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Abstract

In recent years, deep convolutional neural networks
(CNNs) have become dominant in MRI reconstruc-
tion from undersampled k-space. However, most
existing CNNs methods reconstruct the undersam-
pled images either in the spatial domain or in the
frequency domain, and neglecting the correlation
between these two domains. This hinders the fur-
ther reconstruction performance improvement. To
tackle this issue, in this work, we propose a new
multi-domain recurrent network (MDR-Net) with
multi-domain learning (MDL) blocks as its basic
units to reconstruct the undersampled MR image
progressively. Specifically, the MDL block inter-
actively processes the local spatial features and the
global frequency information to facilitate comple-
mentary learning, leading to fine-grained features
generation. Furthermore, we introduce an effec-
tive frequency-based loss to narrow the frequency
spectrum gap, compensating for over-smoothness
caused by the widely used spatial reconstruction
loss. Extensive experiments on public fastMRI
datasets demonstrate that our MDR-Net consis-
tently outperforms other competitive methods and
is able to provide more details.

1 Introduction
Magnetic Resonance Imaging (MRI) is one of the most pow-
erful imaging modalities for diagnosis, and can provide su-
perior soft tissue contrast. However, MRI requires a long ac-
quisition time that may occur patient discomfort, leading to
significant artifacts in the reconstructed image caused by pa-
tient or physiological motions during acquisitions. Further-
more, the availability of MR scanners is also limited by the
long acquisition process [Wang et al., 2020a].

A common way to speed up the MRI acquisition process is
to sample fewer k-space data instead [Aggarwal et al., 2018].
However, the undersampled k-space data obtained using low-
frequency results in aliasing artifacts in the reconstructed im-
ages. Therefore, various efforts have focused on developing
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Figure 1: Frequency domain gaps between the real and recon-
structed images by existing related models in the MR image recon-
struction. Our MDR-Net is able to effectively synthesize the high-
frequency components while preserving the low-frequency informa-
tion, making it superior to other methods.

advanced algorithms to reconstruct an artifact-free MR im-
age from undersampled k-space data. The most widely used
technology is compressed sensing (CS), which utilizes the
sparsity of an MR image in a specific transform domain, to
reconstruct the full image from undersampled k-space data
[Lustig et al., 2007]. However, the sparsity regularized CS-
MRI methods are time-consuming due to the iterative nature
of optimization solutions, which makes it challenging to de-
ploy in real-time MRI scenarios, i.e., Cardiac-MRI.

Recently, deep learning-based methods have demon-
strated superior performance over CS for MRI reconstruc-
tion [Sandino et al., 2020; Liang et al., 2020]. DL-based
methods can be roughly categorized into two fashions, i.e.,
single-domain methods and dual-domain methods. On the
one hand, the single-domain methods [Yang et al., 2017;
Mardani et al., 2018; Quan et al., 2018; Wang et al., 2020a;
Han et al., 2019] reconstruct MR images from undersam-
pled data solely in the spatial or frequency domain. On the
other hand, the dual-domain methods restore the undersam-
pled image in dual-domain [Zhu et al., 2018; Eo et al., 2018;
Souza et al., 2019; Zhou and Zhou, 2020]. In general, due to
the limited domain knowledge, single-domain methods usu-
ally underperform the dual-domain techniques. Dual-domain
methods process reconstruction in both domains to broaden
domain information, where the features from different do-
mains are serially delivered while ignoring the correlation be-
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tween these two representations.
Besides, most DL-based MRI reconstruction methods

mainly focus on designing the spatial-domain loss as it can
directly provide perceptual improvement. However, sin-
gle spatial-domain optimization tends to guide the model
to generate over-smoothed images due to the lack of fre-
quency information. Many studies [Ronen et al., 2019;
Rahaman et al., 2019] show that models tend to fit low-
frequency components first that are easy to synthesize while
losing high-frequency parts. We visualize the frequency spec-
tra of reconstructed MR images in Figure 1, and previous
methods based on spatial-domain optimization show an obvi-
ous frequency domain discrepancy between the reconstructed
MR images and ground truth. Both HIWDNet and DSMENet
fail to restore the high-frequency information. The focal fre-
quency loss [Jiang et al., 2021] is proven effective in syn-
thesizing fine frequency components, but its potential to nar-
row the frequency domain gap in MRI reconstruction re-
mains under-explored. We find that each frequency in the
spectra is the statistical sum across all pixels in the MRI so
that frequency-level supervision can offer a new solution for
global guidance.

In this paper, we propose a multi-domain recurrent network
(MDR-Net) to restore the undersampled MR image. The mo-
tivation comes from the spectral convolutional theorem in
[Katznelson, 2004] and the dual-domain learning strategy in
[Huang et al., 2022]. Therefore, we designed a multi-domain
learning (MDL) block in our MDR-Net to interactively learn
the local spatial features and global frequency information to
obtain complementary representations. Moreover, we intro-
duce an effective frequency loss to make the model concen-
trate high frequencies that are difficult to synthesize. As a re-
sult, frequency spectra reconstructed by MDR-Net are closest
to the ground truth in Figure 1, which shows the superiority of
our method in narrowing the frequency difference. Further-
more, the feature-level learning in MDL and frequency-level
refinement mutually promote common prosperity and ame-
liorate image quality. Lastly, our recurrent learning helps to
avoid overfitting in directly optimizing networks in dual do-
mains. Experiments show that our MDR-Net is able to accu-
rately reconstruct MR images with sharp details.

The main contributions of this work are as follows:

• We propose a novel learning strategy, i.e., a multi-
domain learning strategy, which allows us to explore and
exploit the properties of undersampled images across
different domains.

• We design a new MDL block that incorporates both spa-
tial and frequency information to effectively merge local
and global representations, which can provide comple-
mentary information.

• To compensate for the excessive smoothing caused by
the spatial-domain loss, we design an effective fre-
quency loss to narrow the frequency domain discrepancy
by forcing the model to restore high frequencies adap-
tively.

2 Related Work
2.1 MRI Reconstruction
Generally, there are two kinds of MRI reconstruction meth-
ods: model-driven and data-driven. The former aims to
design different optimization algorithms for reconstructing
MR images from undersampled k-space data. For exam-
ple, [Lustig et al., 2007] proposed compressed sensing mag-
netic resonance imaging (CS-MRI) to accelerate the imaging
speed from sparse MR signals. In [Ravishankar and Bresler,
2010], MR images are reconstructed from highly undersam-
pled k-space data using dictionary learning. In addition, a
new sparse reconstruction model with multi-class dictionar-
ies is introduced in [Zhan et al., 2015] to accelerate the learn-
ing process. However, efficiency issues and poor adaptability
limit the effectiveness of these methods.

Inspired by the great success of computer vision, [Wang
et al., 2016] first proposed a deep learning model to recon-
struct MR images in the spatial domain. With the develop-
ment of deep learning, various networks [Fan et al., 2018;
Zhao et al., 2019; Liu, 2021; Zhang et al., 2021] have been
applied to MRI reconstruction. For example, [Schlemper et
al., 2017] designed a data consistency layer in a deep cas-
cade of CNNs to ensure the consistency between the recon-
structed image and ground truth. [Wu et al., 2019] intro-
duced the self-attention mechanism with deep residual CNNs,
called (SAT-Net). [Zheng et al., 2019] proposed a cascaded
dilated dense network with two-step data consistency to re-
move aliasing artifacts in the reconstructed MR image. How-
ever, the investigation of single-domain MRI reconstruction
methods soon arrived at a serious bottleneck due to the lim-
ited domain knowledge. Therefore, [Eo et al., 2018] pro-
posed a KIKI-Net to reconstruct the image and k-spaces se-
quentially, which can improve the reconstruction quality pro-
gressively. [Zhou and Zhou, 2020] designed a Dual-Domain
Recurrent Network (DudoRNet) with deep T1 prior for re-
constructing the k-space and image information. [Ran et al.,
2020] proposed MR-Recon-Net employs parallel architecture
to process the relationships between the spatial domain and
frequency domain. However, MD-Recon-Net still does not
consider the differences between the spatial domain and fre-
quency domain as it adapts the same CNNs for restoring these
two domains. [Feng et al., 2021] proposed double-frequency
convolution to learn multi-scale spatial frequency features for
parallel MRI. To explore the characteristics of time-frequency
features in the wavelet domain, [Tong et al., 2022] propose
a hybrid image-wavelet domain reconstruction network (HI-
WDNet) for accurate MRI reconstruction. In [Wang et al.,
2022], detail and structure mutually enhancing network (DS-
MENet) is proposed to effectively learn the mapping from
undersampled input to truth images. In contrast to the above-
mentioned data-driven methods, our approach leverages the
correlations across different domains to improve the recon-
struction performance.

2.2 Frequency Spectrum Analysis
The key point of frequency spectrum analysis is signal fre-
quency characteristics. [Xu et al., 2019] proved that DL-
based networks attach more importance to low frequencies
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Figure 2: Overview of our multi-domain recurrent network (MDR-Net). It adopts an encoder-decoder architecture with efficient multi-domain
learning (MDL) blocks to facilitate dual-domain complementary learning. The data consistency layer is used to ensure the consistency of the
reconstructed image in k-space. Furthermore, recurrent learning facilitates the model to restore the refined details progressively.

to fit the objective, which inevitably leads to the frequency
domain gap. Many studies [Wang et al., 2020b; Zhang et
al., 2019] proved that the periodic patterns shown in the fre-
quency domain are consistent with the artifacts in the spatial
domain. Therefore, recent methods tend to improve the vi-
sual difference in the spatial domain by narrowing the gap
between reconstructed images and ground truth. [Fritsche
et al., 2019] proposed the frequency separation method to
treat low-frequency and high-frequency images differently.
To solve the domain deviation in super-resolution, [Wei et al.,
2021] used domain-gap aware training and domain-distance
weighted supervision. [Jiang et al., 2021] indicated that fo-
cusing on hard frequencies can improve reconstruction per-
formance. In MRI reconstruction, the over-fitting at low fre-
quencies brings smooth textures and blurry structures. There-
fore, exploring adaptive constraints at specific frequencies is
essential for an accurate reconstruction.

3 Method
3.1 Overall Architecture
The overall network architecture and internal module of our
MDR-Net are illustrated in Figure 2. We chose U-Net as the
backbone to build our MDR-Net, which helps to show the
superiority of the designed components.

In MR image reconstruction, our purpose is to reconstruct a
desired image from measured k-space data. The binary masks
M is used for simulating the fast acquisition process of MR
signals, projecting the fully k-space data k ∈ RH×W×2 into
ku ∈ RH×W×2. Then we formulate the transformation pro-
cess as follows:

xu = F−1
2D (ku) = F−1

2D (M ⊙ k) = F−1
2D (M ⊙F2D(x)), (1)

where xu is the undersampled input image of MDR-Net; F2D

and F−1
2D are 2D Fourier transform (FT), and inverse Fourier

transform (IFT); ⊙ is element-wise multiplication.
Given an undersampled image xu ∈ RH×W×2, MDR-

Net first applies a 3 × 3 convolution layer to extract shal-
low features F0 ∈ RH×W×C ; where H × W denotes the

spatial dimension and C is the number of channels. Next,
these low-level features F0 pass through a 4-level symmetric
encoder-decoder and then transform into deep features Fd ∈
RH×W×2C . To prove the effectiveness and efficiency of the
multi-domain learning block, each level of encoder-decoder
only contains an MDL block, where the original U-Net has
instead a sequence of two 3 × 3 convolution operations to
learn features-maps. Starting from the high-resolution im-
age, the encoder hierarchically reduces spatial size while ex-
panding channel capacity. The decoder takes low-resolution
latent features Fl ∈ R

H
8 ×W

8 ×8C as input and recovers the
high-resolution representations progressively. To assist the
recovery process, the encoder features with the same spatial
dimension are concatenated with the decoder features via skip
connections. Then the concatenation operation is followed by
a 1× 1 convolution to reduce channels at all levels except the
top one. Finally, a 1 × 1 convolution layer is applied to the
deep features Fd to generate a residual image xr ∈ RH×W×2

to which input image is added to obtain the restored image:
xo = xu + xr.

Then the restored image xo passes through the data consis-
tency (DC) layer to ensure the consistency between the recon-
structed k-space and sampled k-space (ku) since the k-space
is changed after inference through MDR-Net. Therefore, the
purpose of the DC layer is to maintain the k-space fidelity at
sampled locations z of M . Denoting the FT output of xo as
ko, the corresponding output from DC layer [Sriram et al.,
2020] can be thus formulated as:

kdc =

{
λko(z)+ku(z)

λ+1
if M(z) = 1,

ko(z) if M(z) = 0,
(2)

where kdc denotes the corrected k-space altered by the DC
layer, and λ is a trainable hyper-parameter that controls the
level of linear combination between sampled k-space values
and predicted values. When λ = 0, the sampled k-space di-
rectly substitutes the prediction at z in k-space. The corrected
k-space is transformed into the spatial domain as xdc by IFT.
The process mentioned above can be seen as the first iteration
of our MDR-Net. The corrected restored image xdc will be
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Figure 3: Overall architecture of multi-domain learning (MDL) block. The MDL block includes a frequency branch, a spatial branch and a
multi-Dconv head transposed attention (MDTA). The frequency branch uses 1×1 convolution filters to process global information, while the
spatial branch utilizes a residual block with 3 × 3 convolutions. There are interactions between the representations of these two branches to
provide complementary information. Lastly, MDTA is applied to perform feature interaction across channels for the concatenated results.

adopted as the following input of MDR-Net according to the
number of recurrent blocks (Nrec). Next, we will present the
details of the MDL block.

3.2 Multi-domain Learning Block
To further explore the difference and relationship between
the spatial domain and frequency domain, we propose the
MDL block in our model to learn feature-maps from different
domains with customized convolution blocks. According to
Fourier theory, processing information in Fourier space is ca-
pable of capturing the global frequency representation in the
frequency domain. In contrast, normal convolution focuses
on learning local representations in the spatial domain. In this
way, we propose the interactive block to combine these two
representations, which is beneficial for learning more repre-
sentative features. As shown in Figure 3, the MDL block
comprises a spatial branch and a frequency branch for pro-
cessing spatial and frequency representations. Denoting fi as
the input features of the MDL block, the spatial branch first
applies a 1× 1 convolution operation to reduce channels (by
half) and then adopts a residual block with 3 × 3 convolu-
tion layers to process information in the spatial domain and
obtain fs1. While the frequency branch uses Fourier trans-
form to convert the feature-maps to the Fourier space and
then adopts a 1 × 1 convolution to halve the frequency fea-
tures. To process frequency-domain representation, we adopt
a residual block with 1 × 1 convolution operation and then
apply Inverse Fourier transform to convert it back to the im-
age space that obtains ff1. Thus,ff1 is the processed result
of the frequency-domain representation. Next, we interact the
features from spatial branch fs1 and frequency branch ff1 as:

f
′
f1 = ff1 + P1(fs1),

f
′
s1 = fs1 + P2(ff1),

(3)

where P1 and P2 denotes the 3×3 convolution operation, f
′

s1

and f
′

f1 are the output of the interacted spatial and frequency
branch. As illustrated in Figure 4, both f

′

s1 and f
′

f1 get the
complementary representation, which is beneficial for these
two branches to obtain more representational features. The

Figure 4: Feature visualizations in the MDL block reveals distinct
representations across different branches. Notably, the interaction
between features enables them to complement each other, resulting
in notable variations between features that interact and those that
do not, both in frequency and spatial domains. Specifically, ff1
exhibits more spatial invariance, while fs1 retains more spatial in-
formation. Furthermore, f

′
f1 captures both spatial and detailed in-

formation, whereas f
′
s1 highlights details.

following spatial and frequency branches are formulated in
the same way as above and output the results fs2 and ff2, re-
spectively. To efficiently aggregate local and non-local pixel
interactions across different domains, we introduce a multi-
Dconv head transposed attention(MDTA) [Zamir et al., 2022]
to process the final concatenated results from fi, fs2 and ff2.
Specifically, the MDTA implicitly models global context by
applying self-attention across channels rather than the spatial
dimension, which allows MDL block to prioritize the feature-
maps learning from different domains. These design yield
quality improvements were shown in the experiment section.

3.3 Loss Functions
The inherent bias of CNNs makes it challenging to synthe-
size high-frequency features in the MR image reconstruction,
which leads to the frequency domain discrepancy in other
methods in Figure 1. One way is to introduce some con-
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fastMRI 1D random mask CC-359 2D random mask CC-359 2D radial mask
RF = 4 RF = 8 RF = 5 RF = 10 RF = 5 RF = 10

Methods SSIM PSNR NMSE SSIM PSNR NMSE SSIM PSNR NMSE SSIM PSNR NMSE SSIM PSNR NMSE SSIM PSNR NMSE
Zero-Filled 0.6870 30.5 0.0438 0.5428 26.6 0.0839 0.6074 19.32 0.1951 0.5455 17.79 0.2778 0.6912 21.16 0.1289 0.5428 17.79 0.2778

U-Net [Ronneberger et al., 2015] 0.7587 32.4 0.0318 0.6006 26.8 0.0798 0.8500 27.78 0.0279 0.8133 26.75 0.0349 0.8859 29.47 0.0191 0.8154 26.23 0.0396
DCCNN [Schlemper et al., 2017] 0.7453 32.6 0.0315 0.6131 27.6 0.0677 0.8924 30.85 0.0140 0.8340 27.91 0.0272 0.8999 30.83 0.0138 0.8127 26.41 0.0383

KIKI [Eo et al., 2018] 0.7662 33.2 0.0286 0.6133 27.6 0.0684 0.9054 29.96 0.0180 0.8717 28.12 0.0269 0.9155 30.50 0.0158 0.8637 27.89 0.0278
CDDN [Zheng et al., 2019] 0.7578 33.0 0.0295 0.6251 27.8 0.0654 0.9267 32.96 0.0090 0.8967 30.26 0.0168 0.9321 32.92 0.0090 0.8798 29.32 0.0202

MD-Recon-Net [Ran et al., 2020] 0.7590 33.3 0.0272 0.6260 28.5 0.0567 0.8954 30.93 0.0173 0.8476 28.02 0.0288 0.9021 30.93 0.0145 0.8233 26.78 0.0389
DudoRNet [Zhou and Zhou, 2020] 0.7717 33.3 0.0285 0.6256 27.9 0.0641 0.9315 33.26 0.0084 0.8983 30.27 0.0162 0.9354 33.21 0.0085 0.8857 29.34 0.0199

DONet [Feng et al., 2021] 0.7645 33.0 0.0294 0.6193 27.6 0.0677 0.9313 33.35 0.0083 0.8949 30.41 0.0157 0.9087 30.68 0.0143 0.8863 29.71 0.0183
HIWDNet [Tong et al., 2022] 0.7762 33.5 0.0278 0.6344 28.0 0.0629 0.9345 33.40 0.0083 0.9031 30.83 0.0144 0.9368 33.33 0.0084 0.8953 29.83 0.0180
DSMENet [Wang et al., 2022] 0.7770 33.6 0.0271 0.6304 28.3 0.0605 0.9366 33.68 0.0079 0.9073 31.05 0.0140 0.9390 33.54 0.0081 0.8988 30.21 0.0167

MDR-Net (Ours) 0.7807 33.7 0.0271 0.6688 29.6 0.0474 0.9378 33.73 0.0067 0.9082 31.25 0.0132 0.9412 34.33 0.0065 0.8993 30.68 0.0153

Table 1: Comparisons with state-of-the-art methods on the fastMRI and CC-359 datasets with different sampling patterns and reduction
factors (RF). The best results are boldfaced. RF denotes the reduction factor.

Figure 5: Visual comparisons on the fastMRI dataset with 1D random undersampling patterns and a reduction factor RF=4. The corresponding
PSNR and SSIM values are also shown below the error maps.

straints to alleviate this. In this paper, we introduce a joint
spatial and frequency loss to regularize the optimization of
our model, which can improve the reconstruction results from
both the spatial and frequency domains. The loss in the spa-
tial domain is indispensable for the image reconstruction task.
So, first of all, we use SSIM loss in the spatial domain. It
can be formulated as follows:

LSSIM = 1−SSIM(xrec, xgt), (4)

where xrec, xgt are the reconstruction and ground truth im-
ages, respectively. Although the MDL block in our model
includes frequency domain learning, the model is still not
optimized for the frequency domain. Therefore, the recon-
structed images provided by MDR-Net have an undesirable
spectrum, as shown in Figure. 1, so we introduce the fo-
cal frequency loss [Jiang et al., 2021] to construct the fre-
quency fidelity term. We define the reconstructed MR im-
age and ground truth as xrec and xgt with the dimensions of
RH×W×1. Specifically,the focal frequency loss LFFL be-
tween the ground truth x and the reconstructed MR image
xrec is formulated as:

LFFL =
1

HW

H−1∑
u=0

W−1∑
v=0

w(u, v)|Fgt(u, v)− Frec(u, v)|α, (5)

where Fgt represents 2D discrete Fourier transform of ground
truth image (represents xgt here), and Ff represents 2D dis-
crete Fourier transform of reconstructed image (represents

xrec here); α denotes a frequency distance coefficient to
make the distance correlation adjustable, and the analysis of
frequency-distance coefficients α is provided in Section 4.3.
The matrix w(u, v) represents the dynamic weight for the
spatial frequency at coordinate (u, v), which is defined as:

w(u, v) = |Fgt(u, v)− Frec(u, v)|. (6)

We introduce the weight factor λ to balance the spatial and
frequency loss, and the total loss of our MDR-Net is:

L = LSSIM + λLFFL. (7)

The analysis of the weight factor λ is provided in Section 4.3.

4 Experiments
4.1 Datasets and Settings
fastMRI dataset. We conduct experiments on the single-
coil knee track of the fastMRI dataset [Zbontar et al., 2018].
The dataset consists of raw k-space data from 1372 knee MRI
exams, which are obtained by four different MRI devices.
Two types of commonly used MRI sequences are provided
by the FastMRI dataset: a Proton Density (PD) weighted se-
quence and a Proton Density with Fat Saturation (PDFS). We
used the same training, validation and testing split as in the
original dataset. The training, validation, and testing sets
consisted of 973, 199 and 108 volumes, respectively. The
single-coil k-space data were retrospectively undersampled
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Figure 6: Visual comparisons of different methods on the CC-359 dataset with reduction factor RF=5.

using 1D Cartesian random sampling masks, which are based
on code released with the fastMRI dataset.
CC359 dataset. The CC-359 Brain dataset[Souza et al.,
2018] consists of T1-weighted MR brain images with the size
of 256 × 256, which were collected from various vendors us-
ing scanners at both 1.5T and 3T. It includes a total of 45
volumes, with 25 designated for training, 10 for validation,
and 10 for testing. In the experiments, MDR-Net is trained
on the full training volumes and evaluated on the full valida-
tion volumes for comparison.
Implementation Details. The hyper-parameter setting of
the network is as follows: the entry channel number MDR-
Net is c = 32, and the number of recurrent blocks is N = 4.
All experiments are implemented using the Pytorch platform
on two NVIDIA GeForce GTX 3090 with 24GB GPU mem-
ory. Our network is trained with an RMSProp optimizer.
The initial learning rate is 10−3 and reduce to 10−4 after
40 epochs. The batch size is set as 1, and the network is
trained for 50 epochs to ensure convergence. NMSE, PSNR
and SSIM are used for quantitative evaluation.

4.2 Comparisons with the State-of-the-art
Quantitative Comparison. We compare our proposed
MDR-Net with ten state-of-the-art methods, including one
conventional method (Zero-Filled) and nine CNNs-based
methods (U-Net [Ronneberger et al., 2015], DCCNN
[Schlemper et al., 2017], KIKI-Net [Eo et al., 2018], CDDN
[Zheng et al., 2019], MD-Recon-Net [Ran et al., 2020], Du-
doRNet [Zhou and Zhou, 2020], DONet[Feng et al., 2021],
DSMENet [Wang et al., 2022] and HIWDNet [Tong et al.,
2022]). To ensure a fair comparison, we conducted all exper-
iments using the same train, validation, and test sets, as well
as the same computing environment. Additionally, we used
the released code of each competitor with the default settings.
This allows us to compare the performance of each method
under the same conditions. Quantitative results on FastMRI
and CC359 datasets in terms of SSIM, PSNR and NMSE are
reported in Table 1. We can see that our MDR-Net signifi-
cantly outperforms other methods.

Methods SSIM↑ PSNR↑ NMSE↓
(A) Net-baseline 0.7678 32.8 0.0299
(B) Net-MDLB 0.7761 33.4 0.0278
(C) Net-FL 0.7705 33.0 0.0302
(D) Net-Rec 0.7738 33.0 0.0304
(E) Net-MDLB-Rec 0.7786 33.6 0.0279
(F) Net-MDLB-FL 0.7773 33.5 0.0278
(G) Net-FL-Rec 0.7768 33.5 0.0281
(H) Net-MDLB-FL-Rec 0.7807 33.7 0.0271

Table 2: Quantitative evaluations for MDLB, FL and Rec compo-
nents in MDR-Net.

Metric w/o FT&IFT 2-FB 2-SB w/o Interaction w/o MDTA MDL block
SSIM ↑ 0.7651 0.7781 0.7788 0.7792 0.7797 0.7807
PSNR ↑ 33.0 32.6 33.2 33.4 33.6 33.7

Table 3: Ablation study of investigating the MDL block. 2-SB repre-
sents both branches set to the spatial branches, and 2-FB represents
both branches set to the frequency branches.

Visual Comparison. As shown in Figures 5 and 6, these
qualitative results show that our reconstructed MRI is the
closest and highest correlation to the ground truth. Besides,
we perform our MDR-Net on different sampling patterns and
draw the corresponding error maps between reconstructed
images and ground truth. As a result, our MDR-Net generates
more visually pleasant results than previous methods, espe-
cially in the reconstruction of high-frequency structural con-
tent, which benefits from feature-level and frequency-level
dual-domain learning.

4.3 Ablation Study
In this study, we evaluated three key components of MDR-
Net on the fastMRI dataset with a reduction factor RF=4,
including multi-domain learning block (MDLB), frequency
loss (FL) and recurrent learning (Rec). We used the MDR-
Net without these three components as a baseline, and set the
value of Nrec in Rec to 5. The results of this component anal-
ysis are shown in Table 2. We found that the MDL block (B)
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Metric Nrec=1 Nrec=2 Nrec=3 Nrec=4 Nrec=5 Nrec=6 Nrec=7
SSIM ↑ 0.7769 0.7783 0.7794 0.7804 0.7807 0.7805 0.7801
PSNR ↑ 32.9 33.3 33.5 33.6 33.7 33.6 33.5

Table 4: The effect of increasing the number of recurrent
learning(Nrec) in our MDR-Net.

Metric λ = 0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1
SSIM ↑ 0.7781 0.7788 0.7792 0.7797 0.7807 0.7793
PSNR ↑ 33.2 33.3 33.5 33.6 33.7 33.6
NMSE ↓ 0.0283 0.0281 0.0277 0.0270 0.0271 0.0273

Table 5: Performance comparisons of different loss weight factor.

increased the PSNR value by 0.6 dB compared to the baseline
(A), a more significant improvement than either frequency
learning (C) or recurrent learning (D) alone. The combina-
tion of the MDL block and recurrent learning (E) produced
the largest boost in performance, while all three components
together (H) yielded the best reconstruction results overall.
These findings demonstrate that all three components con-
tribute to the enhanced performance of the MDR-Net. Next,
we will separately provide the ablation studies of each com-
ponent mentioned above.

Ablation Study of MDLB. We validate the effectiveness
of the design of the MDL block in Table 3. As can be seen,
the performance decreases significantly when removing both
FT and IFT operations. Furthermore, both replacing the spa-
tial branch with the frequency branch or replacing the fre-
quency branch with the spatial branch results in a significant
performance drop. While the interaction between these two
branches can improve performance remarkably, demonstrat-
ing the effectiveness of integrating these two complementary
representations. Moreover, the introduced MDTA provides a
favorable gain of 0.2dB over the baseline.

The Number of Recurrent Learning. The Number of Re-
current Learning. An important factor of MDR-Net is the
number of recurrent learning. We compare the results of dif-
ferent recurrent numbers in Table 4. We can observe that both
SSIM and PSNR values tend to be saturated when N is four
and reaches the highest when N is 5.

Loss Weight Factor. The parameter λ in Eq.(7) is used to
balance the importance of spatial and frequency loss. We
studied how the model’s performance changes with differ-
ent values of λ and present the results in Table 5. When
λ = 0, the model only focuses on the spatial domain loss
which is not optimal, showing that frequency-level supervi-
sion is crucial. As the frequency loss increases, the model’s
performance improves. The best results in terms of PSNR
and SSIM are achieved when λ = 0.8.

Frequency Loss. Figure 7 illustrates the difference in fre-
quency spectra reconstructed with and without the frequency
loss. The corresponding log frequency distance(LFD) is also
shown in the same figure. Without frequency supervision, the
reconstructed spectra exhibit an aliasing artifact. However,
when using our proposed frequency loss, the frequency spec-
tra are reconstructed more accurately and with a lower LFD,
resulting in a closer match to the true frequency statistics. Ad-
ditionally, the fine-grained spectrum supervision in frequency

Metric α = 0.1 α = 0.3 α = 0.5 α = 1 α = 2 α = 3
LFD ↓ 14.8633 14.3792 13.9825 13.6571 13.3238 15.0863
SSIM ↑ 0.7739 0.7752 0.7782 0.7795 0.7807 0.7792
PSNR ↑ 33.1 33.2 33.5 33.8 33.7 33.5

Table 6: Model performance comparison using different coefficients
to calculate the spectrum distances in frequency domain.

Figure 7: Frequency spectrum visualization with or without (w/o)
FDL. The metric LFD is used to measure the frequency similarity.

loss helps to preserve high-frequency details that are difficult
to synthesize.
Frequency Distance Coefficient. The frequency distance
coefficient α in Eq.(5) is introduced to emphasize the fre-
quency parts of the reconstructed MR image. The higher the
value of α, the more the network will penalize underfitting
frequencies. Table6 shows the model performance for differ-
ent values of α. The highest PSNR is achieved when α = 1,
while the best SSIM and LFD performance is obtained when
α = 2. Lowering α results in weaker frequency penalty and
lower performance, while increasing it leads to more stringent
frequency domain supervision, which can distort the recon-
structed MR image. Therefore, we set α = 2 as the default
value to balance structural similarity and perceptual quality.

5 Conclusion
The investigation of CNNs for MR image reconstruction has
arrived at a serious bottleneck as networks with better per-
formance usually adopt a dual-domain learning strategy gen-
erally while could not recover the detailed structures in the
reconstructed MR images. To solve this problem, we pro-
posed a Multi-Domain Recurrent Network(MDR-Net) to re-
store both image and k-space signal simultaneously with
multi-domain interactions. Experiments demonstrated that
while previous MR image reconstruction methods on single-
domain and dual-domain have limited capability of reducing
aliasing artifacts in the image domain, our MDR-Net can ef-
fectively restore the reconstruction with complementary fea-
tures. Future work includes exploring MDR-Net on multi-
coil MR data and the application to other image reconstruc-
tion tasks, such as Photoacoustic Tomography images recon-
struction.
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