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Abstract
The monocular depth estimation task has recently
revealed encouraging prospects, especially for the
autonomous driving task. To tackle the ill-posed
problem of 3D geometric reasoning from 2D
monocular images, multi-frame monocular meth-
ods are developed to leverage the perspective
correlation information from sequential temporal
frames. However, moving objects such as cars
and trains usually violate the static scene assump-
tion, leading to feature inconsistency deviation and
misaligned cost values, which would mislead the
optimization algorithm. In this work, we present
CTA-Depth, a Context-aware Temporal Attention
guided network for multi-frame monocular Depth
estimation. Specifically, we first apply a multi-level
attention enhancement module to integrate multi-
level image features to obtain an initial depth and
pose estimation. Then the proposed CTA-Refiner
is adopted to alternatively optimize the depth and
pose. During the CTA-Refiner process, context-
aware temporal attention (CTA) is developed to
capture the global temporal-context correlations to
maintain the feature consistency and estimation in-
tegrity of moving objects. In particular, we propose
a long-range geometry embedding (LGE) module
to produce a long-range temporal geometry prior.
Our approach achieves significant improvements
(e.g., 13.5% for the Abs Rel metric on the KITTI
dataset) over state-of-the-art approaches on three
benchmark datasets.

1 Introduction
Monocular depth estimation aims at predicting accurate
pixel-wise depth from monocular RGB images. Due to its
low cost and easy implementation, monocular depth estima-
tion has achieved promising prospects in practical applica-
tions [Li et al., 2022; Wu et al., 2022; Mumuni and Mumuni,
2022]. Particularly, monocular depth estimation [Li et al.,
2015; Liu et al., 2015; Ricci et al., 2018; Bhat et al., 2021;
Yuan et al., 2022] under the single-frame setting has achieved
convincing results by conducting robust convolutional neu-
ral networks with prior geometric constraints. Nevertheless,

Figure 1: Given input images, our CTA-Depth with CTA-Refiner
predicts more accurate depth maps compared to the initial predic-
tion, especially for dynamic objects.

it is still challenging to precisely recover the 3D environ-
ment from a single monocular 2D image. On the other hand,
noting that sequential image frames are achievable from
the monocular camera, existing studies [Wang et al., 2019;
Zhang et al., 2019; Patil et al., 2020] start paying greater at-
tention to the depth estimation under the multi-frame setting.
Inspired by the stereo matching task, multi-frame monocu-
lar depth estimation works typically employed the cost vol-
ume or cost map [Watson et al., 2021; Gu et al., 2023;
Bae et al., 2022] to accomplish geometric reasoning and have
gradually achieved state-of-the-art performance.

However, the widely applied static scene assumption
[Klingner et al., 2020; Li et al., 2019] for the construc-
tion of the cost volume does not always hold in real-world
scenarios. Specifically, moving objects such as cars, trains
and pedestrians result in feature inconsistency deviation, mis-
aligned cost values and degraded re-projection loss, which
would mislead the optimization algorithm. To address this
issue, recent works [Lee et al., 2021a; Feng et al., 2022;
Wimbauer et al., 2021] attempted to solve dynamic problems
by introducing an auxiliary object motion prediction module
and segmentation masks to predict or disentangle dynamic
objects explicitly. It inevitably increases the complexity and
redundancy of the model and ignores the sustained temporal
relation modeling of moving objects across long-range mul-
tiple frames, which thus limits the potential of sequential im-
ages for time-crucial industry implementation.
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Thus, to efficiently boost the multi-frame context-temporal
feature integration for dynamic targets without explicit auxil-
iary modules, we propose our CTA-Depth, a Context-aware
Temporal Attention network for joint multi-frame monocu-
lar Depth and pose estimation. Specifically, we first utilize
the multi-level attention enhancement (MAE) module for re-
liable initial estimation, which applies cross-scale attention
layers to achieve ample interaction of different-scale features
to equip the network with both local and global attentions.
Furthermore, we develop the refiner CTA-Refiner to itera-
tively optimize our predictions with the inputs of context
and temporal features. In specific, we develop our depth-
pose context-aware temporal attention (CTA) with the cross-
attention mechanism that assigns the temporal features as val-
ues, and the context features as queries and keys. As a result,
it implicitly interacts with the context and temporal features
to maintain the estimation integrity of moving objects across
multiple sample frames. Additionally, to expand the temporal
field of interest and aggregate useful clues for geometry rea-
soning, especially for dynamic targets within distant frames,
we present our long-range geometry embedding (LGE) and
provide it to the CTA process for seizing the long-range tem-
poral geometry prior.

Qualitatively, as shown in Fig. 1(b), it is difficult for the
single-frame method to recover the complete geometry of
moving objects, while the predictions from our implicit CTA-
Depth in Fig. 1(c) demonstrate its robustness at high-level
feature recognition. Quantitatively, we conduct extensive ex-
periments on three challenging benchmarks to validate the
effectiveness of our pipeline against state-of-the-art models.
We summarize our contributions as follows:

• We propose our CTA-Depth, an implicit, long-range
Context-aware Temporal Attention guided network for
supervised multi-frame monocular depth estimation, fo-
cusing on the dynamic object areas. It achieves state-
of-the-art performance on challenging KITTI, VKITTI2,
and nuScenes datasets.

• We design a novel depth-pose context-aware temporal
attention (CTA), which implicitly learns the temporal
geometric constraints for moving objects via attention-
based integration.

• We introduce a novel long-range geometry embedding
(LGE) module to promote geometry reasoning among
the long-range temporal frames.

• We develop an effective multi-level attention enhance-
ment (MAE) module to make global-aware initial depth
and estimations. It promotes the distinction of far-away
small objects from the static background.

2 Related Work
2.1 Monocular Depth Estimation
Convolutional neural networks with LiDAR supervision
[Wang et al., 2015; Fu et al., 2018; Tang and Tan, 2018; Teed
and Deng, 2019; Lee and Kim, 2020; Guizilini et al., 2021;
Lee et al., 2021b] have shown promising results in monoc-
ular depth estimation. As a pioneer, Eigen et al. [Eigen et

al., 2014] directly regressed depth by employing two stacked
deep networks that made a coarse prediction from the whole
image and then refined it locally. On the other hand, [Laina
et al., 2016] adopted an end-to-end single CNN architecture
with residual learning. To guide the encoded features to the
desired depth prediction, [Lee et al., 2019] further deployed
it with local planar guidance layers. Recently, [Ranftl et al.,
2021] introduced a dense prediction transformer [Vaswani
et al., 2017] for depth prediction. Meanwhile, [Bhat et al.,
2021; Yang et al., 2021] developed global information pro-
cessing with vision transformer [Dosovitskiy et al., 2021] for
performance boost. Besides, [Yuan et al., 2022] adopted the
swin-transformer [Liu et al., 2021] as the image encoder and
the neural window fully-connected conditional random fields
(NeWCRFs) module as the feature decoder. In particular, in-
spired by the RAFT [Teed and Deng, 2020] which employed
a GRU-based recurrent operator to update optical flow, [Gu et
al., 2023] proposed a multi-frame monocular approach with
a deep recurrent optimizer to update the depth and camera
poses alternately.

However, these cost-map-based multi-frame methods
[Teed and Deng, 2019; Gu et al., 2023] lead to performance
degradation within dynamic areas due to the static scene
assumption. To solve this problem, we introduce a long-
range geometry embedding module and effectively inject the
proposed depth-pose context-aware temporal attention into
the deep refinement network for the optimization process of
depth and pose.

2.2 Depth Estimation in Dynamic Environment
Moving objects significantly hamper the multi-frame match-
ing strategy due to the inevitable object truncation and oc-
clusion. Specifically, both the re-projection loss calcula-
tion and the cost volume construction fall into catastrophic
failure cases during the positional change of observed tar-
gets. Existing works [Li et al., 2019; Lee et al., 2021a;
Watson et al., 2021] thus leveraged the segmentation mask to
separate the static-scene depth loss from moving objects. In
particular, they also proposed explicit object motion predic-
tion and a disentanglement module to assist the cost volume
construction. Specifically, SGDepth [Klingner et al., 2020]
proposed a semantic masking scheme providing guidance to
prevent dynamic objects from contaminating the photomet-
ric loss. DynamicDepth [Feng et al., 2022] introduced an
object motion disentanglement module that takes dynamic
category segmentation masks as input to explicitly disentan-
gle dynamic objects. Considering time-crucial tasks such
as autonomous driving, instead of adopting explicit redun-
dant static-dynamic separation algorithms, we developed an
efficient implicit modeling pipeline with our novel context-
aware temporal attention module. Besides, noting that pre-
vious works limited their methods to a few frames only due
to an increase in computational cost, we developed a novel
geometry embedding module to effectively encode semantic
guidance from long-range time series.

As a result, our pipeline can dynamically interact with the
long-range semantic flow with the current-frame spatial ge-
ometry in a fully differentiable manner and is thus available
for real industry implementation.
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Figure 2: Overview of our CTA-Depth. Given a reference image Ir and its N monocular sequential images {Ii}Ni=1, we first group N pairs
of network inputs, where each pair is composed of Ir and a sequential image Ii. We then feed the two images into the MAE module and go
through two heads to obtain the initial depth D0

r ,and pose P 0
i . Hence, the CTA-Refiner is proposed to alternately update the depth map and

pose through iterations until the optimum solution, D∗
r and P ∗

i . In particular, with multiple temporal-neighboring frames Ij , we also design
a long-range geometry embedding module to provide long-range temporal geometric priors for the depth refiner efficiently.

3 Method
3.1 Overview
We demonstrate the framework of our approach in Fig. 2,
which mainly consists of five components: the network in-
puts, the multi-level attention enhancement (MAE) module,
the depth & pose context net, and the context-aware tempo-
ral attention refiner (CTA-Refiner) which includes the depth-
pose context-aware temporal attention (CTA) module and the
last long-range geometry embedding (LGE) module.

Given a reference image Ir within one video captured via
a monocular camera, and its N video frames {Ii}Ni=1, our
goal is to predict the Ir’s accurate depth D∗

r and the rela-
tive camera poses {P ∗

i }Ni=1 for sequence image Ii with re-
spect to Ir. Specifically, we first regard the monocular video
frames as network inputs. Then, we adopt the multi-level at-
tention enhancement (MAE) module to extract representative
visual features for the following depth head and (shared) pose
head, which produces the initial depth D0

r and initial pose
P 0. Meanwhile, we employ the depth & pose context net
to extract context features F c

r for depth and F c
i for pose. In

addition, the long-range geometry embedding module seizes
the multi-frame temporal geometry knowledge to create the
long-range geometry embedding (LGE) φ(Fj), which is fur-
ther provided to the CTA to assist the refinement. After-
wards, we adopt the context-aware temporal attention refiner
(CTA-Refiner) to alternately update the results, which gradu-
ally converge to the optimal depth D∗

r and pose P ∗
i .

3.2 Multi-level Attention Enhancement (MAE)
Affiliated with the optimizer-based pipeline, we deliver our
multi-level attention enhancement (MAE) module to achieve
the initial prediction of depth and pose. As shown in Fig. 3,

Figure 3: The architecture of our multi-level attention enhancement
(MAE) module, which adequately integrates multi-level image fea-
tures via feature encoders, cross-scale attention layers, and PPM
module. “R” denotes the rearranged up-scaling for feature maps.

we propose the multi-level feature setting and pyramid pool-
ing module to reinforce the interest of the far-away small tar-
gets. In addition, to distinguish distant moving objects from
the static background, we adopt cross-scale attention layers
to enhance the interaction of different-scale features.

Specifically, as shown in Fig. 3, we utilize the feature en-
coder to extract four different-scale features from Ir. The
low-level features focus on the local details, while the high-
level features seize the global context information, which
both contribute to the rising interest of the distant targets [Lin
et al., 2017; Liu et al., 2018]. Afterwards, we employ the
pyramid pooling module (PPM) [Zhao et al., 2017] to ag-
gregate these features and deliver four cross-scale attention
layers to fuse the multi-level feature maps. We use the scaled
features Fi as the query and key, and adopt the fusion features
Fj as the value to stimulate the interaction of multi-scale fea-
tures. Within each cross-attention layer, we also introduce the

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1553



Value

Add

Softmax

𝐹𝑡

Key

Query

Temporal Feature

Context Feature

Long-Range GE

Proj.

Proj.

Proj.

Context-aware Temporal Attention 

𝐹𝑐

GRU

Figure 4: Illustration of the Depth/Pose CTA. Our CTA-Refiner al-
ternately optimizes the depth and the pose. During the depth refine-
ment, the depth CTA uses the depth context feature F c

r , the temporal
feature F t

r , and the Long-Range GE as inputs and feeds the outputs
into the depth GRU. For the pose refinement, the pose CTA employs
the pose context-aware feature F c

i , the temporal feature F t
i and the

Long-Range GE as inputs, then its outputs are fed into pose GRU.

rearranged up-scaling operation [Yuan et al., 2022] to reduce
the network complexity and boundary contour refinements.
As shown in Fig. 5, our method achieves accurate depth pre-
diction of objects at different scales and long distances.

3.3 Context-aware Temporal Attention (CTA)
CTA-Refiner
We adopt the CTA-Refiner to iteratively refine initial estima-
tions to the final converged depth D∗

r and pose P ∗
i , together

with two introduced extra inputs: the context features F c
r for

depth and F c
i for the pose from the depth & pose context net,

The refiner accepts these inputs to produce the prediction off-
set ∆Dt

r and ∆P t
i and then updates the results as follows:

Dt+1
r ← Dt

r +∆Dt
r, (1)

P t+1
i ← P t

i +∆P t
i . (2)

In detail, we first calculate the cost map given Dt
r, P t

i , Fr and
Fi, as shown in Fig. 2, where optimization for pose remains
freezing when optimizing depth, and vice versa. Notably, the
cost map measures the distance in feature space between Ir
and the sequence image Ii. Next, we adopt a simple feature
extractor (two convolutions) to obtain the temporal features
F t
r from the cost map, preparing for the following depth-pose

CTA. Thus it implicitly rectifies the implied content-temporal
inconsistency for moving objects and effectively promotes in-
formation integration between temporal features and depth-
pose context features.

We formulate the cost map as the L2 distance between
aligned feature maps F . Given the depth map D of the ref-
erence image Ir and the relative camera pose Ti of another
image Ii with respect to Ir, the cost is constructed at each
pixel x in the reference image Ir:

Ci(x) =
∥∥Fi

(
π
(
Ti ◦ π−1(x,D(x))

))
−Fr(x)

∥∥
2
, (3)

where π() is the projection of 3D points in 3D space onto the
image plane and π−1(x,D(x)) is the inverse projection. The
transformation converts 3D points from the camera space of
Ir to that of Ii. The multiple cost values are averaged at each
pixel x for multiple neighboring images.

Depth-pose Context-aware Temporal Attention (CTA)
The construction of the cost volume heavily relies on the
static scene assumption, where it supposes that the object
points remain static at time t and t∗. Thus, we re-project
the features at time t to another plane with pose t∗ at time t∗,
to achieve the matching cost values. However, moving ob-
jects break this assumption since targets such as cars, trains,
or pedestrians with a certain speed could move within the
time gap. This gives rise to the feature inconsistency devi-
ation, degraded (mismatching) cost values and re-projection
loss, and finally drawbacks our optimization for depth and
pose. We discard explicit settings such as the object motion
prediction module or disentangle module [Lee et al., 2021a;
Feng et al., 2022; Wimbauer et al., 2021], which brings ad-
ditional complexity and ignores the potential of complemen-
tary context-temporal information. Instead, we deliver our
context-aware temporal attention (CTA) to implicitly rectify
the mismatching problem, which efficiently cooperates the
temporal features with context features via attention-based
communication to achieve the feature consistency and esti-
mation integrity.

Specifically, as shown in Fig. 4, taking depth optimization
as an example, we first lift the temporal feature F t

r to value
(V ) vectors via the mapping function σ(·). Meanwhile, we
create query (Q) and key (K) vectors by adding the map-
ping functions θ(·) and ϕ(·) from the context feature F c

r , and
prepare long-range geometry embedding (LGE). We first al-
locate the query, key and value as Q = θ(F c

r )⊕ LGE, K =
ϕ(F c

r )⊕ LGE, and V = σ(F t
r ), respectively. Subsequently,

the depth context-aware temporal attention is denoted as:

F d
r = fs(Q⊗K)⊗ V ⊕ F t

r , (4)

where fs denotes the softmax operation,⊕ denotes the point-
wise addition and ⊗ denotes matrix multiplication.

Intuitively, compared with directly feeding F t
r and F c

r for
refinement, our CTA explicitly aligns the features for mov-
ing objects through the cross-attention mechanism, to com-
pensate for the mismatching discrepancy, which guarantees
temporal-context feature fusion and seamless depth refine-
ment. The temporal feature also helps the context feature to
fulfill the moving target’s integrity, such as the second row of
Fig. 1, where we rectify the wrong estimation in the ‘hole’
of the car head with temporal-content interaction. Similarly,
for the pose optimization with fixed depth optimization, we
employ context features F c

i to extract query (Q) and key (K)
vectors with added LGE. Hence, we allocate the query, key
and value as Q = θ(F c

i )⊕ LGE, K = ϕ(F c
i )⊕ LGE, and

V = σ(F t
i ), respectively. Particularly, we lift the temporal

feature F t
i for value (V ) vectors and finally adopt similar at-

tention for pose context-aware temporal attention:

F p
i = fs(Q⊗K)⊗ V ⊕ F t

i . (5)

3.4 Long-range Geometry Embedding (LGE)
Existing works [Gu et al., 2023; Feng et al., 2022] usually
adopt the two-frame correlation, such as the cost volume
constructed from two frames, which limits the temporal in-
terest field and wastes temporal helpful clues for geometry
reasoning within the originally long-range multiple frames.
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Therefore, to expand the temporal geometry relation range,
especially for moving targets within long-range frames, we
present our long-range geometry embedding module to cre-
ate long-range geometry embedding (LGE), which seizes the
beneficial long-range temporal hints for geometry and is in-
serted into the depth-pose CTA to promote the present depth
and pose refinement.

Specifically, we demonstrate the detailed structure in
Fig. 2, where we build the long-range cost map with the
reference frame Ir and another arbitrary frame Ij(j ̸= i).
Hence, we can achieve N-1 cost maps with N-1 different-
range frames. Notably, we achieve the temporal feature with
long-range cost maps and convolution, which reveals the
same as the procedure in CTA-Refiner. Afterwards, we pro-
pose the 1× 1 Conv, ReLU and Conv to deliver the geometry
embedding φ(Fj). Specifically, the number of φ(Fj), j ̸= i
is N-1. Then, we aggregate this long-range temporal knowl-
edge to create our embedding Fge via the addition operation:

Fge =
N∑

j,j ̸=i

φ(Fj), (6)

which will be added to the query and key vectors within the
depth-pose CTA. Our approach efficiently reveals most of the
geometry clues within the long-range temporal frames. It is
also regarded as a temporal geometry prior to enhance the
temporal-context association process.

3.5 Supervised Training Loss
We train our network by optimizing both depth and pose er-
rors. Then, we formulate the depth loss as the L1 distance
between the predicted depth map D and the ground truth D̂:

Ldepth =
m∑
s=1

γm−s∥Ds − D̂∥1, (7)

where the discounting factor γ is 0.85 and s denotes the stage
number. There are m alternating update stages of depth and
pose refinements. At each stage, we repeatedly refine the
depth and pose n times. Next, our pose loss is defined based
on the ground truth depth D̂ and pose T̂i with Ii relative to
the reference image Ir:

Lpose =

m∑
s=1

∑
x

γm−s∥π(Ts
i ◦ π−1(x, D̂(x)))

− π(T̂i ◦ π−1(x, D̂(x)))∥1,

(8)

where ◦ means the Hadamard product. The pose loss sum-
marizes the re-projection deviation of the pixel x according
to the estimated camera pose Ts

i and the true pose T̂i in each
stage. π() is the projection of 3D points in 3D space onto the
image plane. Its inverse projection π−1(x, D̂(x)) maps the
pixel x and its ground truth depth D̂(x) back points in the 3D
space. Finally, the total supervised loss is calculated by:

Lsupervised = Ldepth + Lpose. (9)

4 Experiments and Results
4.1 Datasets
KITTI. KITTI dataset [Geiger et al., 2012] is a popular
benchmark for the task of autonomous driving, which pro-
vides over 93,000 depth maps with corresponding raw Li-
DAR scans and RGB images aligned with raw data. In experi-
ments, we follow the widely-used KITTI Eigen split [Eigen et
al., 2014] for network training, which is composed of 22,600
images from 32 scenes for training and 697 images from 29
scenes for testing. The corresponding depth of each RGB im-
age is sampled sparsely by the LiDAR sensor.

Virtual KITTI 2. VKITTI2 dataset [Gaidon et al., 2016]
is widely used for video understanding tasks, which consists
of 5 sequence clones from the KITTI tracking benchmark and
contains 50 high-resolution monocular videos generated from
five different virtual worlds in urban settings under various
imaging and weather conditions. These photo-realistic syn-
thetic videos are fully annotated with depth labels.

NuScenes. NuScenes dataset [Caesar et al., 2020] is a
large-scale multi-modal autonomous driving dataset that is
the first to carry the completely autonomous vehicle sensor
suite: 32-beam LiDAR, 6 cameras and 5 radars with 360◦
coverage. It comprises 1,000 scenes, where each scene lasts
20 seconds and is fully annotated with 3D bounding boxes for
23 classes and 8 attributes.

4.2 Implementation Details
We implement our CTA-Depth in PyTorch and train it for
100 epochs with a mini-batch size of 4. The learning rate
is 2× 10−4 for both depth and pose refinement, which is de-
cayed by a constant step (gamma=0.5 and step size=30). We
set β1 = 0.9 and β2 = 0.999 in the Adam optimizer. We
resize the input images to 320× 960 for training, and set the
number of sequential images to 2 for CTA-Refiner by balanc-
ing both computation efficiency and prediction accuracy. For
long-range geometry embedding, the number of temporally
adjacent images is set to N = 3. Since the output φ(Fj) of
the LGE for the same image is fixed and not updated with the
iterations, this provides more prior temporal information to
CTA-Refiner while ensuring network efficiency. We fix m at
3 and n at 4 in experiments.

4.3 Computation Time Analysis
Given the same Nvidia RTX A6000 GPU on the KITTI
dataset, compared to the state-of-the-art one-frame method
NeWCRFs [Yuan et al., 2022], the inference speed of our
CTA-Depth, i.e., the number of images inferred per second
(FPS), is greatly improved by 58.9%, i.e., 5.53 (Ours) vs.
3.48 (NeWCRFs). This is because NeWCRFs use four swin-
large transformers as multi-level encoders, while our method
uses the lightweight ResNet18 backbone as the encoder to
extract features. On the other hand, as shown in Table 2,
although the FPS of CTA-Depth is slightly lower than that
of the multi-frame method DRO [Gu et al., 2023] (5.53 vs.
6.25), our performance significantly outperforms DRO and
MaGNet [Bae et al., 2022].
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Method Input GT type Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSElog ↓ δ1 < 1.25 ↑ δ2 < 1.252 ↑ δ3 < 1.253 ↑
PackNet-SfM [Guizilini et al., 2020] M→S Velodyne 0.090 0.618 4.220 0.179 0.893 0.962 0.983
DRO [Gu et al., 2023] M Velodyne 0.073 0.528 3.888 0.163 0.924 0.969 0.984
CTA-Depth (ours) M Velodyne 0.071 0.496 3.598 0.143 0.931 0.975 0.989

BTS [Lee et al., 2019] S Improved 0.059 0.241 2.756 0.096 0.956 0.993 0.998
GLPDepth [Kim et al., 2022] S Improved 0.057 – 2.297 0.086 0.967 0.996 0.999
PackNet-SfM [Guizilini et al., 2020] M→S Improved 0.064 0.300 3.089 0.108 0.943 0.989 0.997

BANet [Tang and Tan, 2018] M Improved 0.083 – 3.640 0.134 – – –
DeepV2D(2-view) [Teed and Deng, 2019] M Improved 0.064 0.350 2.946 0.120 0.946 0.982 0.991
DRO [Gu et al., 2023] M Improved 0.047 0.199 2.629 0.082 0.970 0.994 0.998
CTA-Depth M Improved 0.038 0.145 2.224 0.069 0.978 0.996 0.999

Table 1: Quantitative results of supervised monocular depth estimation methods on the KITTI Eigen split. Note that the seven widely-used
metrics are calculated strictly following the baseline [Gu et al., 2023] and ground-truth median scaling is applied. “M” and “S” mean multiple
and single frame. “M→S” means monocular multiple frame images are used in training while only a single frame image is used for inference.
We utilize bold to highlight the best results and color the multi-frame baseline results and our performance gain over them in blue.

Method Reference Input Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSElog ↓ δ1 < 1.25 ↑ δ2 < 1.252 ↑ δ3 < 1.253 ↑ FPS ↑
Xu et al. [Xu et al., 2018] CVPR 2018 S 0.122 0.897 4.677 – 0.818 0.954 0.985 –
DORN [Fu et al., 2018] CVPR 2018 S 0.072 0.307 2.727 0.120 0.932 0.984 0.995 –
Yin et al. [Yin et al., 2019] ICCV 2019 S 0.072 – 3.258 0.117 0.938 0.990 0.998 –
PackNet-SAN [Guizilini et al., 2021] CVPR 2021 S 0.062 – 2.888 – 0.955 – – –
DPT* [Ranftl et al., 2021] ICCV 2021 S 0.062 – 2.573 0.092 0.959 0.995 0.999 –
PWA [Lee et al., 2021b] AAAI 2021 S 0.060 0.221 2.604 0.093 0.958 0.994 0.999 –
AdaBins [Bhat et al., 2021] CVPR 2021 S 0.058 0.190 2.360 0.088 0.964 0.995 0.999 2.96
NeWCRFs [Yuan et al., 2022] CVPR 2022 S 0.052 0.155 2.129 0.079 0.974 0.997 0.999 3.48
P3Depth [Patil et al., 2022] CVPR 2022 S 0.071 0.270 2.842 0.103 0.953 0.993 0.998 –

BANet [Tang and Tan, 2018] ICLR 2019 M 0.083 – 3.640 0.134 – – – –
MaGNet [Bae et al., 2022] CVPR 2022 M 0.054 0.162 2.158 0.083 0.971 – – –
DRO [Gu et al., 2023] RA-L 2023 M 0.059 0.230 2.799 0.092 0.964 0.994 0.998 6.25
CTA-Depth – M 0.045 0.156 2.275 0.073 0.978 0.997 0.999 5.53

Table 2: Quantitative results on KITTI Eigen split with the cap of 0-80m. Note that the seven widely-used metrics are calculated strictly
following AdaBins [Bhat et al., 2021]. “Abs Rel” error occupies the main ranking metric. “*” means using additional data for training. We
utilize bold to highlight the best results of single-frame methods and multi-frame methods.

4.4 Evaluation of Our Method
Evaluation on KITTI. We first compare our CTA-Depth
against top performers of supervised monocular depth esti-
mation on the KITTI dataset; see Tables 1 & 2 for the re-
sults. For a fair comparison, all methods are evaluated given
the same sequential images. In Table 1, the seven widely-
used evaluation metrics are calculated strictly following the
work [Gu et al., 2023] and the ground-truth median scaling
is applied to obtain the final output. In contrast, the seven
evaluation metrics in Table 2 are calculated according to Ad-
aBins [Bhat et al., 2021] and the final output is calculated
by taking the average prediction of the image and its mir-
ror image. Clearly, CTA-Depth achieves state-of-the-art per-
formance over all the evaluation metrics under two different
evaluation strategies. We further show the qualitative compar-
isons in Fig. 5 by comparing our method (c) with the recent
approach [Gu et al., 2023] (b). As shown in the green boxes,
our method yields finer depth estimation results for moving
objects in dynamic scenes, small objects and object contours,
such as the trams and traffic signs. In addition, as shown in
the top row of Fig. 5, our predicted depth map for the tram
window is more consistent with the rest parts of the tram.

Evaluation on Virtual KITTI 2. We further verify our
method on the virtual KITTI 2 dataset as shown in Table 3.
We use a subset of the virtual KITTI 2, which contains 1,700
images for training and 193 images for testing. Notably,

Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSElog ↓
GLPDepth 0.058 0.217 2.146 0.125
Adabins 0.041 0.164 1.981 0.094
DRO 0.040 0.153 1.903 0.092
CTA-Depth 0.035 0.129 1.715 0.085

Table 3: Quantitative results on a subset of the Virtual KITTI 2.

Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSElog ↓
GLPDepth 0.061 0.340 3.159 0.121
Adabins 0.058 0.314 3.156 0.117
DRO 0.057 0.303 3.004 0.114
CTA-Depth 0.050 0.252 2.786 0.104

Table 4: Quantitative results on a subset of the nuScenes dataset.

our CTA-Depth achieved significantly better results than the
multi-frame baseline methods over all evaluation metrics.

Evaluation on nuScenes. To further demonstrate the com-
petitiveness of our approach, we also conduct an evaluation
on the nuScenes dataset. In this experiment, we manually
split a subset consisting of 2,600 images for training and 170
images for testing. The result is shown in Table 4. Again,
the results show that our proposed method outperforms the
baselines with a significant margin in all evaluation metrics.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1556



(a) Input images (b) Results of the Baseline (c) CTA-Depth (Ours)

Figure 5: Qualitative comparisons given input images (a) from KITTI. Clearly, our method (c) yields more accurate depth maps than the
Baseline method; (b) see particularly the regions marked by green boxes.

Setting Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSElog ↓
Baseline 0.060 0.275 3.132 0.104
+ Multi-level 0.059 0.267 3.105 0.101
+ Cross-scale 0.057 0.248 2.951 0.096
+ MAE 0.056 0.243 2.930 0.094
+ Depth-CTA 0.051 0.192 2.586 0.082
+ Pose-CTA 0.047 0.169 2.307 0.075
+ LGE 0.045 0.156 2.275 0.073

It−1, It 0.050 0.221 2.813 0.089
It−2, It−1, It 0.048 0.215 2.807 0.086
It−1, It, It+1 0.045 0.156 2.275 0.073

Table 5: Ablation study on the KITTI dataset. “Multi-level” refers
to multi-level feature extraction, “Cross-scale” refers to cross-scale
attention layers. “It−i” is the input frame at time t− i.

4.5 Ablation Study
To inspect the importance of each module in our method, we
conduct an ablation study on the KITTI dataset and provide
the results in Table 5. From top to bottom, the proposed mod-
ules are added in turn until the full method is constructed.

Baseline. To verify the effectiveness of each component,
we build a baseline model. This model has a similar network
architecture as the full pipeline, which includes the encoder-
decoder structure with a deep recurrent network. In other
words, the proposed CTA module and LGM are removed.
The MAE module keeps only the single-level ResNet18 fea-
ture net for the depth and pose estimations.

Multi-level feature extraction. We extract four levels of
feature maps as shown in Fig. 3. The performance gain shows
that it provides more valuable information for the model.

Cross-scale attention. Next, we use the same ResNet18 as
the feature encoder and add cross-scale attention layers to de-
code the features at each level following Fig. 3.

MAE module. In addition to the two operations above, the
rearrange upscale is added to reduce the network complex-
ity. Together with the PPM, they consequently enhance the
estimation performance.

Depth-CTA and Pose-CTA. We add Depth-CTA and Pose-
CTA after the cost map to obtain dynamic features by im-
plicitly modeling the temporal relation and learn the geomet-
ric constraints through the temporal frames. In this way, the
learned adaptive dynamic features are fed to the GRU opti-
mizers and yield a noticeable performance gain. The “Abs
Rel” error is reduced from 0.056 to 0.047.
LGE. The long-range geometry embedding module pro-
vides temporal priors for dynamic objects in several tempo-
ral neighboring frames and enhances the learning of the CTA
module by large margins.
Multi-frame input. Here, we set up three experiments with
different numbers of input frames. The results show that
the optimal performance is achieved when the adopted tem-
poral frames are It−1, It and It+1, i.e., two image pairs:
(It−1, It) and (It, It+1). However, the network becomes
over-complicated and time-consuming to train or infer when
utilizing more than three sample frames for depth refinement.

5 Conclusion
In this work, we present a novel CTA-Depth for multi-frame
monocular depth estimation. To resolve the ambiguity caused
by challenging dynamic scenes with moving objects, we pro-
pose the CTA-Refiner by designing context-aware tempo-
ral attention to implicitly leverage temporal information and
model image self-similarities. In addition, we develop a
novel long-range geometry embedding module to efficiently
inject our refiner with geometry reasoning among the long-
range temporal frames. Furthermore, we build a multi-level
encoder-decoder network with the attention-enhanced predic-
tor to obtain features with both global and local attentions.
We achieve state-of-the-art performances on three challeng-
ing monocular depth estimation benchmarks. In the future,
we would like to employ our multi-frame association mecha-
nism in relevant tasks such as 3D object detection.
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