Accurate MRI Reconstruction via Multi-Domain Recurrent Networks

Jinbao Wei1,2, Zhijie Wang1,2, Kongqiao Wang2,*, Li Guo2, Xueyang Fu1, Ji Liu1 and Xun Chen1

1University of Science and Technology of China
2Zepp Health

\{wei1998, wzj18895376976\}@mail.ustc.edu.cn, \{kongqiao.wang, guoli\}@zepp.com, \{xyfu, lj1257, xunchen\}@ustc.edu.cn

Abstract

In recent years, deep convolutional neural networks (CNNs) have become dominant in MRI reconstruction from undersampled k-space. However, most existing CNNs methods reconstruct the undersampled images either in the spatial domain or in the frequency domain, and neglecting the correlation between these two domains. This hinders the further reconstruction performance improvement. To tackle this issue, in this work, we propose a new multi-domain recurrent network (MDR-Net) with multi-domain learning (MDL) blocks as its basic units to reconstruct the undersampled MR image progressively. Specifically, the MDL block interactively processes the local spatial features and the global frequency information to facilitate complementary learning, leading to fine-grained features generation. Furthermore, we introduce an effective frequency-based loss to narrow the frequency spectrum gap, compensating for over-smoothness caused by the widely used spatial reconstruction loss. Extensive experiments on public fastMRI datasets demonstrate that our MDR-Net consistently outperforms other competitive methods and is able to provide more details.

1 Introduction

Magnetic Resonance Imaging (MRI) is one of the most powerful imaging modalities for diagnosis, and can provide superior soft tissue contrast. However, MRI requires a long acquisition time that may occur patient discomfort, leading to significant artifacts in the reconstructed image caused by patient or physiological motions during acquisitions. Furthermore, the availability of MR scanners is also limited by the long acquisition process [Wang et al., 2020a].

A common way to speed up the MRI acquisition process is to sample fewer k-space data instead [Aggarwal et al., 2018]. However, the undersampled k-space data obtained using low-frequency results in aliasing artifacts in the reconstructed images. Therefore, various efforts have focused on developing advanced algorithms to reconstruct an artifact-free MR image from undersampled k-space data. The most widely used technology is compressed sensing (CS), which utilizes the sparsity of an MR image in a specific transform domain, to reconstruct the full image from undersampled k-space data [Lustig et al., 2007]. However, the sparsity regularized CS-MRI methods are time-consuming due to the iterative nature of optimization solutions, which makes it challenging to deploy in real-time MRI scenarios, i.e., Cardiac-MRI.

Recently, deep learning-based methods have demonstrated superior performance over CS for MRI reconstruction [Sandino et al., 2020; Liang et al., 2020]. DL-based methods can be roughly categorized into two fashions, i.e., single-domain methods and dual-domain methods. On the one hand, the single-domain methods [Yang et al., 2017; Mardani et al., 2018; Quan et al., 2018; Wang et al., 2020a; Han et al., 2019] reconstruct MR images from undersampled data solely in the spatial or frequency domain. On the other hand, the dual-domain methods restore the undersampled image in dual-domain [Zhu et al., 2018; Eo et al., 2018; Souza et al., 2019; Zhou and Zhou, 2020]. In general, due to the limited domain knowledge, single-domain methods usually underperform the dual-domain techniques. Dual-domain methods process reconstruction in both domains to broaden domain information, where the features from different domains are serially delivered while ignoring the correlation be-
tween these two representations.

Besides, most DL-based MRI reconstruction methods mainly focus on designing the spatial-domain loss as it can directly provide perceptual improvement. However, single spatial-domain optimization tends to guide the model to generate over-smoothed images due to the lack of frequency information. Many studies [Ronen et al., 2019; Rahaman et al., 2019] show that models tend to fit low-frequency components first that are easy to synthesize while losing high-frequency parts. We visualize the frequency spectra of reconstructed MR images in Figure 1, and previous methods based on spatial-domain optimization show an obvious frequency domain discrepancy between the reconstructed MR images and ground truth. Both HIWDNet and DSMENet fail to restore the high-frequency information. The focal frequency loss [Jiang et al., 2021] is proven effective in synthesizing fine frequency components, but its potential to narrow the frequency domain gap in MRI reconstruction remains under-explored. We find that each frequency in the spectra is the statistical sum across all pixels in the MRI so that frequency-level supervision can offer a new solution for global guidance.

In this paper, we propose a multi-domain recurrent network (MDR-Net) to restore the undersampled MR image. The motivation comes from the spectral convolutional theorem in [Katznelson, 2004] and the dual-domain learning strategy in [Huang et al., 2022]. Therefore, we designed a multi-domain learning (MDL) block in our MDR-Net to interactively learn the local spatial features and global frequency information to obtain complementary representations. Moreover, we introduce an effective frequency loss to make the model concentrate high frequencies that are difficult to synthesize. As a result, frequency spectra reconstructed by MDR-Net are closest to the ground truth in Figure 1, which shows the superiority of our method in narrowing the frequency difference. Furthermore, the feature-level learning in MDL and frequency-level refinement mutually promote common prosperity and ameliorate image quality. Lastly, our recurrent learning helps to avoid overfitting in directly optimizing networks in dual domains. Experiments show that our MDR-Net is able to accurately reconstruct MR images with sharp details.

The main contributions of this work are as follows:

- We propose a novel learning strategy, i.e., a multi-domain learning strategy, which allows us to explore and exploit the properties of undersampled images across different domains.

- We design a new MDL block that incorporates both spatial and frequency information to effectively merge local and global representations, which can provide complementary information.

- To compensate for the excessive smoothing caused by the spatial-domain loss, we design an effective frequency loss to narrow the frequency domain discrepancy by forcing the model to restore high frequencies adaptively.

2 Related Work

2.1 MRI Reconstruction

Generally, there are two kinds of MRI reconstruction methods: model-driven and data-driven. The former aims to design different optimization algorithms for reconstructing MR images from undersampled k-space data. For example, [Lustig et al., 2007] proposed compressed sensing magnetic resonance imaging (CS-MRI) to accelerate the imaging speed from sparse MR signals. In [Ravishankar and Bresler, 2010], MR images are reconstructed from highly undersampled k-space data using dictionary learning. In addition, a new sparse reconstruction model with multi-class dictionaries is introduced in [Zhan et al., 2015] to accelerate the learning process. However, efficiency issues and poor adaptability limit the effectiveness of these methods.

Inspired by the great success of computer vision, [Wang et al., 2016] first proposed a deep learning model to reconstruct MR images in the spatial domain. With the development of deep learning, various networks [Fan et al., 2018; Zhao et al., 2019; Liu, 2021; Zhang et al., 2021] have been applied to MRI reconstruction. For example, [Schlemper et al., 2017] designed a data consistency layer in a deep cascade of CNNs to ensure the consistency between the reconstructed image and ground truth. [Wu et al., 2019] introduced the self-attention mechanism with deep residual CNNs, called (SAT-Net). [Zheng et al., 2019] proposed a cascaded dilated dense network with two-step data consistency to remove aliasing artifacts in the reconstructed MR image. However, the investigation of single-domain MRI reconstruction methods soon arrived at a serious bottleneck due to the limited domain knowledge. Therefore, [Eo et al., 2018] proposed a KIKI-Net to reconstruct the image and k-spaces sequentially, which can improve the reconstruction quality progressively. [Zhou and Zhou, 2020] designed a Dual-Domain Recurrent Network (DudoRNet) with deep T1 prior for reconstructing the k-space and image information. [Ran et al., 2020] proposed MR-Recon-Net employs parallel architecture to process the relationships between the spatial domain and frequency domain. However, MD-Recon-Net still does not consider the differences between the spatial domain and frequency domain as it adapts the same CNNs for restoring these two domains. [Feng et al., 2021] proposed double-frequency convolution to learn multi-scale spatial frequency features for parallel MRI. To explore the characteristics of time-frequency features in the wavelet domain, [Tong et al., 2022] propose a hybrid image-wavelet domain reconstruction network (HIWDNet) for accurate MRI reconstruction. [Wang et al., 2022] detail and structure mutually enhancing network (DSMENet) is proposed to effectively learn the mapping from undersampled input to truth images. In contrast to the above-mentioned data-driven methods, our approach leverages the correlations across different domains to improve the reconstruction performance.

2.2 Frequency Spectrum Analysis

The key point of frequency spectrum analysis is signal frequency characteristics. [Xu et al., 2019] proved that DL-based networks attach more importance to low frequencies
to fit the objective, which inevitably leads to the frequency domain gap. Many studies [Wang et al., 2020b; Zhang et al., 2019] proved that the periodic patterns shown in the frequency domain are consistent with the artifacts in the spatial domain. Therefore, recent methods tend to improve the visual difference in the spatial domain by narrowing the gap between reconstructed images and ground truth. [Fritsche et al., 2019] proposed the frequency separation method to treat low-frequency and high-frequency images differently. To solve the domain deviation in super-resolution, [Wei et al., 2021] used domain-gap aware training and domain-distance weighted supervision. [Jiang et al., 2021] indicated that focusing on hard frequencies can improve reconstruction performance. In MRI reconstruction, the over-fitting at low frequencies brings smooth textures and blurry structures. Therefore, exploring adaptive constraints at specific frequencies is essential for an accurate reconstruction.

3 Method

3.1 Overall Architecture

The overall network architecture and internal module of our MDR-Net are illustrated in Figure 2. We chose U-Net as the backbone to build our MDR-Net, which helps to show the superiority of the designed components.

In MR image reconstruction, our purpose is to reconstruct a desired image from measured k-space data. The binary masks M is used for simulating the fast acquisition process of MR signals, projecting the fully k-space data $k \in R^{H \times W \times 2}$ into $k_u \in R^{H \times W \times 2}$. Then we formulate the transformation process as follows:

$$x_u = F_{2D}^{-1}(k_u) = F_{2D}^{-1}(M \odot k) = F_{2D}^{-1}(M \odot F_{2D}(x)), \quad (1)$$

where x_u is the undersampled input image of MDR-Net; F_{2D} and F_{2D}^{-1} are 2D Fourier transform (FT), and inverse Fourier transform (IFT); \odot is element-wise multiplication.

Given an undersampled image $x_u \in R^{H \times W \times 2}$, the MDR-Net first applies a 3×3 convolution layer to extract shallow features $F_0 \in R^{H \times W \times C}$; where $H \times W$ denotes the spatial dimension and C is the number of channels. Next, these low-level features F_0 pass through a 4-level symmetric encoder-decoder and then transform into deep features $F_d \in R^{H \times W \times 2C}$. To prove the effectiveness and efficiency of the multi-domain learning block, each level of encoder-decoder only contains an MDLB block, where the original U-Net has instead a sequence of two 3×3 convolution operations to learn features-maps. Starting from the high-resolution image, the encoder hierarchically reduces spatial size while expanding channel capacity. The decoder takes low-resolution latent features $F_d \in R^{H \times W \times 8C}$ as input and recovers the high-resolution representations progressively. To assist the recovery process, the encoder features with the same spatial dimension are concatenated with the decoder features via skip connections. Then the concatenation operation is followed by a 1×1 convolution to reduce channels at all levels except the top one. Finally, a 1×1 convolution layer is applied to the deep features F_d to generate a residual image $x_{rd} \in R^{H \times W \times 2}$ to which input image is added to obtain the restored image:

$$x_o = x_u + x_{rd}$$

Then the restored image x_o passes through the data consistency (DC) layer to ensure the consistency between the reconstructed k-space and sampled k-space (k_o) since the k-space is changed after inference through MDR-Net. Therefore, the purpose of the DC layer is to maintain the k-space fidelity at sampled locations $z \in M$. Denoting the FT output of x_o as k_o, the corresponding output from DC layer [Sriram et al., 2020] can be thus formulated as:

$$k_{dc} = \begin{cases} \frac{\Delta k_o(z) + k_u(z)}{k_o(z)} & \text{if } M(z) = 1, \\ k_o(z) & \text{if } M(z) = 0, \end{cases} \quad (2)$$

where k_{dc} denotes the corrected k-space altered by the DC layer, and λ is a trainable hyper-parameter that controls the level of linear combination between sampled k-space values and predicted values. When $\lambda = 0$, the sampled k-space directly substitutes the prediction at z in k-space. The corrected k-space is transformed into the spatial domain as x_{dc} by IFT. The process mentioned above can be seen as the first iteration of our MDR-Net. The corrected restored image x_{dc} will be...
MDLB: Multi-Domain Learning Block

![Diagram of the MDL block](image)

Figure 3: Overall architecture of multi-domain learning (MDL) block. The MDL block includes a frequency branch, a spatial branch and a multi-Dconv head transposed attention (MDTA). The frequency branch uses 1×1 convolution filters to process global information, while the spatial branch utilizes a residual block with 3×3 convolutions. There are interactions between the representations of these two branches to provide complementary information. Lastly, MDTA is applied to perform feature interaction across channels for the concatenated results.

adopted as the following input of MDR-Net according to the number of recurrent blocks (N_{rec}). Next, we will present the details of the MDL block.

3.2 Multi-domain Learning Block

To further explore the difference and relationship between the spatial domain and frequency domain, we propose the MDL block in our model to learn feature-maps from different domains with customized convolution blocks. According to Fourier theory, processing information in Fourier space is capable of capturing the global frequency representation in the frequency domain. In contrast, normal convolution focuses on learning local representations in the spatial domain. In this way, we propose the interactive block to combine these two representations, which is beneficial for learning more representative features. As shown in Figure 3, the MDL block comprises a spatial branch and a frequency branch for processing spatial and frequency representations. Denoting f_s as the input features of the MDL block, the spatial branch first applies a 1×1 convolution operation to reduce channels (by half) and then adopts a residual block with 3×3 convolution layers to process information in the spatial domain and obtain f_{s1}. While the frequency branch uses Fourier transform to convert the feature-maps to the Fourier space and then adopts a 1×1 convolution to halve the frequency features. To process frequency-domain representation, we adopt a residual block with 1×1 convolution operation and then apply Inverse Fourier transform to convert it back to the image space that obtains f_{f1}. Thus, f_{f1} is the processed result of the frequency-domain representation. Next, we interact the features from spatial branch f_{s1} and frequency branch f_{f1} as:

$$
\begin{align*}
 f'_{s1} &= f_{s1} + \mathcal{P}_1(f_{s1}), \\
 f'_{f1} &= f_{f1} + \mathcal{P}_2(f_{f1}),
\end{align*}
$$

where \mathcal{P}_1 and \mathcal{P}_2 denotes the 3×3 convolution operation, f'_{s1} and f'_{f1} are the output of the interacted spatial and frequency branch. As illustrated in Figure 4, both f'_{s1} and f'_{f1} get the complementary representation, which is beneficial for these two branches to obtain more representational features. The following spatial and frequency branches are formulated in the same way as above and output the results f_{s2} and f_{f2}, respectively. To efficiently aggregate local and non-local pixel interactions across different domains, we introduce a multi-Dconv head transposed attention (MDTA) [Zamir et al., 2022] to process the final concatenated results from f_s, f_{s2} and f_{f2}. Specifically, the MDTA implicitly models global context by applying self-attention across channels rather than the spatial dimension, which allows MDL block to prioritize the feature-maps learning from different domains. These design yield quality improvements were shown in the experiment section.

3.3 Loss Functions

The inherent bias of CNNs makes it challenging to synthesize high-frequency features in the MR image reconstruction, which leads to the frequency domain discrepancy in other methods in Figure 1. One way is to introduce some con-
strains to alleviate this. In this paper, we introduce a joint spatial and frequency loss to regularize the optimization of our model, which can improve the reconstruction results from both the spatial and frequency domains. The loss in the spatial domain is indispensable for the image reconstruction task. So, first of all, we use SSIM loss in the spatial domain. It can be formulated as follows:

$$L_{SSIM} = 1 - SSIM(x_{rec}, x_{gt}),$$ \hspace{1cm} (4)

where x_{rec}, x_{gt} are the reconstruction and ground truth images, respectively. Although the MDL block in our model includes frequency domain learning, the model is still not optimized for the frequency domain. Therefore, the reconstructed images provided by MDR-Net have an undesirable optimization for the frequency domain. Therefore, the reconstructed images provided by MDR-Net have an undesirable optimization for the frequency domain. Therefore, the reconstructed images provided by MDR-Net have an undesirable optimization for the frequency domain. Therefore, the reconstructed images provided by MDR-Net have an undesirable optimization for the frequency domain. Therefore, the reconstructed images provided by MDR-Net have an undesirable optimization for the frequency domain.

We define the reconstructed MR image and ground truth as x_{rec} and x_{gt} with the dimensions of $R^H \times W \times 1$. Specifically, the focal frequency loss L_{FFL} between the ground truth x and the reconstructed MR image x_{rec} is formulated as:

$$L_{FFL} = \frac{1}{HW} \sum_{u=0}^{H-1} \sum_{v=0}^{W-1} \left| w(u,v) (F_{gt}(u,v) - F_{rec}(u,v)) \right|^\alpha,$$ \hspace{1cm} (5)

where F_{gt} represents 2D discrete Fourier transform of ground truth image (represents x_{gt} here), and F_{f} represents 2D discrete Fourier transform of reconstructed image (represents x_{rec} here); α denotes a frequency distance coefficient to make the dynamic weight for the frequency spatial frequency at coordinate (u,v), which is defined as:

$$w(u,v) = |F_{gt}(u,v) - F_{rec}(u,v)|.$$ \hspace{1cm} (6)

We introduce the weight factor λ to balance the spatial and frequency loss, and the total loss of our MDR-Net is:

$$L = L_{SSIM} + \lambda L_{FFL}.$$ \hspace{1cm} (7)

The analysis of the weight factor λ is provided in Section 4.3.

4 Experiments

4.1 Datasets and Settings

fastMRI dataset. We conduct experiments on the single-coil knee track of the fastMRI dataset [Zbontar, 2018]. The dataset consists of raw k-space data from 1372 knee MRI exams, which are obtained by four different MRI devices. Two types of commonly used MRI sequences are provided by the FastMRI dataset: a Proton Density (PD) weighted sequence and a Proton Density with Fat Saturation (Pdfs). We used the same training, validation and testing split as in the original dataset. The training, validation, and testing sets consisted of 973, 199 and 108 volumes, respectively. The single-coil k-space data were retrospectively undersampled.

Figure 5: Visual comparisons on the fastMRI dataset with 1D random undersampling patterns and a reduction factor RF=4. The best results are boldfaced. RF denotes the reduction factor.

<table>
<thead>
<tr>
<th>Methods</th>
<th>SSIM</th>
<th>PSNR</th>
<th>NMSE</th>
<th>SSIM</th>
<th>PSNR</th>
<th>NMSE</th>
<th>SSIM</th>
<th>PSNR</th>
<th>NMSE</th>
<th>SSIM</th>
<th>PSNR</th>
<th>NMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-Net [Romberg et al., 2015]</td>
<td>0.787</td>
<td>32.4</td>
<td>0.018</td>
<td>0.406</td>
<td>26.8</td>
<td>0.079</td>
<td>0.783</td>
<td>32.4</td>
<td>0.018</td>
<td>0.406</td>
<td>26.8</td>
<td>0.079</td>
</tr>
<tr>
<td>DCNN [Kellner et al., 2017]</td>
<td>0.743</td>
<td>32.6</td>
<td>0.015</td>
<td>0.461</td>
<td>27.6</td>
<td>0.067</td>
<td>0.735</td>
<td>32.6</td>
<td>0.015</td>
<td>0.461</td>
<td>27.6</td>
<td>0.067</td>
</tr>
<tr>
<td>DCDN [Zhang et al., 2019]</td>
<td>0.758</td>
<td>33.0</td>
<td>0.029</td>
<td>0.425</td>
<td>27.8</td>
<td>0.064</td>
<td>0.752</td>
<td>33.0</td>
<td>0.029</td>
<td>0.425</td>
<td>27.8</td>
<td>0.064</td>
</tr>
<tr>
<td>MD-RecNet [Ren et al., 2020]</td>
<td>0.750</td>
<td>33.3</td>
<td>0.027</td>
<td>0.420</td>
<td>28.5</td>
<td>0.067</td>
<td>0.744</td>
<td>33.3</td>
<td>0.027</td>
<td>0.420</td>
<td>28.5</td>
<td>0.067</td>
</tr>
<tr>
<td>DudoRNet [Zhou and Zhou, 2020]</td>
<td>0.771</td>
<td>33.3</td>
<td>0.028</td>
<td>0.426</td>
<td>27.9</td>
<td>0.064</td>
<td>0.766</td>
<td>33.3</td>
<td>0.028</td>
<td>0.426</td>
<td>27.9</td>
<td>0.064</td>
</tr>
<tr>
<td>DONet [Feng et al., 2021]</td>
<td>0.745</td>
<td>33.0</td>
<td>0.029</td>
<td>0.419</td>
<td>27.6</td>
<td>0.067</td>
<td>0.739</td>
<td>33.0</td>
<td>0.029</td>
<td>0.419</td>
<td>27.6</td>
<td>0.067</td>
</tr>
<tr>
<td>HIWDNet [Tong et al., 2022]</td>
<td>0.776</td>
<td>33.5</td>
<td>0.027</td>
<td>0.434</td>
<td>28.0</td>
<td>0.069</td>
<td>0.770</td>
<td>33.5</td>
<td>0.027</td>
<td>0.434</td>
<td>28.0</td>
<td>0.069</td>
</tr>
<tr>
<td>DSMENet [Wang et al., 2022]</td>
<td>0.770</td>
<td>33.6</td>
<td>0.027</td>
<td>0.434</td>
<td>28.3</td>
<td>0.065</td>
<td>0.764</td>
<td>33.6</td>
<td>0.027</td>
<td>0.434</td>
<td>28.3</td>
<td>0.065</td>
</tr>
<tr>
<td>MDR-Net (Ours)</td>
<td>0.780</td>
<td>33.7</td>
<td>0.027</td>
<td>0.468</td>
<td>29.6</td>
<td>0.074</td>
<td>0.798</td>
<td>33.7</td>
<td>0.027</td>
<td>0.468</td>
<td>29.6</td>
<td>0.074</td>
</tr>
</tbody>
</table>

Table 1: Comparisons with state-of-the-art methods on the fastMRI and CC-359 datasets with different sampling patterns and reduction factors (RF). The best results are boldfaced. RF denotes the reduction factor.
using 1D Cartesian random sampling masks, which are based on code released with the fastMRI dataset.

CC359 dataset. The CC-359 Brain dataset [Souza et al., 2018] consists of T1-weighted MR brain images with the size of 256×256, which were collected from various vendors using scanners at both 1.5T and 3T. It includes a total of 45 volumes, with 25 designated for training, 10 for validation, and 10 for testing. In the experiments, MDR-Net is trained on the full training volumes and evaluated on the full validation volumes for comparison.

Implementation Details. The hyper-parameter setting of the network is as follows: the entry channel number MDR-Net is $c = 32$, and the number of recurrent blocks is $N = 4$. All experiments are implemented using the Pytorch platform on two NVIDIA GeForce GTX 3090 with 24GB GPU memory. Our network is trained with an RMSProp optimizer. The initial learning rate is 10^{-3} and reduce to 10^{-4} after 40 epochs. The batch size is set as 1, and the network is trained for 50 epochs to ensure convergence. NMSE, PSNR and SSIM are used for quantitative evaluation.

4.2 Comparisons with the State-of-the-art

Quantitative Comparison. We compare our proposed MDR-Net with ten state-of-the-art methods, including one conventional method (Zero-Filled) and nine CNNs-based methods (U-Net [Ronneberger et al., 2015], DCCNN [Schlemper et al., 2017], KIKI-Net [Eo et al., 2018], CDDN [Zheng et al., 2019], MD-Recon-Net [Ran et al., 2020], DudoRNet [Zhou and Zhou, 2020], DONet [Feng et al., 2021], DSMENet [Wang et al., 2022] and HIWDNet [Tong et al., 2022]). To ensure a fair comparison, we conducted all experiments using the same train, validation, and test sets, as well as the same computing environment. Additionally, we used the released code of each competitor with the default settings. This allows us to compare the performance of each method under the same conditions. Quantitative results on FastMRI and CC359 datasets in terms of SSIM, PSNR and NMSE are reported in Table 1. We can see that our MDR-Net significantly outperforms other methods.

Visual Comparison. As shown in Figures 5 and 6, these qualitative results show that our reconstructed MRI is the closest and highest correlation to the ground truth. Besides, we perform our MDR-Net on different sampling patterns and draw the corresponding error maps between reconstructed images and ground truth. As a result, our MDR-Net generates more visually pleasant results than previous methods, especially in the reconstruction of high-frequency structural content, which benefits from feature-level and frequency-level dual-domain learning.

4.3 Ablation Study

In this study, we evaluated three key components of MDR-Net on the fastMRI dataset with a reduction factor RF=4, including multi-domain learning block (MDLB), frequency loss (FL) and recurrent learning (Rec). We used the MDR-Net without these three components as a baseline, and set the value of N_{rec} in Rec to 5. The results of this component analysis are shown in Table 2. We found that the MDL block (B)
Ablation Study of MDLB. We validate the effectiveness of the design of the MDL block in Table 3. As can be seen, the performance decreases significantly when removing both FT and IFT operations. Furthermore, both replacing the spatial branch with the frequency branch or replacing the frequency branch with the spatial branch results in a significant performance drop. While the interaction between these two branches can improve performance remarkably, demonstrating the effectiveness of integrating these two complementary representations. Moreover, the introduced MDTA provides a favorable gain of 0.2dB over the baseline.

The Number of Recurrent Learning. The Number of Recurrent Learning. An important factor of MDR-Net is the number of recurrent learning. We compare the results of different recurrent numbers in Table 4. We can observe that both SSIM and PSNR values tend to be saturated when N is four and reaches the highest when N is 5.

Loss Weight Factor. The parameter λ in Eq.(7) is used to balance the importance of spatial and frequency loss. We studied how the model’s performance changes with different values of λ and present the results in Table 5. When $\lambda = 0$, the model only focuses on the spatial domain loss which is not optimal, showing that frequency-level supervision is crucial. As the frequency loss increases, the model’s performance improves. The best results in terms of PSNR and SSIM are achieved when $\lambda = 0.8$.

Frequency Loss. Figure 7 illustrates the difference in frequency spectra reconstructed with and without the frequency loss. The corresponding log frequency distance(LFD) is also shown in the same figure. Without frequency supervision, the reconstructed spectra exhibit an aliasing artifact. However, when using our proposed frequency loss, the frequency spectra are reconstructed more accurately and with a lower LFD, resulting in a closer match to the true frequency statistics. Additionally, the fine-grained spectrum supervision in frequency increased the PSNR value by 0.6 dB compared to the baseline (A), a more significant improvement than either frequency learning (C) or recurrent learning (D) alone. The combination of the MDL block and recurrent learning (E) produced the largest boost in performance, while all three components together (H) yielded the best reconstruction results overall. These findings demonstrate that all three components contribute to the enhanced performance of the MDR-Net. Next, we will separately provide the ablation studies of each component mentioned above.

Table 4: The effect of increasing the number of recurrent learning(N_{rec}) in our MDR-Net.

<table>
<thead>
<tr>
<th>N_{rec}</th>
<th>Metric</th>
<th>$N_{rec}=1$</th>
<th>$N_{rec}=2$</th>
<th>$N_{rec}=3$</th>
<th>$N_{rec}=4$</th>
<th>$N_{rec}=5$</th>
<th>$N_{rec}=6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSIM −</td>
<td>0.7869</td>
<td>0.7783</td>
<td>0.7794</td>
<td>0.7804</td>
<td>0.7807</td>
<td>0.7805</td>
<td>0.7801</td>
</tr>
<tr>
<td>PSNR †</td>
<td>32.9</td>
<td>33.3</td>
<td>33.5</td>
<td>33.6</td>
<td>33.7</td>
<td>33.6</td>
<td>33.5</td>
</tr>
</tbody>
</table>

Table 5: Performance comparisons of different loss weight factor.

<table>
<thead>
<tr>
<th>λ</th>
<th>Metric</th>
<th>$\lambda=0$</th>
<th>$\lambda=0.2$</th>
<th>$\lambda=0.4$</th>
<th>$\lambda=0.6$</th>
<th>$\lambda=0.8$</th>
<th>$\lambda=1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSIM ↑</td>
<td>0.781</td>
<td>0.788</td>
<td>0.792</td>
<td>0.797</td>
<td>0.7807</td>
<td>0.793</td>
<td></td>
</tr>
<tr>
<td>PSNR †</td>
<td>33.2</td>
<td>33.3</td>
<td>33.5</td>
<td>33.6</td>
<td>33.7</td>
<td>33.6</td>
<td></td>
</tr>
<tr>
<td>NMSE ↓</td>
<td>0.0283</td>
<td>0.0281</td>
<td>0.0277</td>
<td>0.0270</td>
<td>0.0271</td>
<td>0.0273</td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Model performance comparison using different coefficients to calculate the spectrum distances in frequency domain.

Figure 7: Frequency spectrum visualization with or without (w/o) FDL. The metric LFD is used to measure the frequency similarity.

5 Conclusion

The investigation of CNNs for MR image reconstruction has arrived at a serious bottleneck as networks with better performance usually adopt a dual-domain learning strategy generally while could not recover the detailed structures in the reconstructed MR images. To solve this problem, we proposed a Multi-Domain Recurrent Network(MDR-Net) to restore both image and k-space signal simultaneously with multi-domain interactions. Experiments demonstrated that while previous MR image reconstruction methods on single-domain and dual-domain have limited capability of reducing aliasing artifacts in the image domain, our MDR-Net can effectively restore the reconstruction with complementary features. Future work includes exploring MDR-Net on multi-coil MR data and the application to other image reconstruction tasks, such as Photoacoustic Tomography images reconstruction.
Acknowledgements
This work was supported in part by the CAS Project for Young Scientists in Basic Research under Grant YSBR-067, in part by the National Natural Science Foundation of China under Grant 32271431.

Contribution Statement
Jinbao Wei and Zhijie Wang contributed equally to this work.

References

