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Abstract

Mammogram image is important for breast can-
cer screening, and typically obtained in a dual-
view form, i.e., cranio-caudal (CC) and medio-
lateral oblique (MLO), to provide complementary
information. However, previous methods mostly
learn features from the two views independently,
which violates the clinical knowledge and ignores
the importance of dual-view correlation. In this
paper, we propose a dual-view correlation hybrid
attention network (DCHA-Net) for robust holistic
mammogram classification. Specifically, DCHA-
Net is carefully designed to extract and reinvent
deep features for the two views, and meanwhile
to maximize the underlying correlations between
them. A hybrid attention module, consisting of lo-
cal relation and non-local attention blocks, is pro-
posed to alleviate the spatial misalignment of the
paired views in the correlation maximization. A
dual-view correlation loss is introduced to max-
imize the feature similarity between correspond-
ing strip-like regions with equal distance to the
chest wall, motivated by the fact that their features
represent the same breast tissues, and thus should
be highly-correlated. Experimental results on two
public datasets, i.e., INbreast and CBIS-DDSM,
demonstrate that DCHA-Net can well preserve and
maximize feature correlations across views, and
thus outperforms the state-of-the-arts for classify-
ing a whole mammogram as malignant or not.

1 Introduction
Breast cancer is the most common malignant tumor of
middle-aged and elderly women, and around 1.2 million
women are diagnosed with breast cancer every year [Hosseini
et al., 2016]. The classification of breast cancer mainly relies
on the immunohistochemical diagnosis of breast cancer tis-
sue, which is complex and traumatic and thus can not meet the
needs of accurate diagnosis and personalized treatment. With

the development of medical imaging techniques, radiomics-
based breast cancer diagnosis [Lu et al., 2018] has become a
new non-invasive cancer assessment approach, which is com-
prehensive, easy to obtain and economic.

Among the imaging modalities, mammography has been
proven to be effective in early detection and diagnosis [Moss
et al., 2012]. In a standard mammographic screening exami-
nation, the 3D breast will be projected onto a 2D X-ray film.
Typically, each breast will be exposure in two different an-
gles, i.e., cranio-caudal (CC) view where X-ray from top to
bottom and mediolateral oblique (MLO) view where X-ray
projects outward and downward at 45 degrees from the inner
and upper part of the breast. Such dual-view mammogram is
necessary and sufficient for radiologists to fully understand
the 3D breast with 2D X-ray images, and thus can give accu-
rate clinical decisions by following the standard Breast Imag-
ing Reporting and Data System (BI-RADS) [Liberman and
Menell, 2002]. However, mammogram inspecting is time-
consuming and expertise-required, and usually suffers from
intra- and inter-observer bias [Bae et al., 2014]. Therefore,
varied computer-aided diagnosis (CAD) systems have been
emerging in recent years to provide fast and objective clinical
decisions to assist large-scale screening.

Most traditional CADs [El-Naqa et al., 2002; Arevalo et
al., 2016] for breast cancer screening rely on the analysis
of individual lesions, and share a common pipeline mainly
consisting of three consecutive steps (i.e., lesion detection,
feature extraction, classification). They usually require a
costly manual labeling of lesion masks either in training or
test phase, heavily preventing the screening for a large pop-
ulation. In comparison, several advanced CADs have been
proposed to classify a whole mammogram in a holistic fash-
ion with only needs of the image-level supervisions indicat-
ing whether a mammogram contains malignant lesions or not.
For exampel, Zhu et al. proposed the Deep MIL [Zhu et al.,
2017] to form the holistic mammogram classification prob-
lem into a multiple instance learning (MIL) task, and used
three different MIL losses, i.e., max pooling loss, label as-
sign loss, and sparsity loss, to fine-tune a pre-trained AlexNet.
Similarly, Shu et al. [Shu et al., 2020] designed region-based
group-max pooling (RGP) and global-based group-max pool-
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ing (GGP) to select more representative local features for the
holistic mammogram classification.

Despite their success, these CADs can all be categorized as
the single-view based approach, which treats CC and MLO
views independently. However, the dual-view mammogram
is naturally more suitable and useful than one-view infor-
mation for reliable diagnosis. In a clinical practice, radiol-
ogists often resort to the MLO view to confirm the suspect
lesions found in the CC view. Furthermore, a standard imag-
ing routine typically provides a paired CC and MLO views for
screening, bringing little extra workload for data acquisition
to develop dual-view CADs. In view of these, many dual-
view based CADs [AlGhamdi and Abdel-Mottaleb, 2021;
Yan et al., 2021b; Xian et al., 2021; Cao et al., 2021] have
been emerged in the last decade.

Most existing dual-view based CADs make use of dual-
view information to boost the performance of lesion detec-
tion, which is an intermediate task of breast cancer screening.
For example, Yan et al. [Yan et al., 2021a] utilized a shared
YOLOv3 [Redmon and Farhadi, 2018] for proposing mass
candidates and then paired each candidate across views and
concatenated their features to directly classify whether they
are matched or not by a metric network. Ma et al. [Ma et al.,
2021] proposed the Cross-View Relation Region-based CNN
(CVR-RCNN) for robust mass detection by relating each can-
didate in one view to all candidates in another based on their
feature similarities in order to better suppress false detections.
For the task of classification, Bekker et al. [Bekker et al.,
2015] demonstrated a promising improvement for classify-
ing lesions of clustered microcalcification (MC) by combin-
ing the results of two single-view logistic regressions on CC
and MLO respectively. Carneiro et al. [Carneiro et al., 2015;
Carneiro et al., 2017] combined images from both views as-
sociating with their corresponding lesion masks, i.e., mass
and MCs, and explored how to fuse and where to fuse those
dual-view information in a dual-path CNN.

Although the above dual-view CADs benefit from auxil-
iary information brought by additional views, they mostly
learn features for different views independently, and produce
the clinical decision by a simple combination of them (e.g.,
adding or concatenating). With no specific constraints, the
underlying feature correlations (i.e., consistency and comple-
mentarity) across views are often ignored or failed to be cap-
tured, which leaves a great improving room. Furthermore, the
holistic mammogram classification remains unstudied, and
these CADs all require a prior of lesion masks, seriously hin-
dering the application in large-scale screening.

In this paper, we for the first time aim to explicitly max-
imize the feature correlation across views for robust holistic
mammogram classification requiring no lesion masks. The
naive idea is to utilize a shared convolutional neural network
(CNN) to extract single-view feature maps in parallel, and
maximize the correlation loss proposed in [Yao et al., 2017]
to force the feature maps to be consensus across views. How-
ever, such correlation maximization has a prerequisite that the
two input images are spatially aligned. For mammograms in
our case, view changing and tissue superimposition make the
dual-view images hardly meet the prerequisite, nullifying the
benefits of the correlation maximization consequently.

To address this, there are two simple solutions. One is to
spatially align pixels in the CC and MLO views, but practi-
cally infeasible. Another is to reduce spatial dimensions to
loosen the requirement of alignment, but inevitably causes
non-trivial information loss. Between these two solutions,
we innovatively find a compromise that having each pixel en-
riched with information from its neighbors, which we argue
is equivalent to local spatial dimension reduction but without
much information loss. To this end, we empower the shared
CNN by introducing both non-local and local attention mech-
anisms, and thus name it Dual-view Correlation Hybrid At-
tention Network (DCHA-Net)1.

Concretely, the DCHA-Net has two shared branches for
CC and MLO views respectively and each branch is a modi-
fied truncated ResNet101 [He et al., 2016] with the last few
bottlenecks replaced by the proposed hybrid attention module
to reinvent features for the purpose of correlation maximiza-
tion. The hybrid attention module consists of a local relation
block [Hu et al., 2019] and a non-local attention block [Wang
et al., 2018] to have each pixel in the resulting feature map
contain information from its surroundings (local relation) as
well as information of other pixels within its belonging strip-
like region parallel to the chest wall (non-local attention). The
motivation is based on a physical fact that two strip-like re-
gions at the same distance from the chest wall are from the
same tissue slice and thus matched and high-correlated, that
is, the CC and MLO views are roughly aligned along the di-
rection perpendicular to the chest wall. In view of this, the
correlation loss is calculated within every matched strip-like
regions in CC and MLO views, and optimized to make the
two branches of DCHA-Net mutually assist each other.

In summary, our contributions are listed:
- We for the first time propose to learn dual-view features

of mammograms by explicitly maximizing the correla-
tions between those matched strip-like regions across
views. With such constraint, the consistent and com-
plementary dual-view features could be better captured
even under no supervision of lesion labels, yielding a ro-
bust performance of holistic mammogram classification.

- We propose a DCHA-Net where the hybrid attention
module enriches each pixel with its local contexts and
global information of its belonging strip-like region,
making the correlation maximization correct and effec-
tive even if the paired views are not aligned.

- We evaluate the proposed DCHA-Net on two well-
known datasets, i.e., INbreast [Lee et al., 2017] and
CBIS-DDSM [Moreira et al., 2012], and the experimen-
tal results verify our superior performance over other
state-of-the-art methods of breast cancer classification.

2 Method
This section is organized as follows: we first describe the
framework of DCHA-Net and how to maximize dual-view
correlations in Sec. 2.1, then explain two naive solutions to
meet the requirement of correlation maximization and lead

1https://github.com/BryantGary/IJCAI23-Dual-view-
Correlation-Hybrid-Attention-Network.
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Figure 1: The framework of our proposed DCHA-Net which utilizes a shared modified truncated ResNet101 (without drawing the
skip connections) for feature extraction and a shared hybrid attention module to reinvent feature maps for dual-view correlation
maximization.convK ×K, cN, sM means convolving by N kernels with the size of K ×K and stride of M .

Figure 2: An idealized model explaining the relationship between
3D breast and 2D dual-view images. d‖ and d⊥ represent two di-
rections parallel and perpendicular to the chest wall respectively.

out our solution in Sec. 2.2. At last, we detail the hybrid at-
tention module in Sec. 2.3.

2.1 DCHA-Net and Correlation Maximization
Fig. 1 visualizes DCHA-Net, which contains two shared
branches for CC and MLO view images, respectively. Given
two images, i.e., ICC and IMLO, we first resize them to
256× 256, remove backgrounds and pectoralis muscles, and
then align the chest wall with the bottom edge of the image.

In each branch, we utilize a modified and truncated
ResNet101 [He et al., 2016] as a feature extractor, which is
detailed in the light orange dashed box of Fig. 1. Compared
to the vanilla ResNet101, we abandon the first max pooling
layer and the last three bottlenecks (9 layers) to preserve more
spatial information and to compromise computational costs
for the usage of our proposed hybrid attention module. By
three downsampling layers with the stride of 2, the feature
extractor downscales the image by 82 times, yielding fea-
ture maps FCC and FMLO with the size of 32 × 32. The
feature map is then reinvented by our proposed hybrid atten-
tion module to a new feature map, that is, FCC → RCC and
FMLO → RMLO, (see Sec. 2.3 for details).

A dual-view correlation loss inspired by [Yao et al., 2017]
is employed to explicitly maximize the feature correlations
between the paired feature maps. Viewing the breast as a
rigid semi-sphere, each slice in the 3D breast corresponds to
two strip-like regions in both CC and MLO with equal dis-
tance to the chest wall as shown in Fig. 2, and the matched

strip-like regions across views are thus highly-correlated with
each other. Therefore, we propose to maximize correlations
between every two row vectors with identical indexes, i.e.,
RCC(i) and RMLO(i), since their receptive fields just fit two
matched strip-like regions. Concretely, the dual-view correla-
tion loss is calculated as an average of cosine similarities be-
tween every matched row vectors in dual-view feature maps:

Lcorr = − 1

32

31∑
i=0

Sim (RCC(i), RMLO(i)) (1)

where RCC(i) indicates the i-th row vector in RCC and sim-
ilar to RMLO(i). The cosine similarity Sim (X,Y ) is calcu-
lated as follows:

Sim (X,Y ) =

(
X −X

) (
Y − Y

)
‖X −X‖‖Y − Y ‖

(2)

where X is a scalar by averaging X and similar to Y .
Note that the dual-view correlation loss in Eq. (1) is com-

puted based on RCC and RMLO rather than the original fea-
ture maps FCC and FMLO because pixels are not aligned
across views for the soft and non-rigid breast in the real
world, not an idealized phantom shown in Fig. 2. Hence,
forcibly calculating Sim(FCC , FMLO) could mess up the
dual-view correlation loss and make it unable to give full ef-
fect. That is the very reason we introduce the hybrid attention
module for feature reinvention. Before giving details of the
hybrid attention module, we highlight our motivations in the
next subsection.

2.2 Motivation of Hybrid Attention
The correlation loss is meant to enhance the feature learning
for the multi-phase [Zhou et al., 2019] or multi-modality [Yao
et al., 2017] data, while remains under-studied for the multi-
view mammograms in our case. The main resistance is that
the correlation loss asks the inputs should be spatially aligned
beforehand, that is, X(i, j) and Y (i, j) in Eq. 2 should corre-
spond to the same tissue for the same location (i, j). To this
end, the very straightforward solution is to perform registra-
tion on dual-view images, which, however, is infeasible since
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Figure 3: Diagrams of local (left) and non-local (right) attention
mechanisms on a CC view image.

it is an ill-posed problem to completely disentangle those su-
perimposed tissues from only two X-ray images according to
the radon transform theory [Helgason and Helgason, 1980].

Another naive solution is spatial dimension reduction, per-
forming global average pooling on FCC and FMLO, which
makes correlation only rely on information along channels.
However, this could result in dramatic information loss, since
spatial dimension reduction is equivalent to eliminating fea-
ture differences between pixels at different locations.

Between these two simple solutions, we come up with a
trade-off to alleviate the misalignment problem in dual-view
mammograms. Instead of simply reducing the spatial dimen-
sions, we introduce a local attention mechanism to make each
pixel perceive its neighbors within a certain range, as shown
in the left image of Fig. 3. Within the range, the misalign-
ment has a chance to be corrected. That is, if it has a high
possibility that a pixel FMLO(i, j) corresponds to its counter-
part around FCC(i, j), we relate it to its belonging local patch
{FCC(i+θ, j+θ),−σ < θ < σ, σ > 0}, where σ is the mis-
alignment range, yielding a reinvented map RCC(i, j) (simi-
lar to RMLO(i, j)). Hence, the reinvented features are more
friendly to compute the dual-view correlation loss, since each
pixel is already encoded with its neighbors, among which the
corresponding pixel in another view can find its align one.

For pixels in each row across views, the misalignment
range σ is hard to estimate, as implied in Fig. 2. To tackle
this, we also introduce a non-local attention mechanism to
have each pixel contain the entire information of its belong-
ing row, as shown in the right image of Fig. 3. Combining
both local and non-local attentions, the feature map extracted
by the modified truncated ResNet101 is reinvented in a hy-
brid attention fashion. In the next subsection, we instantiate
the hybrid attention as our proposed hybrid attention module
and give details of its two key constitutions, i.e., local relation
block and non-local attention block.

2.3 Hybrid Attention Module
A vanilla attention block [Vaswani et al., 2017] typically con-
tains three numerical units, i.e., a query of feature q ∈ RC×1

to encode, features V ∈ RC×D to relate, and keys of fea-
tures K ∈ RC×D to compute attentions with the query. The
relations are obtained by performing the dot products of the
query with all keys, dividing each by

√
C, and applying a

softmax function successively. Hence, we have a new feature
f ′ ∈ RC×1 encoded with all information from V based on
the attention block:

f ′T = softmax(
qTK√
C

)V T (3)

Next, we describe the two instantiations of Eq. (3), i.e., lo-
cal relation block and non-local attention block, which are de-
signed to accomplish the manipulations visualized in Fig. 3.

Local Relation Block
As shown in the left part of Fig. 4, we first compute a key
pool and a query pool from the original feature map F ∈
RC×H×W (omitting the subscripts CC and MLO) by two
1 × 1 convolution layers. C indicates the dimensions of the
channel and H ×W indicates the feature map size.

From the query pool denoted as the orange cuboid in Fig. 4,
we extract feature vectors as queries at every location by a
1 × 1 sliding window (also can directly reshape), forming
HW queries {qi ∈ RC×1, i = 0, ...,HW − 1}. Similarly,
we can have keys {Ki ∈ RC×k2

, i = 0, ...,HW − 1} by
performing a k × k sliding window with zero padding from
the key pool denoted as the green cuboid in Fig. 4 and by
flattening. The parameter k controls the range of the possible
misalignment, and we empirically set it to 3 corresponding to
a 24× 24 receptive field in the original image I .

Each relation map is obtained by softmax(qTi Ki/
√
C),

and thus those related features {f ′i ∈ RC×1, i = 0, ...,HW−
1} can be calculated as:

f ′Ti = softmax(
qTi Ki√
C

)V T
i (4)

where features {Vi ∈ RC×k2

, i = 0, ...,HW − 1} are ex-
tracted also by the sliding window and flattening on the origi-
nal feature map F . Those related features with the total num-
ber of HW are at last packed together to F ′ ∈ RC×H×W

by the reverse sliding window process. A skip connection is
employed to have F ′ = F ′ + F .

By doing so, each entry of F ′ carries information from its
corresponding pixel in F , and neighboring ones defined by
V . Furthermore, the relation map defined based on qi and Ki

is also learned to make each entry in F ′ pay more attention to
its surroundings more likely to compensate misalignment to
another view, and vice versa.

Non-local Attention Block
As shown in the right part of Fig. 4, we also compute a key
pool and a query pool from F ′ by another two 1× 1 convolu-
tion layers.

Unlike the local relation block, we generate keys {Ki ∈
RC×W }, queries {Qi ∈ RC×W }, and features {Vi ∈
RC×W } by a 1×W sliding window, where i = 0, ...,H − 1,
since we intend to relate each pixel to its belonging strip-like
region (i.e., each row). Note that, Qi is also equivalent to
packing together all queries qi belonging to the same row.
Hence, the related features {F ′′i ∈ RC×W , i = 0, ...,H − 1}
can be calculated as:

F ′′Ti = softmax(
QT

i Ki√
C

)V T
i (5)

The overall attention-derived feature map R is obtained by
a reverse sliding window on {F ′′i }. Similarly, a skip connec-
tion is employed to have R = R+ F ′.

Empowered by the hybrid attention module, R has each
entry related to both its strip-like region and neighbors, and
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Figure 4: Detailed architectures of two key blocks of our proposed DCHA-Net, i.e., local relation block and non-local attention block.
(HW )# C × k2 means numerical units with the total number of HW and the size of C × k2, and similar to others.

thus makes the dual-view correlation loss in Eq. (1) play its
full effect, better mining and preserving those underlying fea-
ture correlations across views without a need of registration.

2.4 Loss for Training
We contribute the proposed DCHA-Net to solve the holis-
tic mammogram classification task. To this end, we add two
classification heads without weight sharing on the top of the
extracted and reinvented feature maps, i.e., RCC and RMLO

respectively, whose size is 1024×32×32 as shown in Fig. 1.
Each head consisting of two layers first performs global av-
erage pooling to get a 1024-d representation, and utilizes a
full-connected layer and sigmoid function to predict a single
unit p indicating the possibility of the input image containing
the malignant breast tumor lesion or not. The classification
losses for the two views are calculated as follows:

LCC
clss = − (ylog(pCC) + (1− y)log(1− pCC)) (6)

LMLO
clss = − (ylog(pMLO) + (1− y)log(1− pMLO)) (7)

where pCC and pMLO are predictions for CC and MLO view
images respectively. Totally, the final loss to train DCHA-Net
is thus calculated as:

L = Lcorr + LCC
clss + LMLO

clss (8)

3 Experiments
3.1 Datasets and Experimental Setup
INbreast: The INbreast dataset collects in total 410 full-
field digital mammographic images, from which 90 cases,
i.e., patients, with both breasts and 25 cases with only one
side of breast are included. Multiple different types of an-
notations are provided, including the BIRADS classification
scores, mass/calcification masks for segmentation, and other
annotations such as pectoralis muscles and distortions.

CBIS-DDSM: The CBIS-DDSM dataset has in total 3071
scanned film mammography images (including 891 mass
cases and 753 calcification cases). The CBIS-DDSM is a se-
lected version of DDSM, with higher image and label quality,
and more friendly access. It also contains precise annotations

including ROI segmentation masks, bounding boxes and the
BIRADS scores.

We label images as two classes: the BIRADS scores be-
longing to {1, 2, 3} as normal or benign, and {4, 5, 6} as
malignant. For INbreast, we randomly split 80% cases for
training and the remaining 20% cases for test. For CBIS-
DDSM, we follow its default division setting with 85% train-
ing cases and 15% test cases. Note that, no images from the
same patient are cross-used in training and test sets for the
two datasets. During the training, we exclude cases with only
single view, and augment the original data with random rota-
tion and flipping. For the evaluation, we utilize two metrics,
i.e., the Accuracy and the Area Under the receiver operating
characteristic Curve (ROC), i.e., the AUC value.

3.2 Implementation Details
For data pre-processing, we first use OpenCV edge detection
to remove background. We use the provided GT masks to
remove pectoralis muscles for INbreast. We manually find
a line fitting the chest wall, and then remove regions on the
non-breast side for CBIS-DDSM. We use lines to fit chest
wall and align the two lines across views.

The proposed DCHA-Net is implemented with the Pytorch
library and trained on one NVIDIA GeForce RTX 3090 GPU
with 24 GB memory. We use a pretrained ResNet-101 for
weight initialization, and an Adam optimizer. The learning
rate starts at 5e-5 and gradually decays by 0.9. Our method
uses two classification heads and thus gives two predictions
for a dual-view image of a breast, and we take the average
output unit as the final predicted probability of being malig-
nant and binarize it using a threshold 0.5.

3.3 Comparison with the State-of-the-arts
We first compare our method with eight previous state-of-the-
arts on INbreast, including Domingues et al. [Domingues et
al., 2012], deep MIL [Zhu et al., 2017], Shams et al. [Shams
et al., 2018], RGP and GGP [Shu et al., 2020], Carneiro et
al. [Carneiro et al., 2017] and MCRLA [Li et al., 2021].
As shown in Table 1, most approaches are single view-
based methods, which can hardly achieve satisfactory per-
formance without extracting and utilizing dual-view informa-
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Method Views Data Division Accuracy AUC

Dataset: INbreast

Domingues et al. [Domingues et al., 2012] Single Image 0.890 -
Pretrained CNN+RF [Dhungel et al., 2016] Single Image 0.910±0.02 0.760±0.23
Deep MIL [Zhu et al., 2017] Single Image 0.900±0.02 0.890±0.04
Shams et al. [Shams et al., 2018] Single Image 0.935±0.03 0.925±0.02
RGP [Shu et al., 2020] Single Image 0.919±0.03 0.934±0.03
GGP [Shu et al., 2020] Single Image 0.922±0.02 0.924±0.03
Carneiro et al. [Carneiro et al., 2017] Dual Patient - 0.860±0.09
MCRLA [Li et al., 2021] Dual Patient 0.912 0.942
DCHA-Net Dual Patient 0.955±0.01 0.950±0.02

Dataset: CBIS-DDSM

Deep MIL [Zhu et al., 2017] Single Patient 0.742±0.03 0.791±0.02
RGP [Shu et al., 2020] Single Patient 0.762±0.02 0.838±0.01
GGP [Shu et al., 2020] Single Patient 0.767±0.02 0.823±0.02
MCRLA [Li et al., 2021] Dual Patient 0.766 0.824
Petrini et al.* [Petrini et al., 2022] Dual Patient - 0.842±0.03
DCHA-Net Dual Patient 0.781±0.01 0.846±0.01

Table 1: Quantitative comparison of different methods on both the INbreast and the CBIS-DDSM dataset. Our final results of DCHA-Net
are obtained by using data-augmentation techniques during training. Results of other groups except ours are directly inherited from papers of
Shams et al., RGP/GGP, Carneiro et al., MCRLA and Petrini et al.. ‘*’ indicates results without test-time augmentation for a fair comparison.

tion. Moreover, deep MIL, Shams et al. and RGP/GGP all
divide data by images, where images in the same case may
be split into the training and testing set at the same time. In
contrast, DCHA-Net effectively mines dual-view features on
patient-division data, which surpasses all state-of-the-art ap-
proaches by a great margin, achieving the best results in terms
of the average Accuracy (0.955) and the AUC (0.950).

We also evaluate on the CBIS-DDSM dataset. As shown
in the bottom of Table 1, we compare our DCHA-Net with
Deep MIL, RGP/GGP, MCRLA and Petrini et al. [Petrini
et al., 2022]. Note that all approaches followed the de-
fault data division in the CBIS-DDSM dataset and trained on
patient-division data. In comparison, our approach remark-
ably achieves the best average accuracy and the AUC value,
remaining consistency results as those on INbreast.

Comparing results between the two datasets, it is worth
noting that the performance on the INbreast dataset is greater
than that on the CBIS-DDSM dataset. We believe this is pos-
sibly caused by different image quality. For instance, the IN-
breast images were collected using more advanced mammog-
raphy screening techniques, which can help extract more use-
ful features during training.

3.4 Ablation Analysis
Ablation Analysis of Key Components
We conduct an ablation study on the INbreast dataset to anal-
ysis impacts of key components in the DCHA-Net. Here, we
disable the data augmentation techniques used in comparison
with the state-of-the-arts. Table 2 shows the comparison re-
sults of six variants, including: 1) “Baseline” which directly
trains on clear ResNet backbones (see the 1st row); 2) “Corr.
only” that only utilizes correlation constraints during training
(the 2nd row); 3) “Corr. plus local relation” that uses only
local attention with correlation constraints (the 3rd row); 4)
“Corr. plus non-local atten.” that uses only non-local atten-

tion with correlation constraints (the 4th row); 5) “Hybrid-
atten. only” that only adds the hybrid-attention module (the
5th row) and 6) “DCHA-Net” that utilizes both the hybrid-
attention module and correlation constraints (the 6th row).

Four observations can be made from the results. First, the
baseline achieves the worst performance, indicating the sig-
nificance of both the correlation constraints and the hybrid-
attention module. More specifically, the correlation con-
straints and the hybrid-attention module can respectively re-
sult in an increment of 1.136% and 1.515% in the average
accuracy, and an increment of 0.007 and 0.043 in the AUC
value. Second, compared to Baseline, DCHA-Net greatly im-
proves the accuracy by 4.924% and the AUC by 0.067. Third,
when only using local (non-local) attention with correlation
maximization, ACC is 90.152% (89.773%) and AUC is 0.909
(0.901), inferior to those achieved by combining both atten-
tions (i.e., hybrid). Fourth, we can observe that the correla-
tion constraints can result in higher improvements after using
the hybrid-attention module. This indicates that the hybrid-
attention module can effectively tackle the dual-view spatial
misalignment problem, and help capture correct correlation
information maximally.

In addition, we also perform student t-test, and report p-
values for both metrics. Comparing DCHA-Net with Base-
line (Correlation-only), the p-values for Accuracy and AUC
are 7.78e-4 and 2.81e-2 (1.11e-2 and 1.05e-3), respectively.
Comparing Corr. only with Baseline, the corresponding p-
values are 2.51e-1 and 7.66e-1. This indicates the effective-
ness of the hybrid-attention module on misalignment.

To further demonstrate the improvements of mining dual-
view information, we used Grad-CAM [Selvaraju et al.,
2017] to visualize the most suspicious malignant areas (e.g.,
mass) predicted by different groups of methods. Grad-CAM
uses the gradient as weight to highlight attentive areas, which
are those more contribute to the final classification prediction.
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(a) Raw Image

(c) Correlation only (d) DCHA-Net

(b) Baseline

Figure 5: Visualization of the most suspicious malignant areas pre-
dicted by different methods. Each group is sampled from a same
case with paired CC and MLO images.

Local atten. Non-local
atten.

Dual-view
corr.

Acc. (%) AUC

% % % 87.879 0.870
% % ! 89.015 0.877
! % ! 90.152 0.909
% ! ! 89.773 0.901
! ! % 89.394 0.913
! ! ! 92.803 0.937

Table 2: Ablation analysis of the proposed hybrid-attetion module
and employed correlation maximization.

Visual sign of lesions is mostly related to classification label.
As shown in Fig. 5(b), without correlation loss, the gradient
cannot flow across views, making the two view features un-
able to “cross-check” and easily distracted by some lesion-
irrelevant regions. Therefore, the baseline model leans to
focus on lesion-irrelative and cross-view mismatched areas.
With correlation only, the two view features cannot “cross-
check” at the truly matched places, bringing incorrect and
confusing information from another view due to the spatial
misalignment problem (see Fig. 5(c)). As shown in Fig. 5(d),
with correlation plus hybrid-attention, the misalignment is al-
leviated in the feature space, and the matched lesion-relevant
regions can be successfully highlighted by Grad-CAM.

Effectiveness of Hybrid-attention Module
The hybrid-attention module consists of two basic blocks,
i.e., the local attention block and the non-local attention
block. We conduct an ablation study of their effectiveness
on INbreast using two different settings, i.e., “mixed views”
and “single view”, and the data augmentation techniques are
also disabled. Under “mixed views”, we mix images from
the two views together and simply train our model by using
a single shared classification head without constraining the
dual-view correlation. Under “single view”, we split the data
into two parts, and each contains images from a single view.
We independently train a model for each part, and thus the
correlation constraint is naturally disabled.

We report the performance on each view for the two set-
tings, and the results are shown in Table 3. As can be seen
from the results, both the local-attention block and the non-

Training
view

Local
Relation

Block

Non-Local
Attention

Block

Accuracy
(%) on

CC
view

Accuracy
(%) on
MLO
view

Mixed
views

% % 88.636 87.879
! % 89.773 88.636
% ! 89.394 89.394
! ! 90.152 90.909

Single
view

% % 88.636 87.121
! % 89.394 87.879
% ! 89.394 87.879
! ! 90.152 88.636

Table 3: Ablation study of the effectiveness of the two different at-
tention blocks in hybrid attention module under two different set-
tings of images for training. The correlation maximization is dis-
abled for verifying the hybrid attention purely.

local attention block can contribute to large improvements.
For instance, under “mixed views”, the local-attention block
and the non-local attention block respectively result in an in-
crement of 0.947% and 1.137% in the average accuracy. In
conjunction of these two components, the hybrid-attention
module achieves the best performance, e.g., improving the
average accuracy by 2.273% and 1.516% respectively under
these two settings. This also implies that the two components
can work synthetically to result in a more robust performance.

4 Conclusion
In this paper, we propose a novel end-to-end DCHA-Net
which contains two key components for robust holistic mam-
mographic classification. First, the dual-view correlation
loss aims at maximizing paired feature similarity across two
views, which effectively helps capture consistent and comple-
mentary information for better mammographic classification
accuracy. In addition, the hybrid-attention module reinvents
information from local and strip-like non-local regions into
every pixel, alleviating negative influences brought by the
spatial misalignment problem and guaranteeing the extracted
dual-view correlated features correct. Extensive experimen-
tal results on both the INbreast and CBIS-DDSM datasets
demonstrate that our proposed DCHA-Net can significantly
improve the breast cancer diagnosis performance and outper-
form previous state-of-the-art methods.
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