbols) or using the Best
compressor (minimum compressed length; IC-Best, purple
symbols). “Stirring” performed ∼6% (2%) better, on average,
for grayscale images and ∼14% (5%) better for natural im-
ages than IC-PNG (IC-Best). Similarly, “shaking” performed

∼7% (2%) better, on average, for grayscale images and ∼7%
(-2%) better for natural images than IC-PNG (IC-Best). Sur-
prisingly, IC-Best did not perform well with specific datasets,
like LSUN/ID or CIFAR10/ID, on which our metrics, espe-
cially those based on “stirring”, performed exceedingly well.

4.3 Time and Space Complexity
We also compared the time and space complexity of our
methods with competing methods. We measured time com-
plexity as the average per sample inference time for com-
puting the OOD detection score. We quantified space com-
plexity as the peak memory usage (mebibytes/MiB) during
inference. Both metrics were computed with all the natural
image datasets. Table. 1 shows these metrics for “stirring”
and “shaking” alongside those for competing methods. Our
methods do not require training additional background mod-
els and are competitive with state-of-the-art in terms of time
and space complexity.

4.4 Results with Other Generative Models
Generative models come in at least three major fla-
vors [Kingma and Dhariwal, 2018]: i) Autoregressive mod-
els, ii) Variational Autoencoders, and iii) Flow-based models.

While we have shown that our approaches work well with
PixelCNN++, a model of the first category, we tested whether
these approaches work with the other two models also: Gen-
erative flows [Kingma and Dhariwal, 2018] and Variational
Autoencoders [Kingma and Welling, 2014].
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(a) (b)

Figure 7: Outlier detection performance (AUROC) with Glow and VAE. (a) Outlier detection AUROC values for Glow models trained
on natural image datasets. Conventions are the same as in Figure. 6. (b) Outlier detection AUROC values for VAEs trained on natural image
datasets. Conventions are the same as in Figure. 6.

Method Time / Sample (ms) Peak Mem Usage (MiB)

Stirring 14.07 3142.76
Shaking 18.02 3289.24
LRat 7.95 + 2580.10* 3634.00
IC 4.69 3120.80

(*additional training time for background model)

Table 1: Time and Space Complexity. Time complexity (inference
time per sample) and space complexity (peak memory usage during
inference) for “stirring”, “shaking”, likelihood ratios (LRat) [Ren et
al., 2019], and Input Complexity (IC) [Serrà et al., 2020].

Generative Flows
Flow-based models are a popular class of DGMs, as they en-
able computing exact log-likelihoods; this makes it a ready
choice for OOD detection tasks. Yet, these models were also
shown to assign higher likelihoods to OOD than ID images
[Nalisnick et al., 2019a].

We quantified OOD detection performance with natural
image datasets using Glow log-likelihoods. These vanilla
log-likelihoods (Fig. 7a, blue symbols) failed in several OOD
detection cases. Like with PixelCNN++, the clearest failure
cases occurred with CIFAR10/ID and LSUN/ID.

We then applied “shaking” and “stirring” to the Glow
model likelihoods. In addition, we employed the conditional
correction as specified in section 3.5 except for the follow-

ing modification: because the training log-likelihoods were
not normally distributed, we used the 99.5th percentile of the
training data as a cutoff, instead of the 3-MAD criterion.

Both “stirring” (Fig. 7a, orange symbols) and “shaking”
(Fig. 7a, green symbols) generally improved OOD detection
performance. “Stirring” performed ∼17% better, on average,
than vanilla log-likelihoods. Similarly, “shaking” performed
∼38% better, on average, than vanilla log-likelihoods.

Variational AutoEncoder
Variational Autoencoders [Kingma and Welling, 2014] are
another class of DGMs that enable estimating sample like-
lihoods using variational inference, which renders these rel-
evant for OOD detection tasks. VAEs are also consid-
ered unreliable for OOD detection tasks [Ren et al., 2019;
Nalisnick et al., 2019a; Choi et al., 2018; Xiao et al., 2020;
Chauhan et al., 2022].

As before, we quantified OOD detection performance with
vanilla log-likelihoods (Fig. 7b, blue symbols); several failure
cases occurred. Again, we applied “shaking” and “stirring”,
as with the Glow models, except we also applied contrast
stretching and a bias correction for the reconstruction error,
following [Chauhan et al., 2022]. These additional steps were
necessary as “stirring” and “shaking” are not designed to rec-
tify biases in the reconstruction error arising from the VAE
visible distribution (see [Chauhan et al., 2022] for details).

With this approach, OOD detection performance im-
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Figure 8: Efficacy of “stirring” and “shaking” across differ-
ent deep generative model classes. Percentage improvement in
AUROC (average of “stirring” and “shaking”) over vanilla log-
likelihood (x-axis) plotted against the % degradation in sample log-
likelihood after perturbating a local neighborhood surrounding each
pixel (CIFAR10/ID; see text for details). Error bars: range of per-
formance improvements across “stirring” and “shaking” (x-axis) and
25th and 75th percentiles of log-likelihood degradation (y-axis). In
some cases, the error bars are smaller than the symbol sizes.

proved. “Stirring” (Fig. 7b, orange symbols) performed
∼21% better, on average, than vanilla log-likelihoods. Sim-
ilarly, “shaking” (Fig. 7b, green symbols) performed ∼24%
better, on average, than vanilla log-likelihoods.

Analysis of Differential Efficacy across DGMs
Comparing improvements across DGM classes, we observed
that our approaches were most effective with PixelCNN++
models, but comparatively less effective with Glow, and least
effective with VAEs (Fig. 8, x-axis). We hypothesize that the
efficacy of our approaches was higher for models that relied
more on local dependencies for likelihood estimation.

To test this hypothesis, we replaced a local neighborhood
(3x3 patch) surrounding a given pixel, with uniform random
values (0-255); the replacement was performed once per pixel
for each test image for the CIFAR10/ID dataset. With this
perturbation, we quantified the degradation in sample log-
likelihood, as a percentage relative to its original value. The
degradation was greatest for PixelCNN++, followed by Glow
and VAE in that order (Fig. 8, y-axis), reflecting the extent
to which each model relied on local dependencies for pre-
dicting pixel values (VAE<Glow<PixelCNN++). In other
words, the efficacy of our approaches was indeed governed
by how much each model relied on local dependencies for
assigning sample likelihoods.

5 Discussion
We developed simple, lightweight, and intuitive methods for
state-of-the-art image outlier detection with PixelCNN++.
Although we motivated our approaches with this particular
class of deep generative model, we showed that they gen-
eralize to other classes of generative models, like Glow and

VAEs, also. In addition, our methods may be relevant for out-
lier detection with other types of temporal data (e.g., speech),
for which “stirring” and “shaking” can be readily performed,
either by reversing the data in time or by chunking and shuf-
fling the sequence.

Across all 72 ID/OOD comparisons with PixelCNN++,
“stirring” performed noticeably worse than ceiling perfor-
mance only with EMNIST/ID versus MNIST/OOD (AUROC
of ∼82%), a not unreasonable failure given the feature sim-
ilarity of MNIST and EMNIST samples. In fact, IC exhib-
ited confusion for these two datasets also (MNIST/ID versus
EMNIST/OOD, IC-Best AUROC ∼83%). On the other hand,
while “shaking” performed well with most datasets, improve-
ments were less impressive than those with “stirring”, espe-
cially for natural ID image datasets like CIFAR10 and LSUN.

Our approaches could also be relevant for outlier detec-
tion with more recent autoregressive models. To our knowl-
edge, such models (e.g., autoregressive transformers [Cao
et al., 2021]) have not been widely used for unsupervised
outlier detection. Moreover, deep diffusion models require
non-standard approximations for maximum likelihood train-
ing [Song et al., 2021], precluding their widespread use in
OOD detection. Future work will test whether biases due to
local dependencies persist in these recent models also.

More generally, our results gainsay widespread claims in
recent literature – that likelihoods from deep generative mod-
els are unreliable for outlier detection [Nalisnick et al., 2019a;
Ren et al., 2019; Serrà et al., 2020]. Rather, PixelCNN++
models are exquisitely sensitive to long-range dependencies
in their training data, and isolating these dependencies, with
simple geometric transformations, suffices to achieve robust
outlier detection.
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Tapson, and André van Schaik. Emnist: an exten-
sion of mnist to handwritten letters. arXiv preprint
arXiv:1702.05373, 2017.

[Deng, 2012] Li Deng. The mnist database of handwritten
digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141–142, 2012.

[Hendrycks and Gimpel, 2017] Dan Hendrycks and Kevin
Gimpel. A baseline for detecting misclassified and out-of-
distribution examples in neural networks. In International
Conference on Learning Representations, 2017.

[Johnson et al., 2017] Justin Johnson, Bharath Hariharan,
Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick,
and Ross Girshick. Clevr: A diagnostic dataset for compo-
sitional language and elementary visual reasoning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2901–2910, 2017.

[Kingma and Dhariwal, 2018] Durk P Kingma and Prafulla
Dhariwal. Glow: Generative flow with invertible 1x1
convolutions. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems, vol-
ume 31. Curran Associates, Inc., 2018.

[Kingma and Welling, 2014] Diederik P. Kingma and Max
Welling. Auto-encoding variational bayes. In 2nd Inter-
national Conference on Learning Representations, ICLR
2014, Conference Track Proceedings, 2014.

[Kirichenko et al., 2020] Polina Kirichenko, Pavel Izmailov,
and Andrew G Wilson. Why normalizing flows fail to
detect out-of-distribution data. In Advances in neural in-
formation processing systems, volume 33, pages 20578–
20589, 2020.

[Krizhevsky, 2009] Alex Krizhevsky. Cifar-10. https://www.
cs.toronto.edu/∼kriz/cifar.html, 2009. Accessed: 2023-05-
29.

[Lakshminarayanan et al., 2017] Balaji Lakshminarayanan,
Alexander Pritzel, and Charles Blundell. Simple and scal-
able predictive uncertainty estimation using deep ensem-
bles. In Advances in Neural Information Processing Sys-
tems, volume 30, 2017.

[Liang et al., 2018] Shiyu Liang, Yixuan Li, and R. Srikant.
Enhancing the reliability of out-of-distribution image de-
tection in neural networks. In 6th International Confer-
ence on Learning Representations, ICLR 2018, Confer-
ence Track Proceedings, 2018.

[Liu et al., 2015] Ziwei Liu, Ping Luo, Xiaogang Wang, and
Xiaoou Tang. Deep learning face attributes in the wild. In

2015 IEEE International Conference on Computer Vision,
ICCV 2015, pages 3730–3738, 2015.

[Nalisnick et al., 2019a] Eric T. Nalisnick, Akihiro Mat-
sukawa, Yee Whye Teh, Dilan Görür, and Balaji Laksh-
minarayanan. Do deep generative models know what they
don’t know? In 7th International Conference on Learning
Representations, ICLR 2019, 2019.

[Nalisnick et al., 2019b] Eric T. Nalisnick, Akihiro Mat-
sukawa, Yee Whye Teh, and Balaji Lakshminarayanan.
Detecting out-of-distribution inputs to deep generative
models using a test for typicality. arXiv preprint
arXiv:1906.02994, 2019.

[Netzer et al., 2011] Yuval Netzer, Tao Wang, Adam Coates,
Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
digits in natural images with unsupervised feature learn-
ing. In NIPS Workshop on Deep Learning and Unsuper-
vised Feature Learning 2011, 2011.

[Ren et al., 2019] Jie Ren, Peter J. Liu, Emily Fertig, Jasper
Snoek, Ryan Poplin, Mark Depristo, Joshua Dillon, and
Balaji Lakshminarayanan. Likelihood ratios for out-of-
distribution detection. In Advances in Neural Information
Processing Systems, volume 32, 2019.

[Ruff et al., 2018] Lukas Ruff, Robert Vandermeulen, Nico
Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexan-
der Binder, Emmanuel Müller, and Marius Kloft. Deep
one-class classification. In Jennifer Dy and Andreas
Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceed-
ings of Machine Learning Research, pages 4393–4402,
10–15 Jul 2018.

[Salimans et al., 2017] Tim Salimans, Andrej Karpathy,
Xi Chen, and Diederik P. Kingma. Pixelcnn++: Improv-
ing the pixelcnn with discretized logistic mixture likeli-
hood and other modifications. In 5th International Con-
ference on Learning Representations, ICLR 2017, Confer-
ence Track Proceedings, 2017.
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