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Abstract
Human pose forecasting is a sequential modeling
task that aims to predict future poses from histori-
cal motions. Most existing approaches focus on the
spatial-temporal neural network model design for
learning movement patterns to reduce prediction
errors. However, they usually do not strictly fol-
low the temporal constraints in the inference stage.
Even though a small Mean Per Joint Position Error
(MPJPE) is achieved, some of the predicted poses
are not temporal feasible solutions, which disobeys
the continuity of the body movement. In this paper,
we consider the temporal constrained feasible so-
lutions for human pose forecasting, where the pre-
dicted poses of input historical poses are guaran-
teed to obey the temporal constraints strictly in the
inference stage. Rather than direct supervision of
the prediction in the original pose space, a temporal
constrained subspace is explicitly learned and then
followed by an inverse transformation to obtain the
final predictions. We evaluate the proposed method
on large-scale benchmarks, including Human3.6M,
AMASS, and 3DPW. State-of-the-art performance
has been achieved with the temporal constrained
feasible solutions.

1 Introduction
Human pose forecasting is a sequential modeling task that
aims to predict future poses from historical motions. This
task has received increasing attention in numerous appli-
cations, such as autonomous driving [Paden et al., 2016;
Mangalam et al., 2020], healthcare [Troje, 2002], teleopera-
tions [Rubagotti et al., 2019], and collaborative robots [Kop-
pula and Saxena, 2013; Unhelkar et al., 2018]. Unlike hu-
man pose estimation task [Gu et al., 2019; Gu et al., 2021;
Li et al., 2022b; Zhang et al., 2022; Chai et al., 2023] that
predicts the pose for observed frames, pose forecasting fo-
cuses on future pose estimation. Most of the existing ap-
proaches focus on the spatial-temporal neural network model
design [Li et al., 2018; Mao et al., 2019; Mao et al., 2020;
Sofianos et al., 2021; Li et al., 2022a; Bouazizi et al., 2022;
Xu et al., 2022] for learning the movement patterns to reduce
prediction errors. Though such data-driven deep learning

Figure 1: Drawback of commonly used methods in the inference
stage. Even though commonly used methods employ temporal con-
straints in the training stage, the forecasting model may still gener-
ate infeasible poses in the prediction since the constraints are NOT
employed in the inference stage.

models can approximate very complex functions and achieve
outstanding performance with large-scale datasets, they suf-
fer from less interpretability than conventional simple ma-
chine learning models. Unexpected output may occur when
the testing data drifts from the training data distribution. Even
though a small Mean Per Joint Position Error (MPJPE) is
achieved, some of the predicted poses are not temporal fea-
sible solutions. The drawback of commonly used methods
is shown in Figure 1. Even though commonly used meth-
ods employ temporal constraints in the training stage, the
forecasting model may still generate infeasible poses in the
prediction since the constraints are NOT employed in the in-
ference stage. For example, since a human cannot make an
abrupt movement, there should be constraints on the upper
bound of the change of the joint velocities. Such temporal
constraints should be satisfied not only in the training stage
but also in the inference stage for any unseen testing data.
However, the temporal constrained feasible solutions are sel-
dom discussed in the literature for the pose forecasting task.

Physical constraints can alleviate such issues for data-
driven deep learning models. By bringing laws from the
physical world and general knowledge from humans, predic-
tions and decisions with physical constraints become more
trustworthy than those made from purely data-driven mod-
els. Some existing approaches take into account physi-
cal constraints in deep learning models, typically by adapt-
ing ideas from constrained optimization [Amos and Kolter,
2017], training algorithms/loss functions with regularization
[Diligenti et al., 2017; Berk et al., 2017], or correcting the
model output with iterative projections [Yang et al., 2020;
Detassis et al., 2020]. However, most existing approaches
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use approximation rather than searching for feasible solu-
tions that strictly comply with the constraints. Besides, itera-
tive adaptation may be required in the inference stage, which
takes extra computational costs. Furthermore, compared with
unconstrained models, constrained models usually find sub-
optimal solutions, resulting in degradation in performance.

In this paper, we tackle the human pose forecasting prob-
lem with the consideration of temporal constrained feasible
solutions, where the change of velocities of human joints
should follow the continuity property of the physical move-
ment. To deal with this problem, we propose a temporal
constrained feasible subspace learning framework for human
pose forecasting. Specifically, rather than direct supervision
of the prediction in the original pose space, the temporal con-
strained subspace is explicitly learned by exploiting simple
projection functions, such as rectified linear unit (ReLU) and
exponential linear unit (ELU). Then the backward transfor-
mation can be applied to obtain the final human pose predic-
tion. Since the constraints are guaranteed in both training and
inference stages, no extra steps of iterative projections or opti-
mization are required in the inference. Moreover, unlike most
existing approaches that usually sacrifice accuracy to satisfy
physical constraints, our proposed method can further reduce
the prediction error with constrained feasible solutions. Our
framework is shown in Figure 2. The key contributions are
summarized as follows:

• We apply temporal constraints in the human pose fore-
casting task and provide feasible solutions for both train-
ing and inference stages. Unlike most existing works,
the temporal feasible solutions of our proposed method
can be obtained without any iteration, adaptation, opti-
mization, or approximation in the inference.

• We propose a novel subspace learning framework for the
temporal constraints. Rather than direct supervision of
the prediction in the original pose space, a temporal con-
strained subspace is explicitly learned, followed by an
inverse transformation to obtain the final predictions.

• With the STS-GCN [Sofianos et al., 2021] as the en-
coder backbone network, we achieve state-of-the-art
(SOTA) performance on the Human3.6M [Ionescu et al.,
2013], AMASS [Mahmood et al., 2019], and 3DPW
[von Marcard et al., 2018] datasets in the human pose
forecasting task with temporal feasible solutions.

2 Related Works
Human pose forecasting Some works focus on motion
modeling for human pose forecasting. For example, [Chiu
et al., 2019] propose a new action-agnostic method for short-
and long-term human pose forecasting with triangular-prism
RNN for modeling the hierarchical and multi-scale character-
istics of human dynamics. [Mao et al., 2019] propose a sim-
ple feed-forward deep network for motion prediction, which
takes into account both temporal smoothness and spatial de-
pendencies among human body joints. [Mao et al., 2020]
propose to extract motion attention to capture the similarity
between the current motion context and the historical motion
sub-sequences. [Sofianos et al., 2021] propose a space-time-

separable graph convolutional network for human pose fore-
casting. [Adeli et al., 2021] propose a novel trajectory and
pose dynamics method based on graph attention networks to
model the human-human and human-object interactions both
in the input space and the decoded future output space.

Some works combine reinforcement learning in the formu-
lation. Specifically, [Wang et al., 2019] propose a new re-
inforcement learning formulation for the problem of human
pose prediction and develops an imitation learning algorithm
for predicting future poses under this formulation through a
combination of behavioral cloning and generative adversar-
ial imitation learning. [Yuan and Kitani, 2019] propose the
use of a proportional-derivative (PD) control-based policy
learned via reinforcement learning to estimate and forecast
3D human poses from ego-centric videos.

Some works consider the action characteristic and scene
context information in the setting. For example, [Diller et al.,
2020] propose the task of forecasting characteristic 3D poses:
from a short sequence observation of a person, predict a fu-
ture 3D pose of that person in a likely action-defining, char-
acteristic pose. [Adeli et al., 2020] consider incorporating
both scene and social contexts as critical clues for the human
motion and pose forecasting task.

And some works take account of embedding, constraints,
and subtasks in the formulation. For example, [Mangalam et
al., 2020] tackle the problem of Human Locomotion Fore-
casting, a task for jointly predicting the spatial positions of
several keypoints on the human body in the near future un-
der an ego-centric setting and presents a method to disen-
tangle the overall pedestrian motion into easier-to-learn sub-
parts by utilizing a pose completion and a decomposition
module. [Parsaeifard et al., 2021] propose to learn decou-
pled representations for the global and local pose forecasting
tasks. [Wang et al., 2022] propose the velocity-to-velocity
learning paradigm for human motion prediction, which at-
tempts to directly build the sequence-to-sequence model in
the velocity space. However, for most existing works, tem-
poral constraints are usually treated as regularization terms in
the learning for human pose forecasting. How to guarantee
the temporal constrained feasible solutions is not discussed
in such approaches.

Physically constrained learning There are some existing
works that deal with physical constraints in deep neural net-
works. Specifically, [Yang et al., 2020] propose a new fam-
ily of neural networks to predict the behaviors of physical
systems by learning their underpinning constraints. [Sangalli
et al., 2021] pose the training of deep neural networks for
binary classification as a constrained optimization problem
using an Augmented Lagrangian method (ALM). [Detassis
et al., 2020] use a decomposition scheme alternating mas-
ter steps and learner steps on the constrained optimization
problem. [Diligenti et al., 2017] propose a unified approach
to learning from constraints, which integrates the ability of
classical machine learning techniques to learn from continu-
ous feature-based representations with the ability of reason-
ing using higher-level semantic knowledge typical of statis-
tical relational learning. [Amos and Kolter, 2017] present
OptNet, a network architecture that integrates optimization
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Figure 2: The framework of temporal feasible subspace learning for human pose forecasting. Given historical input poses, we first embed
them to the target subspace. Then a projection operation is conducted in the subspace based on the temporal constraints, followed by a
transformation from the subspace to the final pose space for future pose prediction.

problems as individual layers in larger end-to-end trainable
deep networks. [Kotary et al., 2021a] connect the variation
of the training data to the ability of a model to approximate
it and propose a method for producing solutions to optimiza-
tion problems that are more amenable to supervised learning
tasks. [Kotary et al., 2021b] survey the recent attempts at
leveraging machine learning to solve constrained optimiza-
tion problems and focuses on surveying the work on integrat-
ing combinatorial solvers and optimization methods with ma-
chine learning architectures. [Huang et al., 2021] propose the
combinatorially efficient, equivariant, and constraint-aware
Graph Mechanics Network (GMN), where the geometrical
constraints are implicitly and naturally encoded in the for-
ward kinematic. [Rubanova et al., 2021] present a framework
for constraint-based learned simulation, where a scalar con-
straint function is implemented as a graph neural network,
and future predictions are computed by solving the optimiza-
tion problem defined by the learned constraint. [Zhong et
al., 2021] introduce a differentiable contact model, which can
capture contact mechanics and accommodate inequality con-
straints. However, most existing solutions usually require it-
erative projection steps in the inference stage, and feasible
solutions are not strictly guaranteed.

3 Proposed Method
3.1 Overview of Human Pose Forecasting
We use the joint-skeleton model to represent the human pose.
Given the 3D coordinates of V joints for T1 frames, we aim
to predict the V body joints for the next T2 future frames. De-
note the 3D coordinate of joint v at frame t as xv,t ∈ R3. The
motion history of human poses is denoted by Xp ∈ RV×T1×3

for all V joints in T1 frames. We aim to learn a forecasting
model Fw parameterized by w, i.e.,

Xf = Fw(Xp), (1)

where Xf ∈ RV×T2×3 represent the predicted V joints in
the future T2 frames.

3.2 Temporal Constrained Subspace Learning
Usually, the learning of pose forecasting can be formulated as
an optimization problem, i.e.,

minw||Fw(Xp)−X∗
f ||2, s.t. C(Fw(Xp)) ≤ 0, (2)

where X∗
f is the ground truth of future poses in the train-

ing data, and C(Fw(Xp)) ≤ 0 represents the inequality con-

straint. The constraint can be temporal consistency for pre-
dicted poses. For example, the difference in motion veloci-
ties of joints in adjacent timestamps cannot exceed a certain
threshold. The solution should be temporal feasible and fol-
lows the constraint. To take the constraint into consideration,
we describe the conventional approaches and our proposed
approach to address the problem.
Conventional approaches After combining the constraints
into the training stage, the training loss of conventional ap-
proaches of pose forecasting can be formulated as follows,

Lw = ||Fw(Xp)−X∗
f ||2 + λR(Fw(Xp)), (3)

In this formulation, the constraint C(Fw(Xp)) ≤ 0 is con-
verted to a regularization term R(Fw(Xp)) with the hyper-
parameter λ. For example, R(Fw(Xp)) can be set as
[C(Fw(Xp))]+, where [·]+ clamps negative values to zeros.

After training, the inference stage can be represented as

X̂f = Fŵ(Xp), (4)

where ŵ are the learned model parameters, and X̂f are the
predicted poses in the testing data. However, the constraint is
not applied in the inference stage. Due to the gap between the
training and testing set, the temporal feasible solution is not
guaranteed. In other words, the constraint, C(Fw(Xp)) ≤
0, may be not satisfied in the inference stage.
Our approach To address the common problem in the con-
ventional approaches, we propose a temporal constrained
subspace learning approach. Based on Eq. (3), we formulate
our approach as follows,

Lw = ||H−1(P(H(Fw(Xp))))−X∗
f ||2 + λR(Fw(Xp)),

(5)
where the first term in the equation have three additional op-
erations, i.e., a subspace transformation H, a projection P ,
and an inverse transformation H−1. Specifically, the sub-
space transformation H transforms the pose coordinate space
to the temporal subspace; the projection P projects the un-
constrained subspace to the constrained subspace to ensure
the feasibility; the inverse transformation H−1 maps from the
temporal subspace back to the pose space. An illustration is
shown in Figure 2.

Our proposed inference stage can be represented by

X̂f = H−1(P(H(Fŵ(Xp)))). (6)

Unlike the inference stage as shown in Eq. (4) of conventional
learning approaches that do not take the temporal constraint
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into consideration, our inference stage uses the projection P
to ensure the temporal feasibility explicitly. As a result, the
temporal feasibility is always guaranteed in the inference
stage in our proposed method.

3.3 Approach Details
Subspace transformation We consider the temporal sub-
space as the change of velocity of joint coordinated be-
tween additional frames, denoted as F ′′

w, i.e., F ′′

w,t =
(Fw,t+1(Xp)−Fw,t(Xp))− (Fw,t(Xp)−Fw,t−1(Xp)).
The subspace transformation H defined in Eq. (5) maps the
original pose space Fw to the temporal subspace F ′′

w, which
follows a linear transformation, i.e.,

F
′′

w = HFw, (7)

where H[t, t : (t+2)] = [1,−2, 1]. Since H is with size (T2−
2) × T2, we concatenate the natural basis e1 = [1, 0, ..., 0]T

and eT2 = [0, ..., 0, 1]T with H to form a full rank matrix
H̃ = [eT1 ;H; eTT ]. For simplicity, we use H to represent H̃.
Then the temporal subspace transformation H is invertible,
denoted as H−1.

Constraint and projection The temporal constraint
C(Fw(Xp)) is set as C(Fw(Xp)) = |F ′′

w| − (max(X
′′

p ) +

δub), where max(X
′′

p ) is the maximum change of velocity
in the historical poses and δub is the pre-defined upper
bound. The constraint assumes that the predicted poses in
the temporal subspace should not exceed max(X

′′

p ) + δub.
For simplicity, we use δ̃ub to represent max(X

′′

p ) + δub.
To explicitly follow the constraint in the temporal sub-

space, we use projection P that maps from unconstrained
space to the constrained space. Note that we focus on the tem-
poral feasible solutions, i.e., |F ′′

w| − (max(X
′′

p ) + δub) ≤ 0.
Then the projection function can be explicitly defined as

P(F
′′

w) =
[
2δ̃ub − [δ̃ub −F

′′

w]+

]
+
− δ̃ub. (8)

The function can be easily implemented with the rectified lin-
ear unit (ReLU). We denote this projection as Prelu. Other
appropriate projection functions can also be applied. Discus-
sions are provided in the Experiments Section.

4 Experiments
4.1 Datasets and Metrics
Human3.6M [Ionescu et al., 2013] It is a large-scale
dataset consisting of 3.6 million 3D human poses and cor-
responding images. It includes 7 actors performing 15 dif-
ferent actions like Walking, Eating and Phoning. Following
the current literature [Mao et al., 2020; Mao et al., 2019;
Martinez et al., 2017], we use subject 11 (S11) for validation,
the subject 5 (S5) for testing, and all the rest of the subjects
for training.

AMASS [Mahmood et al., 2019] The Archive of Motion
Capture as Surface Shapes (AMASS) dataset has been re-
cently proposed with 18 existing MoCap datasets. Following
[Mao et al., 2020; Sofianos et al., 2021], we take 13 datasets

from AMASS in the experiment, with 8 datasets for training,
4 for validation and 1 for testing. Then we use the SMPL
[Loper et al., 2015] parameterization for the human skeleton
and joint rotation angle to represent the human pose based on
the shape vector. 3D Human poses are obtained by applying
forward kinematics.
3DPW [von Marcard et al., 2018] The dataset consists of
in-the-wild video sequences and 3D human poses captured
by a moving camera. The dataset includes both indoor and
outdoor actions. In total, it contains 51,000 frames captured
at 30Hz, divided into 60 video sequences.
Evaluation metrics Following the benchmark protocols,
we adopt the Mean Per Joint Position Error (MPJPE) met-
ric for evaluation. It quantifies the error of the 3D coordinate
predictions in mm. The MPJPE is defined as follows,

MPJPE =
1

V T

V∑
v=1

T∑
t=1

∥x̂v,t − x∗
v,t∥2, (9)

where x̂ and x∗ are predictions and ground truth joint co-
ordinates, respectively. In addition, we also propose a novel
metric, namely infeasible rate (IR), to measure the percentage
of predicted joints that do not satisfy the temporal constraint
C(Fw(Xp)) ≤ 0.

4.2 Implementation Details
Model architecture We adopt the Space-Time-Separable
Graph Convolutional Network (STS-GCN) [Sofianos et al.,
2021] for human pose forecasting, which is one of the SOTA
methods for spatial-temporal graph embedding. Details of
STS-GCN can be found in [Sofianos et al., 2021]. We use
4 STS-GCN layers in the encoding, which only differ in
the number of channels: from 3 (the input 3D coordinates
x, y, z), to 64, then 32, 64, and finally 3, by means of the pro-
jection matrices. At each layer we adopt batch normalization
[Ioffe and Szegedy, 2015] and residual connections.
Training details We use Pytorch for training the neural net-
works and use ADAM [Kingma and Ba, 2014] as the opti-
mizer. The learning rate is set to 0.01 and decayed by a factor
of 0.1 every 5 epochs after the 20th epoch. The batch size
is set to 256. The maximum epoch is set to 50. The con-
straint L is set to 50. One NVIDIA RTX 3090 GPU is used
for training.

4.3 Comparison with State-of-the-Art Methods
Human3.6M The MPJPE error in mm on the Human3.6M
dataset is shown in Table 1. Following [Sofianos et al., 2021],
we estimate the human pose forecasting for 720, 880 and
1, 000 milliseconds. To show the effectiveness of the model,
we also report the performance from ConvSeq2Seq [Li et
al., 2018], LTD [Mao et al., 2019], RNN-GCN [Mao et al.,
2020] and STS-GCN [Sofianos et al., 2021]. Meanwhile, to
verify the effectiveness of our proposed constrained learn-
ing approach, we also compare with SBR [Diligenti et al.,
2017], INP [Yang et al., 2020] and MT [Detassis et al., 2020].
For the compared constrained methods, they have degrada-
tion in the prediction of joint positions, which is a common
phenomenon for constrained problems. Since we can learn
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the constrained feasible solutions in an end-to-end manner
with backpropagation, our proposed method can further re-
duce the prediction error, demonstrating the effectiveness of
our method. Except for the superior performance on the pre-
diction error, the proposed method has two additional bene-
fits. First, unlike SBR and INP, which may not strictly com-
ply with the constraints, our method strictly follows the con-
straints in the inference. Second, unlike INP and MT, our
method does not need extra iterative steps in the inference
stage, showing the efficiency of our method.
AMASS Similar to Human3.6M, we conduct experiments
on AMASS for all the comparison methods. The results are
shown in the left part of Table 2. We have achieved compet-
itive results compared with the baseline methods like Con-
vSeq2Seq, LTD, RNN-GCN, and STS-GCN. Though the im-
provement is not significant, our solution can generate tempo-
ral constrained feasible solutions without iterative steps. Be-
sides, the proposed method also outperforms the constraint-
based approaches such as SBR, INP and MT, demonstrating
the effectiveness of our subspace learning strategy.
3DPW To test the generalizability of our proposed method,
we use AMASS dataset for training and the 3DPW dataset
for testing, as shown in the right part of Table 2. Since
AMASS is an extremely large-scale dataset that contains
many sub-datasets, the generalizability among different ap-
proaches does not have a significant difference. With our
temporal constrained feasible subspace learning, we can still
achieve competitive results compared with the baseline meth-
ods like ConvSeq2Seq, LTD, RNN-GCN, and STS-GCN.
Similarly, the proposed method also outperforms the other
constraint-based approaches, demonstrating the generaliz-
ability of our proposed method.
Comparison on infeasible rate (IR) We show the percent-
age of infeasible solutions that do not satisfy the temporal
constraint on Human3.6M testing set in Table 3. Since our
proposed method strictly follows the temporal constraint in
the inference stage, the IR keeps 0% in all experiments. Com-
pared with the baseline method STS-GCN, our method is over
3% better on 1000 ms forecasting.
Comparison on the predicted distributions We show the
distributions of predicted X

′′

f and the ground truth X
′′

f on
Human3.6M testing set in Figure 3. The top sub-figure shows
the comparison between distributions of the ground truth and
STS-GCN predictions. The bottom sub-figure shows the
comparison between distributions of the ground truth and our
constrained predictions. It is obvious that our constrained
predictions are much closer to the ground truth distribution.

4.4 Qualitative Results
Qualitative results of the predicted poses We show some
qualitative results of the predicted pose on Human3.6M in
Figure 4. Each subfigure represents the predicted pose along
with the time. Black, red and blue colors represent the ground
truth pose, the predicted pose by STS-GCN, and the predicted
pose by our method. From the results, the generated poses by
our proposed method are closer to the ground truth compared
with the baseline method, demonstrating the effectiveness of
our method.

Figure 3: Top: the comparison between X
′′
f distributions of the

ground truth and STS-GCN predictions on the Human3.6M test-
ing set. Bottom: the comparison between X

′′
f distributions of the

ground truth and our constrained predictions the on Human3.6M
testing set.

Examples of the temporal constraints on joints To ver-
ify the effectiveness of our temporal constrained solutions,
we visualize the change of velocities of each joint of the pre-
dicted poses in Figure 5. We calculate the change of veloc-
ity, i.e., X

′′

f , on the predicted pose along x, y, z and then
draw arrows on the joints, where the arrow direction repre-
sents the direction of X

′′

f and the arrow length represents the
magnitude of X

′′

f . The first and second row shows pose ex-
amples predicted by STS-GCN and our method, respectively.
Obviously, the predictions by STS-GCN have many abrupt
changes that do not obey the temporal constrained rules. In
contrast to STS-GCN, our method can generate poses with
only subtle changes in the velocities, which are closer to
real-world movement, showing the effectiveness of our con-
strained solution.

4.5 Ablation Study
Regularization loss functions As defined in Eq. (5), we
consider several regularization terms Rw in the training. The
regularization terms include the MSE of the change of ve-
locities with respect to the ground truth, Lv; and the regular-
ization on the change of velocities, Lr. These regularization
losses are defined as follows,

Lv = ∥P(H(Fw(Xp)))−X∗
f

′′
∥2,

Lr = [∥P(H(Fw(Xp)))∥ − δ̃ub]+.
(10)

Note that the prediction in the inference stage is defined as
X̂f = H−1(P(H(Fŵ(Xp)))), where the temporal feasibil-
ity is not affected by the regularization terms. The results
with different combinations of the regularization terms train-
ing on the Human3.6M dataset are shown in Table 4. The
weight λ in Eq. (5) is set to 1 by default. For each column in
the table, ✓ mark represents the adopted regularization term
in training. For the rows of Prelu and Pelu, the best perfor-
mance is shown in bold. For both the projection functions
Prelu and Pelu, smaller errors are achieved when Lv and Lr
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Actions Walking Eating Smoking Discussion

msec 720 880 1000 720 880 1000 720 880 1000 720 880 1000

ConvSeq2Seq 77.2 80.9 82.3 72.8 81.8 87.1 69.4 77.2 81.7 112.9 123.0 129.3
LTD 54.4 57.4 60.3 62.6 71.3 75.8 59.3 67.1 72.1 103.9 113.6 118.5
RNN-GCN 52.1 55.5 58.1 61.4 70.6 75.5 56.6 64.4 69.5 102.2 113.2 119.8
STS-GCN 45.0 48.0 51.8 40.2 46.2 52.4 39.6 45.4 50.0 63.6 72.3 78.8

SBR 48.1 52.3 56.3 41.6 49.9 55.7 40.7 46.9 52.8 66.8 75.7 81.3
INP 54.1 56.6 57.3 50.6 53.7 58.1 47.8 51.6 53.9 71.1 78.2 83.8
MT 46.0 49.3 52.6 41.4 47.3 54.1 40.5 46.2 51.0 64.5 73.1 79.4
Ours (STS-GCN + TCSL) 44.4 48.1 50.7 39.1 45.4 49.7 38.1 44.0 47.6 63.5 72.1 76.9

Actions Directions Greeting Phoning Posing

msec 720 880 1000 720 880 1000 720 880 1000 720 880 1000

ConvSeq2Seq 99.8 109.9 115.8 130.7 142.7 147.3 92.1 105.5 114.0 148.8 171.8 187.4
LTD 88.1 99.4 105.5 119.7 132.1 136.8 83.6 96.8 105.1 137.8 160.8 174.8
RNN-GCN 88.2 100.1 106.5 118.4 132.7 138.8 82.9 96.5 105.0 136.8 161.4 178.2
STS-GCN 56.5 64.5 71.0 76.3 85.5 91.6 51.1 59.3 66.1 79.2 94.5 106.4

SBR 59.8 69.5 74.9 79.9 89.5 95.5 52.5 62.7 69.2 84.2 102.0 111.4
INP 66.0 72.7 77.7 83.1 91.4 98.0 60.2 65.0 70.3 88.9 100.8 110.2
MT 57.3 65.0 71.4 77.2 86.4 92.3 52.1 59.9 67.1 79.6 95.0 106.0
Ours (STS-GCN + TCSL) 55.2 63.9 68.7 75.8 85.4 91.7 50.1 58.4 63.5 79.0 95.3 102.9

Actions Purchases Sitting Sitting Down Taking Photo

msec 720 880 1000 720 880 1000 720 880 1000 720 880 1000

ConvSeq2Seq 129.1 143.1 151.5 98.8 112.4 120.7 125.1 139.8 150.3 102.4 117.7 128.1
LTD 114.9 127.1 134.9 96.2 110.3 118.7 118.2 133.1 143.8 93.5 108.4 118.8
RNN-GCN 110.9 125.0 134.2 93.1 107.0 115.9 116.1 132.1 143.6 90.1 105.5 115.9
STS-GCN 74.9 86.2 93.5 57.0 67.4 75.2 73.9 86.2 94.3 57.4 67.2 76.9

SBR 79.6 90.3 96.4 58.3 67.9 76.1 76.7 90.3 98.4 61.6 74.8 80.4
INP 83.2 91.7 97.9 65.8 72.0 76.0 85.3 93.3 96.2 69.8 75.5 81.0
MT 75.3 86.1 93.6 57.8 67.6 75.9 74.3 86.1 93.9 57.6 67.1 75.6
Ours (STS-GCN + TCSL) 74.7 85.2 90.9 56.2 66.2 71.4 73.6 84.5 91.5 56.1 65.2 72.5

Actions Waiting Walking Dog Walking Together Average

msec 720 880 1000 720 880 1000 720 880 1000 720 880 1000

ConvSeq2Seq 100.3 110.7 117.7 133.8 151.1 162.4 77.7 82.9 87.4 104.7 116.7 124.2
LTD 90.6 101.1 108.3 120.3 136.3 146.4 60.3 63.1 65.7 93.6 105.2 112.4
RNN-GCN 89.0 100.3 108.2 120.6 135.9 146.9 57.8 62.0 64.9 91.8 104.1 112.1
STS-GCN 56.8 66.1 72.0 85.7 96.2 102.6 44.0 48.2 51.1 60.1 68.9 75.6

SBR 59.3 69.1 75.6 91.2 100.3 106.3 47.2 52.6 57.2 63.2 72.9 79.2
INP 64.9 72.6 76.8 93.6 101.3 107.0 53.1 55.2 58.9 69.2 75.5 80.2
MT 57.8 66.6 72.2 86.4 96.6 103.3 44.9 48.7 51.3 60.8 69.4 76.0
Ours (STS-GCN + TCSL) 55.3 64.3 70.3 86.2 93.9 100.7 43.9 48.9 51.3 59.4 68.1 73.4

Table 1: MPJPE error in mm for prediction of 3D joint positions on Human3.6M. TCSL is short for temporal constrained subspace learning.
We report results for the future 720, 880, and 1000 milliseconds, respectively. The first four methods are commonly used pose forecasting
methods, and the last four methods are constrained learning methods.

are both used as the regularization, which shows the regular-
ization in the constrained subspace can improve the learning
performance.

Projection functions Many projection functions can be ap-
plied as long as they are differentiable in the training stage.
Except for the projection function described in Eq. (8), we
also consider the function constrained by the exponential lin-

ear unit (ELU), i.e.,

Pelu(F
′′

w) = ELU
(
2δ̃ub − ELU(δ̃ub −F

′′

w;α);α
)
− δ̃ub,

(11)
where ELU(x;α) = max(0, x)+min(0, α(exp(x)− 1)) and
α is set to 1 by default. To verify the effectiveness of different
projection functions, i.e., Prelu and Pelu, we show the results
in Table 4, along with the combination of different regulariza-
tion losses. The results that Pelu achieves worse performance
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Actions AMASS-BMLrub 3DPW

msec 720 880 1000 720 880 1000

ConvSeq2Seq 87.0 91.5 93.5 77.0 83.6 87.8
LTD 65.7 71.3 75.2 65.8 71.5 75.5
RNN-GCN 58.6 63.4 67.2 63.6 69.7 73.7
STS-GCN 38.1 42.7 45.5 35.7 39.6 42.3
SBR 38.7 43.7 53.8 36.3 40.7 48.9
INP 37.9 43.2 45.8 35.8 40.3 42.9
MT 39.5 44.2 46.4 45.4 46.6 51.9
Ours 37.5 42.6 45.4 35.5 40.1 42.5

Table 2: Left: average MPJPE in mm over the BMLrub test se-
quences. Right: average MPJPE in mm, testing the generalizability
on 3DPW of models trained on AMASS.

msec 720 880 1000

STS-GCN 1.55 2.10 3.22
SBR 1.17 0.92 0.78
INP 9.67 10.74 9.67
MT 1.24 1.30 2.25
Ours 0.00 0.00 0.00

Table 3: Infeasible rate (%) on Human3.6M dataset.

Figure 4: Visualization examples on the Human3.6M dataset. Each
subfigure represents the predicted pose along with the time. Black,
red and blue colors represent the ground truth pose, predicted pose
by STS-GCN, and predicted pose by our method. Obviously, our
method produces smaller errors.

than Prelu for each loss combination are reasonable. When the
target output of Pelu is touching the bound of the constraint,
it will push the input to positive infinity or negative infinity
in the back-propagation, causing instability in training and
degradation on the performance.

Figure 5: The visualization of the change of velocities for the joints.
The first and second row shows examples of predicted poses by STS-
GCN and our method, respectively. We calculate the change of ve-
locity, i.e., X

′′
f , on the predicted pose along x, y, z and then draw

arrows on the joints, where the arrow direction represents the direc-
tion of X

′′
f and the arrow length represents the magnitude of X

′′
f .

Compared with STS-GCN, ours can generate only a subtle change
of velocities, showing the effectiveness of our constrained solution.

Regularization Loss Projection

Lv Lr Prelu Pelu

78.2 78.6
✓ 74.3 75.5
✓ ✓ 73.4 73.8

Table 4: MPJPE error in mm for prediction of 3D joint positions on
Human3.6M with variant regularization terms and projection func-
tions for training. The best performance is shown in bold.

5 Conclusion
In this paper, we propose a temporal constrained feasible sub-
space learning for the human pose forecasting task. The tem-
poral constrained subspace is explicitly formulated with pro-
jection operations. Then the final prediction is obtained by an
inverse transformation. The proposed method can guarantee
feasible solutions, and no iterative steps are required in the
inference stage. The efficiency and effectiveness are verified
on the Human3.6M, AMASS, and 3DPW datasets. Ablation
studies show the importance of different projection functions
and regularization terms. We hope this research can open up
more exploration of real-world constrained problems.

Limitations and future work Though good performance
has been achieved for the proposed feasible solutions, there
are a few limitations. First, we only consider the temporal
constraints in the current work. For human pose models, there
are also spatial constraints among different joints. Second,
only human pose forecasting problems are considered in the
current work. We plan to consider spatial constraints and ex-
tend our method to other tasks in future work.
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