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Abstract
Weakly supervised semantic segmentation (WSSS)
with image-level annotations has achieved great
processes through class activation map (CAM).
Since vanilla CAMs are hardly served as guidance
to bridge the gap between full and weak supervi-
sion, recent studies explore semantic representa-
tions to make CAM fit for WSSS better and demon-
strate encouraging results. However, they generally
exploit single-level semantics, which may hamper
the model to learn a comprehensive semantic struc-
ture. Motivated by the prior that each image has
multiple levels of semantics, we propose hierar-
chical semantic contrast (HSC) to ameliorate the
above problem. It conducts semantic contrast from
coarse-grained to fine-grained perspective, includ-
ing ROI level, class level, and pixel level, mak-
ing the model learn a better object pattern under-
standing. To further improve CAM quality, build-
ing upon HSC, we explore consistency regulariza-
tion of cross supervision and develop momentum
prototype learning to utilize abundant semantics
across different images. Extensive studies manifest
that our plug-and-play learning paradigm, HSC,
can significantly boost CAM quality on both non-
saliency-guided and saliency-guided baselines, and
establish new state-of-the-art WSSS performance
on PASCAL VOC 2012 dataset. Code is available
at https://github.com/Wu0409/HSC WSSS.

1 Introduction
Semantic segmentation is a fundamental task in computer
vision, aiming at delineating target objects on the pixel
level. With the recent advance of Deep Learning, fully su-
pervised semantic segmentation (FSSS) models have made
significant progress [Chen et al., 2017; Yuan et al., 2020;
Xie et al., 2021]. However, compared to other vision tasks,
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Figure 1: Motivating example of images with multiple semantic
hierarchies. (a) Image; (b) Coarse-grained semantic hierarchy: ROI
and background semantics; (c) Ground-truth; (d) Medium-grained
semantic hierarchy: class-level semantics; (e) Fine-grained semantic
hierarchy: pixel-level semantics.

such as classification and object detection, acquiring suffi-
cient pixel-level annotations for segmentation is exceedingly
costly and time-consuming. Recently, many efforts have been
devoted to weakly supervised semantic segmentation (WSSS)
to lower the reliance on pixel-level annotations by utilizing
“weak” labels (e.g., image-level labels [Wang et al., 2020;
Lee et al., 2021c; Du et al., 2022], scribbles [Lin et al., 2016;
Liang et al., 2022; Vernaza and Chandraker, 2017], and
bounding boxes [Lee et al., 2021b; Oh et al., 2021]). There-
into, since image-level annotations can be obtained effort-
lessly, image-level WSSS is currently the popular direction,
and we also adopt this form for WSSS.

In absence of pixel-wise annotations, the supervision sig-
nal only involves the existence of object classes without any
locations and contours, leaving a huge supervision gap be-
tween WSSS and FSSS. One main solution is using Class
Activation Map (CAM) [Zhou et al., 2016], which reveals
object regions through the internal activations of the classi-
fier to generate pseudo pixel-level supervision. However, the
CAMs are prone to cover the most discriminative regions of
objects (under-activation) or activate irrelevant regions (over-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1542

https://github.com/Wu0409/HSC_WSSS


activation), affecting the segmentation performance. Previous
studies design various methods to improve CAM in different
ways, e.g., region growing [Kolesnikov and Lampert, 2016;
Huang et al., 2018; Wang et al., 2018], adversarial erasing
[Kumar Singh and Jae Lee, 2017; Wei et al., 2017; Hou et al.,
2018], and auxiliary saliency supervision [Zeng et al., 2019;
Oh et al., 2021; Wu et al., 2021].

Recently, driven by potent contrastive learning paradigms,
several representation-based WSSS algorithms have been
proposed [Du et al., 2022; Zhou et al., 2022]. They design
different learning tasks on a single semantic level, such as
pixel and region level, and manifest noticeable performance
improvement. However, one prior knowledge is that complex
scenes are composed of multiple hierarchies of semantics
[Lu et al., 2021]. For instance, from the coarse-grained level,
Figure 1a can be separated into region-of-interests (ROI) and
background (Figure 1b). Then, ROI can be decomposed to
“person” and “motorbike” (Figure 1d), which further consist
of more fine-grained components like “face” and “body”, and
“handlebar” and “wheel” (Figure 1e). For precise CAMs,
the following semantics should be distinguishable from each
other: 1) ROI and background (ROI level); 2) the objects of
each class (class level); and 3) the disjoint pixels of objects
across classes (pixel level). Only implementing single-level
contrastive learning may hinder the model from learning a
more comprehensive semantic structure where the semantics
are self-consistent simultaneously on the ROI, class, and pixel
levels. To mitigate the above problem, we propose hierarchi-
cal semantic contrast (HSC) in lieu of single-level semantic
contrastive learning to exploit different levels of semantic re-
lations, aiming at making the model learn better object pattern
understanding and more precise CAM inference.

Specifically, in the training stage, HSC infers coarse CAMs
to generate pixel-wise pseudo-labels. Since pixel-level se-
mantic contrast is susceptible to noises (i.e., false pseudo-
labels), we apply dense Conditional Random Field (CRF) to
refine these pseudo-labels. Then, based on the activations of
the CAMs and refined pseudo-labels, HSC implements se-
mantic contrast in the embedding space from the prospects
of three semantic hierarchies, i.e., ROI level, class level, and
pixel level. Considering the semantic consistency under dif-
ferent views (transformations) of each image, HSC estab-
lishes a siamese network structure that adopts cross super-
vision on hierarchical semantic contrast, where one view of
representations serves as the additional semantic supervision
for the other view. Moreover, to utilize abundant semantics
in the same hierarchy (e.g., class-level representations of per-
son with various characteristics across different images), we
establish momentum prototypes to complement more holistic
and accurate representations for class-level and pixel-level se-
mantic contrast. As the training goes, these prototypes merge
representations that belong to the same hierarchy but across
different images, and participate in contrastive learning as ad-
ditional supervision. The results of extensive experiments
demonstrate the superiority of our proposed approach.

Collectively, the main contributions of this paper can be
summarized as follows:

• We propose hierarchical semantic contrast (HSC) for
WSSS, which is motivated by the prior knowledge of

semantic hierarchies harbored in each image. It involves
three levels of semantic contrast and aims to learn more
abundant semantic relations, enabling the model to earn
better object pattern understanding and generate more
precise CAMs. Compared to the prior art with single-
level contrast, PPC [Du et al., 2022], the CAMs of
HSC have more complete objects and precise boundaries
without any saliency supervision.

• The siamese architecture with cross supervision and mo-
mentum prototype learning effectively couples hierar-
chical semantic contrast and further improves the qual-
ity of CAM inference. Moreover, we prove that CRF in
the training stage can refine pseudo labels from coarse
CAMs for better representation learning, especially in
the noise-sensitive pixel-level semantic contrast.

• Our approach supports plug-and-play in existing WSSS
models. We demonstrate its effectiveness on both non-
saliency-guided and saliency-guided baseline (SEAM
[Wang et al., 2020] and EPS [Lee et al., 2021c]). The
performance of their variants surpasses corresponding
vanilla versions by large margins. With EPS, we record
new state-of-the-art on PASCAL VOC 2012.

2 Related Work
2.1 WSSS with Image-level Labels
WSSS with image-label is a promising task that significantly
alleviates the reliance on large numbers of pixel-wise annota-
tions for training segmentation models. The convention of
WSSS can be divided into two steps. Step 1 is to train a
classification model and use its CAMs to generate pseudo-
labels. Step 2 is to use these labels to train a segmenta-
tion model. Since CAM can only highlight the discrimina-
tive regions and thus hardly cover complete object regions,
SEC [Kolesnikov and Lampert, 2016] proposes three princi-
ples to refine CAM, i.e., seed, expand, and constrain, which
are followed by many subsequent works. They can be sum-
marized as region growing [Kolesnikov and Lampert, 2016;
Huang et al., 2018; Wang et al., 2018], incorporating self-
supervised learning [Shimoda and Yanai, 2019; Wang et al.,
2020], adversarial erasing [Kumar Singh and Jae Lee, 2017;
Wei et al., 2017; Hou et al., 2018], and auxiliary supervision
[Zeng et al., 2019; Oh et al., 2021; Wu et al., 2021]. These
past efforts mainly focus on images individually, ignoring the
abundant semantics in the images.

2.2 WSSS with Semantic-level Supervision
To utilize the semantics in the images, early works dedi-
cate to exploit the semantic affinity to refine the pseudo-
labels [Ahn and Kwak, 2018; Ahn et al., 2019] or compute
the semantic co-attention between pairs of images to obtain
more consistent and integral CAM regions [Fan et al., 2020;
Sun et al., 2020]. With the advance in contrastive learning,
several current studies attempt to perform dense contrastive
learning to improve object localization ability and obtain bet-
ter CAMs. RCA [Zhou et al., 2022] establishes memory
banks for each class and applies class-level semantic contrast
and aggregation on the dataset level. PPC [Du et al., 2022]
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Figure 2: The overview of our proposed Hierarchical Semantic Contrast framework for WSSS. It adopts a siamese architecture with two
views of inputs. HSC is implemented on both views of semantics. The hierarchical semantics and momentum prototypes of two views
are applied cross supervision, where one view’s hierarchical semantics and momentum prototypes serve as auxiliary supervision signals for
another view.

introduces consistency regularization and proposes pixel-to-
prototype learning based on [Wang et al., 2021], constrain-
ing intra(inter)-class compactness(dispersion) in the feature
space. In contrast, our work proposes hierarchical semantic
contrast paradigm to build semantic relations simultaneously
on ROI, class, and pixel levels, learning a comprehensive se-
mantic structure for CAM inference.

3 Methodology
Our proposed HSC is implemented in Step 1 of WSSS to
make the model generate more accurate CAMs. Building
upon classification task (Lcls), HSC can be interpreted as an
auxiliary learning task, whose overall loss function for train-
ing is the linear combination of the ROI-level contrastive loss
Lrsc, class-level contrastive loss Lcsc, and pixel-level con-
trastive loss Lpsc:

Ltotal = Lcls + γ (Lrsc + Lcsc + Lpsc) , (1)

where γ is a positive weight to rescale the loss of HSC. After
generating our pseudo-masks, Step 2 is to use them to train
DeepLab-ASPP [Chen et al., 2017] segmentation model fol-
lowing common practice in WSSS. The framework overview
of HSC is illustrated in Figure 2.

3.1 Preliminary
Class Activation Map
To generate CAM, the first step is to train a multi-label clas-
sification CNN (e.g., ResNet-38 [Wu et al., 2019]). Given a
batch of N images as input, its output of the last convolutional
layer is f ∈ RN×D×HW , where D is the channel dimension,
and HW is the spatial size of f . Then, f is aggregated to C
channels by a 1× 1 convolutional layer Fcam:

f ′ = Fcam(f) ∈ RN×C×HW . (2)

Here, C is the number of total classes. Finally, global average
pooling (GAP) is connected after Fcam to retrieve the final
classification scores. In the above process, f ′ followed by
ReLU function is theoretically equivalent to the CAMs of C
classes [Zhang et al., 2018]. As it is a more efficient way
to compute CAM during forward propagation, we follow this
manner in our paper.

Feature Representations
We set projectors to map original f to the embedding space
for semantic contrast. Different from pixel-level semantics,
ROI and class levels are more abstract semantic hierarchies.
Therefore, we set a projector Fproj1 for ROI-level and class-
level semantic contrast and a projector Fproj2 for pixel-level
semantic contrast, respectively. Fproj1 comprises two pro-
jection layers with convolution operation and activation to
map f to representation u1, and Fproj2 comprises one sim-
ple projection layer, mapping f to representation u2. It is
worth noticing that the channel dimension of u1 is larger than
u2, aiming at accommodating more ROI-level and class-level
representation information. The details of this part can be
viewed in Section 4.2.

Momentum Prototype Learning
Considering the semantic information of the same hierar-
chy is unidentical in different images (e.g., cats with diversi-
fied characteristics), we set momentum prototype learning to
complement the holistic semantics for class-level and pixel-
level contrast inspired by [Zhang et al., 2021]. These mo-
mentum prototypes update via Exponential Moving Average
(EMA) as training goes. For both class-level and pixel-level
hierarchies, we set one momentum prototype for each class,
which is updated by representations with high activations.
Their momentum prototype learning and updating criteria
will be detailed in Section 3.3 and Section 3.4, respectively.
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Cross Supervision
Considering that the semantics of an image under different
views (transformations) should be consistent [Wang et al.,
2020], we impose semantic consistency on the two views in
our siamese architecture, where the representations of each
hierarchy from one view can act as a supervisory signal for
the other view, and vice versa. This design implicitly achieves
consistency regularization to improve the robustness of se-
mantic structure against various image scales. In HSC, each
hierarchy’s representations and momentum prototypes are in-
volved in cross supervision. For simplicity, Section 3.2-3.4
only describe HSC from one view.

3.2 ROI-level Semantic Contrast (RSC)
Given an image, if one CAM can cover a more complete and
precise area of ROI, its ROI and background representations
should contain sufficiently different semantics, and thus hav-
ing a large distance in the embedding space. Further, in a
batch of images, their pairs of ROI and background represen-
tations should also be distinct. Based on this insight, we pro-
pose to push apart the ROI and background representations
across images. Note that in the current hierarchy, we do not
encourage the model to pull representations with the same
property together (as adopted in many self-supervised con-
trastive learning paradigms), because the semantics of ROI
and background in each image are unique in most cases. The
pulling behavior will cause the collapse of the embedding
space, deteriorating the quality of the CAM.

Representation of ROI and Background
For the i-th image I in one batch and its representation ui

1,
we first conduct pixel-wise argmax function on its CAM to
assign the category for each pixel, and generate the pseudo bi-
nary mask of its ROI and background. Thereinto, if one pixel
p belongs to any non-background class, it will be marked in
its ROI mask mi

o ∈ RHW , otherwise it will be marked in
its background mask mi

b ∈ RHW . Guided by mi
o and mi

b,
we select their corresponding dense representations from ui

1,
and then aggregate them into a pair of ROI and background
representations as follows:

riw =

∑
p∈I m

i
w(p)u

i
1(p)∑

p∈I m
i
w(p)

, w ∈ {o, b}, (3)

where rio and rib is the i-th image’s representation of the ROI
ro and that of background rb, respectively.

ROI-level Semantic Contrast
Given a batch of N images, the ROI-level semantic contrast
applies the following formulation:

Frsc (ro, rb) = −
1

N2

N∑
i=1

N∑
j=1

log
(
1− sim(ri

o, r
j
b)
)
, (4)

where sim(·, ·) is the cosine similarity between pair of rep-
resentations. Finally, the ROI-level semantic contrast with
cross supervision is calculated by:

Lrsc = Frsc (ro, rb) + Frsc (ro, r̃b) , (5)

where r̃b is the background representations of the other view.

3.3 Class-level Semantic Contrast (CSC)
Due to lacking pixel-wise annotations for the model, the
CAMs of some classes probably suffer from over-activation
or under-activation. In this case, some class-level representa-
tions are ambiguous because they are coupled with the repre-
sentations of other classes. Therefore, the goal of class-level
semantic contrast is to mine high-quality representations of
each class from the entire dataset, utilizing them to calibrate
the model to learn more precise representations of each class
while pushing them apart from other classes’ representations.

Class-level Prototype Mining
The class-level momentum prototype will be updated by the
representations of pixels with high CAM values. Given a
batch of N images, we first aggregate the representations of
each class. Suppose M c is the collection of the indices of the
images with class c in the current batch, then the class-level
representation of c will be:

rc =
1

|M c|
∑

i∈Mc

∑
p∈Ai

c
wi(p)ui

1(p)∑
p∈Ai

c
wi(p)

, (6)

where | · | represents the cardinality, Ai
c is the collection of

pixels with top kc activation values of class c at the i-th image,
and each pixel p in the i-th image has its activation value of
wi(p) and representation ui

1(p). Then, if c appears in the
current batch, its momentum prototype Pc will be updated
by:

Pc ← λ · rc + (1− λ) · Pc, if c ∈ C, (7)

where λ is the momentum for the prototype update and C is
the collection of the classes involved in the current batch.

Class-level Semantic Contrast
Given class c involved in the current batch and the prototpyes
P = {Pc}Cc=1, we pull rc and its corresponding momentum
prototype together, and meanwhile push apart other momen-
tum prototypes via Info-NCE loss [Oord et al., 2018]:

Fcsc (rc,P) =

− log · esim(rc,Pc)/τ

esim(rc,Pc)/τ +
∑

Pl∈P\Pc
esim(rc,Pl)/τ

,
(8)

where τ = 0.1 is a sharpening temperature used to reconcile
the distribution of distances. Finally, the class-level semantic
contrast is calculated with cross supervision as:

Lcsc =
1

|C|
∑
c∈C

[
Fcsc (rc,P) + Fcsc

(
rc, P̃

)]
, (9)

where P̃ denotes the class-level momentum prototpyes of the
other view.

3.4 Pixel-level Semantic Contrast (PSC)
A recent study, PPC [Du et al., 2022], has proposed pixel-to-
prototype contrast for WSSS. Its training objective is to build
pixel-level supervision from the reliable prototype of each
class to narrow the gap between WSSS and FSSS. Based on
its three contrast learning paradigms (i.e., cross-view contrast,
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cross-CAM contrast, and intra-view contrast), we further im-
prove this way by adding CRF refinement and Momentum
prototype learning as conducted in CSC. The brief introduc-
tion of the above contrast learning paradigms and their corre-
sponding improvements are described as follows.

CRF Refinement
Since each pixel will be involved in pixel-level semantic con-
trast, the validity of pseudo-labels generated by CAMs is im-
portant. However, we observe that the quality of pseudo-
labels is not ideal in many cases, such as complex scenes
and overlapping objects. If one pixel’s pseudo-label is mis-
classified, its corresponding representation will be conducted
PSC with undesirable prototypes, which degrades the qual-
ity of PSC. Consequently, before implementing PSC, we ap-
ply CRF to refine generated pseudo-labels: y′ = CRF(y, I),
where I denotes the whole image and y denotes its pseudo-
label. The pseudo-labels and corresponding pixel representa-
tions are down-sampled before PSC, and thus CRF does not
bring much computation load.

Pixel-level Prototype Mining
For each class c, its pixel-level prototypeQc is produced from
the representations of highly activated pixels that are assigned
to c in the current batch:

Qc =

∑
p∈Bc

w(p)u2(p)∑
p∈Bc

w(p)
, (10)

where Bc is the collection of top kp activated pixels in class c
for the current batch, and each pixel p has activation value of
w(p) and representation u2(p). Then, class c’s momentum
prototype Q′

c will be:
Q′

c ← λ · Qc + (1− λ) · Q′
c. (11)

Pixel-level Semantic Contrast
Followed by PPC, given a pixel p and the prototypes Q =
{Qc}Cc=1, the pixel-level semantic contrast Fpsc(·) holds the
following formulation:

Fpsc (p,u2,y
′,Q) = − log

exp
(
u2(p) · Qy′(p)/τ

)∑
Qc∈Q exp (u2(p) · Qc/τ)

,

(12)
where y′(p) denotes the refined pseudo-label of p andQy′(p)

is its corresponding prototype.
For the intra-view contrast, it is not involved supervision

signals from the other view, where pseudo-labels y′, repre-
sentation u2, and prototypes Q are derived from the same
view. For the cross-view contrast, the prototypes of the cur-
rent view are replaced with the prototypes Q̃ from the other
view. For the cross-CAM contrast, the pseudo-labels of the
current view are replaced with the pseudo-labels ỹ′ from the
other view. For our proposed momentum prototype learning,
we replace the original prototypesQwith the momentum pro-
totypes Q′ to implement intra-view contrast. Finally, given
one whole image I , the pixel-level semantic contrast is calcu-
lated as:

Lpsc =
1

|I|
∑
p∈I

[
Fpsc(p,u2,y

′,Q) + Fpsc(p,u2,y
′, Q̃)

+ Fpsc(p,u2, ỹ
′,Q) + Fpsc(p,u2,y

′,Q′)
]
.

(13)

(a) Images (b) SEAM (c) PPC (d) Ours

Figure 3: The visualization of original CAMs. (a) Images; (b)
CAMs produced by SEAM; (c) CAMs produced by PPC (with pixel-
to-prototype semantic contrast); (c) CAMs produced by our pro-
posed HSC (with hierarchical semantic contrast). Our approach per-
forms better in terms of object completeness and boundary preci-
sion.

4 Experiment
4.1 Dataset and Evaluation Metric
We evaluate our approach on the standard WSSS benchmark,
PASCAL VOC 2012 (20 object classes and one background
class). Following the convention in semantic segmentation,
we adopted its augmented training set (SBD) [Hariharan et
al., 2011] that consists of 10582 images to train our classi-
fication model in step 1 and the segmentation model in step
2. Mean intersection over union (mIoU) is used to evaluate
initial seeds, pseudo-labels, and final segmentation perfor-
mance. The mIoU of segmentation performance on the test
set is evaluated from the official evaluation server.

4.2 Implementation Details
Following the baseline, SEAM and EPS, ResNet38 [Wu et
al., 2019] with output stride = 8 is adopted as the backbone
network. For our siamese network architecture, the backbone
and the projectors share weights between the two views. The
projector Fproj1 is equipped with two Conv-ReLU blocks,
mapping 4096-dimensional features to 256-dimensional em-
bedding space, and the projector Fproj2 is equipped with one
Conv-ReLU block, mapping 4096-dimensional features to
128-dimensional embedding space. For the training images
of View #1, they are first randomly rescaled with the range
of [448, 768] by the longest edge and then randomly cropped
by 448 × 448. Based on the images of View #1, they are
downsampled to 128 × 128 for View #2. When integrat-
ing our approach to SEAM and EPS, we follow the same
training and inference protocol in SEAM and EPS, includ-
ing the training epoch, optimizer, learning rate, learning rate
decay strategy, and weight decay. At the training stage, we
set γ = 0.1 to balance the loss of Lhsc and their supervision
loss. At the inference stage, we adopt multi-scale inference
with flipping transformation as conducted in previous works.
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Method Seed +CRF Masks

PSA [CVPR’ 18] [Ahn and Kwak, 2018] 48.0 - 61.0
CONTA [NIPS’ 20] [Zhang et al., 2020] 56.2 65.4 66.1

EDAM [CVPR’ 21] [Wu et al., 2021] 52.8 58.2 68.1
AdvCAM [CVPR’ 21] [Lee et al., 2021a] 55.6 62.1 68.0
OC-CSE [ICCV’ 21] [Kweon et al., 2021] 56.0 62.8 66.9

ECS-Net [ICCV’ 21] [Sun et al., 2021] 56.6 58.6 -
Ru et al. [IJCAI’ 21] [Ru et al., 2021] 52.9 52.0 67.7†

PPC (w/ SEAM) [CVPR’ 22] [Du et al., 2022] 61.5 64.0 69.2
RCA (w/ EPS) [CVPR 22] [Zhou et al., 2022] - 74.1 -

PPC (w/ EPS) [CVPR’ 22] [Du et al., 2022] 70.5 73.3 73.3

SEAM (w/o saliency) [CVPR’ 20] 55.4 56.8 63.6
Ours (w/ SEAM) 64.3 66.5 69.5

EPS (w/ saliency) [CVPR’ 21] 69.5 71.4 71.6
Ours (w/ EPS) 71.8 74.6 74.6∗

Table 1: Evaluation (mIoU (%)) of the initial seed (Seed), the seed
after CRF (+ CRF), and the final pseudo-labels (Masks) refined by
PSA on PASCAL VOC 2012 train set. † means the pseudo-labels
are refined by IRN [Ahn et al., 2019]. ∗ means the pseudo-labels are
adopted the seeds with CRF without any refinement networks.

CRF is implemented on the initial seeds as a post-processing
procedure to refine the pseudo-labels. For the segmentation
network, we train DeepLab-ASPP [Chen et al., 2017] with
ResNet101 backbone using the pseudo-labels generated from
our approach with EPS. More detailed settings are available
in our Appendix.

4.3 Initial Seed and Pseudo Label Evaluation
Table 1 reports the segmentation performance of initial seeds,
seeds after CRF, and final pseudo-labels on PASCAL VOC
2012 train set. Following SEAM [Wang et al., 2020], our
initial seeds are generated by setting a range of thresholds to
separate the objects and backgrounds in the original CAM
inferences. Pseudo-labels are refined by PSA [Ahn and
Kwak, 2018] from seeds after CRF. As can be seen, for
SEAM with non-saliency guidance, HSC dramatically en-
hances its performance, resulting in an 8.9% and 9.7% in-
crease in initial seeds and seeds after CRF, respectively. Fur-
thermore, on EPS with saliency guidance, HSC can also
boost its performance on initial seeds (+2.3%) and seeds after
CRF (+3.2%), achieving new state-of-the-art performance. In
comparison to the methods equipped with semantic contrast
paradigms (i.e., PPC and RCA), our approach achieves no-
ticeable improvement when integrating with EPS. In terms
of our refined pseudo-labels, we note that our approach with
SEAM obtain slight improvement compared to seeds af-
ter CRF. Considering previous studies [Lee et al., 2021c;
Du et al., 2022] have manifested that PSA is limited to yield
benefits when seeds after CRF are already exquisite enough,
we reckon that this is mainly caused by the performance bot-
tleneck of PSA, and thus we directly use seeds after CRF as
pseudo-labels when equipping HSC to stronger baseline EPS.

To investigate how HSC improves the quality of initial
seeds and seeds after CRF, we present the qualitative results
of CAMs generated by SEAM, PPC, and HSC, respectively.

Method BB. Sup. val test

PSA [CVPR’ 18] [Ahn and Kwak, 2018] R38 I 61.7 63.2
IRNet [CVPR’ 19] [Ahn et al., 2019] R50 I 63.5 64.8

SEAM [CVPR’ 20] [Wang et al., 2020] R38 I 64.5 65.7
CONTA [NIPS’ 20] [Zhang et al., 2020] R101 I 66.1 66.7

Ru et al. [IJCAI’ 21] [Ru et al., 2021] R101 I 67.2 67.3
EDAM [CVPR’ 21] [Wu et al., 2021] R101 I + S 70.9 70.6

AdvCAM [CVPR’ 21] [Lee et al., 2021a] R101 I 68.1 68.0
URN [AAAI’ 22] [Li et al., 2022] R101 I 69.5 69.7

AMR [AAAI’ 22][Qin et al., 2022] R101 I 68.8 69.1
ReCAM [CVPR’ 22] [Chen et al., 2022] R101 I 68.5 68.4

MCTformer [CVPR’ 22] [Xu et al., 2022] R38 I 71.9 71.6
RCA [CVPR’ 22] [Zhou et al., 2022] R101 I + S 72.2 72.8

PPC [CVPR’ 22] [Du et al., 2022] R101 I + S 72.6 73.6

EPS [Lee et al., 2021c] R101 I + S 70.9 70.8
Ours (w/ EPS) R101 I + S 73.6 74.5†

Table 2: Evaluation (mIoU (%)) of WSSS methods on PASCAL
VOC 2012 val and test. ”BB.”: Backbone (R-ResNet); ”Sup.”: Su-
pervision; ”I”: Image-level class labels; ”S”: Saliency supervision.
†: http://host.robots.ox.ac.uk/anonymous/11DHLZ.html

As shown in Figure 3, we observe that our approach achieves
more superior performance than SEAM and PPC in terms
of object completeness and boundary precision. Especially
in the boundaries, the CAMs of our method cover more ac-
curately without any saliency supervision compared to PPC
with single-level semantic contrast.

4.4 Final Segmentation Performance
Table 2 provides the comparison of HSC against representa-
tive methods in terms of final segmentation results on PAS-
CAL VOC 2012 val and test set. As seen, building upon
DeepLab-ASPP, our proposed approach brings significant
gains over EPS. With equipping HSC, we increase the seg-
mentation mIoU of EPS by 2.7% on val set and 3.7% on
test set, setting a new state-of-the-art on WSSS. Figure 4 il-
lustrates some qualitative segmentation results of HSC, from
which we can observe that our method works well in both
simple and complex scenes.

Furthermore, compared to PPC, the prior art with single-
level semantic contrast, we explore which categories have
performance improvement brought by hierarchical seman-
tic contrast. Table 3 tabulates the categorical mIoU perfor-
mance comparison on test set. We can find that our pro-
posed HSC achieves significant performance improvements
(1.45% ∼ 4.54%) in eight categories. The objects in most of
these categories are relatively challenging to segment, as they
often appear in complex scenes (such as multiple instances,
occlusions, and objects with different sizes or various charac-
teristics). This result demonstrates that hierarchical semantic
contrast can better guide the segmentation model to handle
these cases.

4.5 Ablation Study
To investigate how each component in our proposed approach
contributes to WSSS, we conduct extensive ablation studies
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Methods bird boat bottle chair table dog plant sheep sofa train tv mIoU

PPC 89.77 65.35 69.89 31.42 48.23 85.12 59.55 87.66 52.89 80.31 46.39 73.6

Ours 89.09
(-0.68)

63.62
(-1.73)

72.95
(+3.06)

34.15
(+2.73)

49.68
(+1.45)

87.59
(+2.47)

64.09
(+4.54)

87.14
(-0.52)

55.03
(+2.14)

82.97
(+2.66)

48.39
(+2.00) 74.5

Table 3: Catagorial performance comparison (mIoU (%)) on PASCAL VOC 2012 test set. Both methods use DeepLab-ASPP as the final
segmentation model. The categories with performance differences greater than 0.5% are listed.

（a）

（b）

（c）

Figure 4: Qualitative segmentation results of HSC on PASCAL VOC 2012 val set. (a) Images; (b) Ground-truth; (c) Segmentation results
predicted by DeepLab-ASPP model retrained on our produced pseudo-labels.

Baseline PSC CSC RSC CS MPL CRF † CRF Seed
✓ 55.4
✓ ✓ ✓ 59.3
✓ ✓ ✓ ✓ 60.5
✓ ✓ ✓ ✓ ✓ 62.6
✓ ✓ ✓ ✓ 60.7
✓ ✓ ✓ ✓ ✓ ✓ 63.5
✓ ✓ ✓ ✓ ✓ ✓ ✓ 64.2

✓ ✓ ✓ ✓ ✓ ✓ ✓ 64.3 (+8.9)

Table 4: The ablation study (mIoU (%)) for each part of HSC. PSC:
Pixel-level semantic contrast; CSC: Class-level semantic contrast;
RSC: ROI-level semantic contrast; CS: Cross Supervision; MPL:
Momentum Prototype Learning in PSC; CRF†: CRF Refinement in
PSC. CRF: CRF Refinement in complete HSC.

in this section. Here, all ablation analyses are implemented
with SEAM baseline on PASCAL VOC 2012 train set. The
results are presented in Table 4.

Hierarchical Semantic Contrast. We investigate the ne-
cessity of learning hierarchical semantic contrast for WSSS.
Based on cross supervision, each level’s semantic contrast
paradigm provides a performance boost, improving the base-
line performance from 55.4% to 62.6% (+7.2%). This proves
that our approach fulfills the goal of obtaining a better object
pattern understanding by learning a holistic semantic struc-
ture across different semantic hierarchies.

Cross Supervision. It is an essential component in se-
mantic contrast. When integrating it into HSC, we witness
a noticeable performance increment from 60.7% to 62.6%
(+1.9%). This indicates that the implicit consistency regular-
ization can allow the model to learn the semantic consistency
across different views, which effectively bridges the supervi-
sion gap between pixel-level and image-level annotations.

CRF Refinement. We note that CRF refinement on pseudo-
labels works well with PSC, increasing from 63.5% to 64.2%
(+0.7%). By contrast, it shows marginal improvement, from
64.2% to 64.3% (+0.1%), for CSC and RSC. This is in line
with our assumption that PSC is more susceptible to false
pseudo-labels. After CRF refinement, HSC can obtain bet-
ter pseudo-labels to perform semantic contrast. In compar-
ison to PSC, the representations of RSC and CSC are esti-
mated from numerous representations, which are more robust
against false pseudo-labels.

Momentum Prototype Learning. In CSC, we use momen-
tum prototypes to calibrate the model to learn high-quality
representations at class level. Further, we also introduce this
paradigm to improve PSC. When MPL is integrated into PSC,
the initial seeds become more precise, from 62.6% to 63.5%
(+0.9%), indicating that the model learns holistic semantics
across different images from momentum prototypes. We em-
pirically choose the momentum λ and the prototype number
kc and kp to implement this paradigm. In this paper, we set
λ = 0.9, kc = 16, and kp = 32 for the optimal performance.

5 Conclusion
In this work, we propose a novel approach, HSC, to con-
duct semantic contrast at different levels as the auxiliary
learning task to learn semantic segmentation using image-
level supervision only. HSC conducts semantic contrast from
fine-grained hierarchy to coarse-grained hierarchy, building
a more comprehensive semantic structure in the embedding
space. In comparison to representative approaches, this en-
ables the model to have significant improvements in the ob-
ject completeness and boundary precision of CAMs, which
further boosts the final segmentation performance. Extensive
experiments validate the effectiveness of HSC and manifest
its leading performance of WSSS on PSCAL VOC 2012.
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