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Abstract
3D surface super-resolution is an important tech-
nical tool in virtual reality, and it is also a research
hotspot in computer vision. Due to the unstructured
and irregular nature of 3D object data, it is usually
difficult to obtain high-quality surface details and
geometry textures via a low-cost hardware setup. In
this paper, we establish a multimodal-driven vari-
ational autoencoder (mmVAE) framework to per-
form 3D surface enhancement based on 2D normal
images. To fully leverage the multimodal learn-
ing, we investigate a multimodal Gaussian mix-
ture model (mmGMM) to align and fuse the la-
tent feature representations from different modal-
ities, and further propose a cross-scale encoder-
decoder structure to reconstruct high-resolution
normal images. Experimental results on several
benchmark datasets demonstrate that our method
delivers promising surface geometry structures and
details in comparison with competitive advances.

1 Introduction
With the rapid development of computer hardware and soft-
ware technology, the requests for 3D surface reconstruction,
perception and analysis are becoming more and more popular
in various immersive applications [Feng et al., 2019], such as
metaverse. High-quality 3D data is one of the fundamental
carriers for satisfying these application scenarios. However,
on one hand, the production speed of high-resolution (HR)
3D content suffers due to the high cost of 3D data-acquisition
sensors. On the other, the utilization of existing legacy 3D ob-
jects with low-resolution (LR) needs to be enhanced. Consid-
ering these facts, it is necessary to develop a low-cost method
for the surface enhancement of 3D objects.

Several methods for 3D surface super-resolution have been
developed in the past few years, which can be roughly divided
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into two categories depending on the computation domain:
1) 3D domain-based methods and 2) 2D domain-based meth-
ods. In the 3D domain, there are voxel-based methods [Xie
et al., 2020], point-cloud-based methods [Luo et al., 2021],
distance-functions-based methods [Chen et al., 2021b] and
mesh-based methods [Schult et al., 2020]. In these meth-
ods, those traditional ones can only optimize some surface
mathematical properties and lead to a smooth result, while
learning-based methods face the problem of the lack of data
and high computational overhead due to the complexity of 3D
data representations [Hanocka et al., 2019].

In the 2D domain, existing studies usually use normal im-
ages [Chen et al., 2018], [Zhang et al., 2021] or depth images
generated by projecting the surface to 2D domain [Schwarz
et al., 2018], [Voynov et al., 2019] to enhance a 3D surface.
Surface super-resolution in the 2D domain has two signif-
icant advantages: 1) the computational complexity will be
greatly reduced, and 2) many well-evaluated approaches in
the image processing field can be reused directly, such as im-
age super-resolution (SR). Due to the fact that a normal map
carries more micro geometric shapes and details but a depth
map only contains range or distance information, it is a better
choice to perform 3D surface SR in the 2D normal domain.

However, existing SR methods in the 2D domain usually
only focus on a single image modality, which rarely utilizes
the complementary information available in different modal-
ities of a 3D object. Recently, some image synthesis meth-
ods [Esser et al., 2021], [Huang et al., 2021] and image SR
methods [Yang et al., 2020], [Liu et al., 2021] have taken
multimodal information into account and improved the per-
formance of network. Besides, [Xie et al., 2022] developed a
preliminary multimodal transformer framework for 3D sur-
face super-resolution (MNSRNet), which considered three
different modalities including depth, RGB and normal im-
ages.

Inspired by MNSRNet, we develop a multimodal-driven
variational autoencoder (mmVAE) framework to perform 3D
surface super-resolution based on enhanced 2D normal im-
ages. There are two significant differences between mm-
VAE and MNSRNet: Firstly, MNSRNet introduced a depth
modality branch to preserve large surface structure correct-
ness. However, since 3D surface SR focuses on recovering
high-frequency information, introducing a whole branch is
informatively redundant. Therefore, mmVAE discards the
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Figure 1: Illustration of the proposed multimodal VAE framework for 3D surface super-resolution. The texture and normal modalities
are jointly investigated to perform 3D surface super-resolution based on enhanced 2D normal images. The 3D reconstruction results on the
right-hand side show the superiority of our method.

depth modality but introduces a cross-scale structure to pre-
serve large surface structures, which can also reduce the com-
putational overhead. Secondly, MNSRNet introduced a mul-
timodal transformer to perform feature alignment and fusion.
However, due to the limitations of the transformer structure,
the training is usually unsatisfactory when the amount of data
is insufficient, and the lack of direct constraints on the align-
ment module leads to limited performance. To address these
problems, mmVAE investigates a VAE-based structure to re-
duce the requirements and improve the constraints on the
modality alignment and fusion process by a feature reparam-
eterization structure. However, since the classic VAE archi-
tecture is limited by the standard normal distribution in la-
tent variable reparameterization, resulting in limited gener-
ation ability, we further propose a Gaussian mixture model
and the corresponding loss for the multimodal alignment to
improve its expression ability.

To summarize, this work has the following contribu-
tions: (1) establishing a new multimodal 3D surface super-
resolution framework based on the VAE framework in the 2D
normal domain, (2) investigating a Gaussian mixture model
in fusing the normal and texture modalities for 3D objects,
which is a more comprehensive multimodal fusion approach
to exploit auxiliary modality information, and (3) developing
a new cross-scale modality VAE network structure, which is
able to simultaneously preserve large surface structure as well
as fine-grained surface geometry.

2 Related Work
Because our mmVAE is based on enhanced 2D normal im-
ages, we briefly review some closely representative image-
based SR methods, including single image super-resolution
(SISR) and multimodal image super-resolution (MISR).

2.1 Single Image Super-resolution
In the SISR task, following the research by [Dong et al.,
2014], a number of CNN-based approaches have been pro-
posed such as VDSR [Kim et al., 2016], EDSR [Lim et al.,
2017], and RCAN [Zhang et al., 2018b]. Recently, with the
success of the self-attention mechanism, transformer-based
network structure has been also studied for SISR [Chen et
al., 2021a]. Besides, some other useful modules such as VAE
structure [Liu et al., 2020], [Chira et al., 2022], generative
adversarial network (GAN) [Chen et al., 2022], and dual re-
gression network [Emad et al., 2021] have been used in SISR.

2.2 Multimodal Image Super-resolution
The combination of multimodal information (e.g., different
viewpoints, sensors, or domains), especially homogeneous
multimodality that means different types of modality infor-
mation obtained from the same type of sensor for the same
object, is a hotspot for MISR to enhance image reconstruc-
tion performance [Yao et al., 2021]. For instance, [Wang et
al., 2018] introduced the image segmentation map as the prior
information to improve the learning performance of GAN.
[Liu et al., 2021] proposed a CVAE structure by using ref-
erence images to enhance the restoration performance. [Li
et al., 2019] employed a normal image to guide the super-
resolution of a texture image. [Xie et al., 2022] proposed a
transformer-based multimodal network to learn from differ-
ent modality images for surface enhancement.

Frankly speaking, MISR has been investigated in some pre-
liminary investigations, but the exploration of multimodal-
based 3D object surface enhancement is still in its infancy.
One of the reasons is the difficulty of constructing descrip-
tors that can effectively represent information between dif-
ferent modalities. And another important reason is how to
integrate and fusing these descriptors effectively is also chal-
lenging. In the light of the above considerations, exploring
mechanisms for more efficient multimodal exploitation of 3D
surface modality information through VAE structures is the
most direct motivation for our paper.

3 Multimodal Variational AutoEncoder
3.1 Overview
Problem Formulation. Our goal is to enhance the surface
of a 3D object via the assistance of RGB modality. To sim-
plify this problem, we propose to represent a 3D surface in
the 2D normal domain, which converts 3D surface SR into a
normal image super-resolution task. Generally speaking, SR
aims to restore the spatial resolution of an input LR normal
image Nlr ∈ RH×W×3 by scale s, which can be obtained by
minimizing the loss function Loverall between the upscaled
normal image Nsr ∈ RsH×sW×3 and the ground-truth (GT)
normal image Ngt ∈ RsH×sW×3.
Architecture. Previous studies have witnessed the positive
effect of multimodal data in deep learning [Yao et al., 2021]
and the power of VAE structure. In light of this, the pro-
posed multimodal variational autoencoder (mmVAE) super-
resolution network takes the RGB and normal modalities si-
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Figure 2: Overview of the proposed multimodal super-resolution network for 3D object surface in the 2D normal domain. It mainly
consists of a modality processor (mP) module, a cross-scale modality encoder-decoder (csME & csMD) module, and a multimodal Gaussian
mixture modal (mmGMM) module.

multaneously, and adopts a cross-scale multimodal encoder-
decoder structure as a backbone. The overview of mmVAE is
depicted in Figure 2, which can be formulated as

Nsr = csMD(mmGMM(csME(mP(Nlr,Rlr)))), (1)

where Rlr represents multiple LR images obtained under dif-
ferent lighting conditions at the same view, and the LR nor-
mal image Nlr is reconstructed by [Xie et al., 2014]. It can
be seen that our mmVAE consists of three main components:
1) a modality processor denoted by mP(·), 2) a multimodal
Gaussian mixture model denoted by mmGMM(·), and 3)
a cross-scale modality encoder-decoder structure denoted by
csME(·) and csMD(·), respectively.

The mP(·) module firstly extracts two auxiliary modal-
ity guidances: 1) normal angle guidance and 2) RGB fre-
quency guidance. These two modality guidances have a simi-
lar distribution, which will be helpful to be fused in the subse-
quent network structure. Then, these two modalities with the
LR normal image are upscaled to generate the corresponding
modality inputs Aup, Fup and Nup, respectively. Next, sim-
ilar to a classical encoder-decoder structure, these upscaled
modalities are fed into the encoder module csME(·) to gen-
erate an internal cross-scale modality feature Xs, where s
denotes a downsampling factor and X indicates their source
modalities. After that, the mmGMM(·) module utilizes Xs

in the same scale to align and fuse the related modality infor-
mation. Therefore, mmGMM(·) will output latent proba-
bility variables Zs with different scales. Finally, Zs will be
fed into the decoder module csMD(·) to restore an auxiliary
normal image N

′

sr and the final normal image Nsr. In Sec.
3.3 and Sec. 3.4, we provide the details of mmGMM and
our csME-csMD structure.
Loss Function. In order to train the proposed mmVAE in
the manner of multimodal features and cross-scale structure,
we devise a loss function combined with the modality loss
and scale loss, which can be formulated as Eq. (2).

Loverall = Lmodality + λ1 × Lscale, (2)

where Lmodality represents a modality loss, Lscale represents
a scale loss, and λ1 is a positive scaling factor.

Inspired by the Kullback-Leibler (KL) divergence [Kull-
back and Leibler, 1951] and the VAE paradigm [Minnen
et al., 2018], we design a two-part modality loss function
Lmodality: 1) The first part adopts the paradigm of the VAE
architecture converging the probability variables before the
GMM module to N (0, 1) to obtain a more generalized Gaus-
sian mixture model for each modality; 2) The second part di-
rectly minimizes the probability variables distance between
the target normal and the other modalities after the GMM
module, thus providing an explicit multimodality alignment.
As a result, Lmodality is defined by

Lmodality =
∑2,4

s

∑A,F
x (KL(N (µx

s , σ
x
s ),N (0, 1)) + λ2|zNs − zxs |), (3)

where s denotes a feature down-scale factors, and x denotes
different modalities. µ and σ represent the mean and vari-
ance of a Gaussian distribution model of these probability
variables, respectively. The details of them can be found in
Sec.3.3. λ2 is a positive scaling factor.

Then, we design a scale loss function for mmVAE as

Lscale = Lcontent(Nsr) + λ3 × Lcontent(N
′
sr), (4)

where the content loss Lcontent(·) is used to constrain Nsr

and N
′

sr simultaneously. λ3 is a positive scaling factor. And
the detail of the content loss is defined in Eq. (5).

Lcontent(N) = 1
H×W

∑
((1− cos(N,Ngt)) + λ4(1− cos(↓ N,Nlr))), (5)

where (H,W ) represents the height and width of a predicted
normal image. cos(·, ·) denotes the element-wise cosine op-
erator calculating the difference between two normal images,
and ↓ represents a downsampled normal map with the same
size as Nlr. This back-projection error Lprj inspired by
[Haris et al., 2018] is developed to constrain the downsam-
pled SR normal modality close to LR one , which is used to
preserve large surface structures. λ4 denotes a positive scal-
ing factor.

3.2 Modality Processor (mP)
As aforementioned, due to the differences across differ-
ent modalities, multimodal-based methods usually encounter
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negative influence in combining the latent features from dif-
ferent modalities. Because the SR task is focusing on recon-
structing the high-frequency information of the input data, in
order to reduce the data distribution differences and distill the
valuable features from the normal image and RGB images,
we represent them as a normal angle guidance Alr and an
RGB frequency guidance Flr. It is worth noting that both
Alr and Flr represent the high-frequency information of an
input 3D surface.

Normal Angle. The extraction of the normal angle guid-
ance consists of two steps: 1) generating a low-frequency
normal image called a shape normal image Nshape, and 2)
calculating the vector angle between the shape normal and
the original normal.

Firstly, the generation of Nshape can be formulated as

Nshape = conv(Nlr, κave), (6)

where conv(·) represents a convolution operation and κave

denotes an average filter kernel.
Secondly, we obtain the angle between Nshape and Nlr by

alr = arccos(nlr · nshape), (7)

where the normal angle alr ∈ Alr for each pixel is the arc-
cosine result of the dot-product of nlr from Nlr and the cor-
responding vector nshape from Nshape.

Based on above steps, the original normal image will be
converted from Nlr ∈ RH×W×3 to Alr ∈ RH×W×1 rep-
resenting the pixel-wise relief of a 3D object surface. It is
noted that smaller values indicate smoother surface, while
larger values represent the high frequency and contour infor-
mation of a 3D surface. For instance, a toy normal angle map
is provided in Figure 2.

RGB frequency. Due to the diversity of the object materi-
als and surface geometry structures, the uncertainty of cam-
era sensors or lighting conditions, the raw multi-lighting pho-
tographs may contain many unfavorable issues, such as expo-
sure errors, shadows from self-obscuring, speculator reflec-
tion, and uneven brightness due to different reflection intensi-
ties. However, those outliers also contain useful information.
To fully utilize the input data, we develop a two-step scheme
to denoise the RGB modality images and extract their valu-
able information: 1) extracting three brightness level images
from Rlr, and 2) performing a masked DCT-transform to sep-
arate and combine their high-frequency features.

For the first step, we calculate a pixel-wise brightest im-
age Rl, a darkest image Rd, and an average image Ra from
the original RGB modality images, respectively. This opera-
tion aims to denoise and capture the different levels of surface
material detail. For the second step, we convert these images
from the spatial domain into the frequency domain. Then we
mask the low 1/8 part on the frequency map, and leave the
high-frequency part. By performing the invert-DCT, we can
reconstruct a feature map with only the high-frequency infor-
mation. Finally, these three features are concatenated to get
the final RGB frequency guidance Flr. The RGB frequency
guidance can be formulated as

Flr = T
′
dct(mask(Tdct(Rl,Rd,Ra))), (8)
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Figure 3: Detail of multimodal Gaussian mixture model
(mmGMM). The internal modality features Ns, As and Fs are
firstly generated by a sequence of masked Conv, ReLU and convo-
lutional layers to generate parameters which can be used to construct
a Gaussian model. Then, the modality latent variable Zx

s is sampled
and generated from these Gaussian models. Finally, the fused latent
variable Zs is generated by using a convolutional block as weight.

where Tdct(·) and T ′

dct(·) represent the forward-DCT and
invert-DCT respectively. The mask(·) manipulation removes
the top-left 1/8 DCT frequency map which represents the
low-frequency texture information. As a result, Alr and Flr

represent high-frequency information from the surface nor-
mal and the texture structure of an input object, respectively.
The related complement information will be upscaled and
used as the auxiliary modality guidance to improve the sub-
sequent network.

3.3 Multimodal Gaussian Mixture Model
(mmGMM)

Mathematically, a classical variational autoencoder (VAE)
network can be formulated as

Y = Decoder(Z), where Z = P(Encoder(X)), (9)

where X denotes the input of VAE and Y denotes the out-
put of VAE. Based on the VAE structure, a high-dimensional
latent variable Z is fed into the decoder to generate a target
result. This latent variable Z is a variable that is sampled
from a probability model parameterized by the encoded data.
This paradigm of encoding the input data and then sampling
it from a probability model can reduce the noise of the la-
tent features and further improve the generation capability of
a learned model.

Generally, most VAEs adopt a Gaussian model N (µ, σ)
[Pu et al., 2016] as the probability modeling of latent vari-
ables. Each dimension of the latent variable represents an
implicit feature of the target probability distribution, which
can finally fit the target distribution in the form of a Gaussian
mixture model by decoders. However, due to the fact that the
ability of these models to express features is relatively low,
and they rarely considers the multimodal information, which
makes them increase the number of feature layers but it is still
difficult to fit the ideal potential distribution of the decoder.
This further can limit their generation performance. Based on
these considerations, we propose to use a multimodal Gaus-
sian mixture model (mmGMM) as shown in Figure 3, which
is used as the probability model for our mmVAE to gener-
ate the encoded feature more accurately. Due to the fact that
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a Gaussian mixture model can be expressed as a combina-
tion of multiple Gaussian models efficiently, we design the
mmGMM module, and it can be formulated as a weighted
summary of several Gaussian models

Zs = P(As,Fs,Ns) =
∑A,F,N

x
ωxZx

s , (10)

where Zx
s =

∑K
k=1 ω

x
kN (µx

k, σ
x
k), x from {A,F,N} denotes

the normal angle, RGB frequency, and normal modality, re-
spectively. s denotes a downsampling scalar.

Firstly, we adopt a channel attention block [Zhang et al.,
2018a], which extracts the started feature from csME. Then
with a ReLU layer followed by a convolution layer, we con-
vert the related features to represent the mean µx

k , variation
σx
k , and weights ωx

k of a GMM distribution, where x denotes
the corresponding modality and k represents the number of
Gaussian components in a combined Gaussian mixture dis-
tribution. Each set of parameters will be used to resample a
standard Gaussian distribution by a reparameterization trick
[Kingma et al., 2015] and to calculate the weighted sum-
mary as a modality latent variable Zx

s . This part is equiva-
lent to compressing a large number of Gaussian distributions
to obtain a lower-dimensional Gaussian mixture feature. Fi-
nally, with another convolution block, each Zx

s will generate
a modality weight ωx and calculate another weighted sum-
mary to obtain the corresponding fused latent variable Zs for
the following csMD.

3.4 Cross-scale Modality-based Encoder-Decoder
To more effectively utilize the information in different scales
of the fused modal features on the mmGMM structure, we
propose a cross-scale network structure to drive the whole
VAE operation. The cross-scale modality encoder (csME)
encodes the input modal data into latent parametric fea-
tures which control the probability distribution of mmGMM.
Then, the latent features are resampled by mmGMM and de-
coded by the cross-scale modality decoder (csMD).

For the csME module, as shown in Figure 2, the input
modality guidance is passed through a three-3×3-convolution
layer to extract the related shallow angle feature, shallow fre-
quency feature, and shallow normal feature from Aup, Fup,
and Nup, respectively. Then, to allow the network to pay
attention to both large structures and small details of a 3D
object, we use several scaling blocks, which are composed
of 2 convolution layers connected to a ReLU activation layer
followed by a pooling layer, to resize the input features by
the scale 1

2 . This conversion will generate several shallow
features in different scales. For instance, Scale = 4, it
will be the Xup ∈ R4H×4W×C → X2 ∈ R2H×2W×C and
X2 ∈ R2H×2W×C → X4 ∈ R4H×4W×C , where X denotes
one of the candidate modality features (i.e., X = {A,F,N}).
These features will be fed into mmGMM to generate the cor-
responding fused latent variables Z2 and Z4.

For the csMD module, due to the fact that the effectiveness
of a gradual refinement based on the hierarchical structure has
been proven [Cai et al., 2019], we combine the high scaling
and low scaling latent variables which aim to capture different
levels of object details together to help the mmVAE focus

both geometry shape and detail comprehensively, and thus
obtain a better reconstruction result.

Firstly, for high scaling latent variables Z4 in csME, we
employ two Conv blocks (consisting of three convolutional
layers and one batch-normalization layer with one ReLU ac-
tivation layer) to decode two latent features as the scalar and
bias information. Then with a 3×3 convolution layer, the
original input normal image Nlr is scaled and added by these
features. After this feature enhancement, using a scale s up-
sampling block UPs(·) [Shi et al., 2016], an upscaled high-
frequency feature is generated F

′

sr. Followed by a 3×3 con-
volution layer and added to the upscaled normal image Nup

with a vector normalization operation, an SR normal image
denoted as N

′

sr directly from scale ×4 information is gener-
ated. This process can be formulated by Eq. (11)

N′
sr = γ(Co(UP4(Nlr)⊗ Cs(Z4)⊕ Cb(Z4)) +Nup), (11)

where γ denotes the vector normalization operation. ⊗ and
⊕ refer to the element-wise multiplication and addition, re-
spectively. Cs(·) and Cb(·) denote the convolution module
generating two latent features, and Co(·) denotes three output
convolutional layers. After that, we adopt larger latent vari-
ables Z2 to refine the normal image generated by Z4. This
process formulated by Eq. (12) will generate the final output
upscaled normal image Nsr. The whole network is trained
by optimizing the loss function in Sec. 3.1.

4 Experiments
In this section, we implement our mmVAE and compare it
with recent 3D surface SR methods, including mesh-based,
point-cloud-based, depth-based, normal SISR, and normal
MISR methods.

Nsr = γ(Co(UP2(Nlr)⊗ Cs(Z2)⊕ Cb(Z2)) +N′
sr). (12)

4.1 Experimental Protocols
Implementation Details. Our mmVAE has been imple-
mented in PyTorch, and the Adam optimizer is used with
default parameters (β1 = 0.9 and β2 = 0.999) and K = 4 in
mmGMM module. The detailed hyper-parameter settings of
loss function are λ1 = 5, λ2 = 0.2, λ3 = 0.2, λ4 = 0.1. The
initial learning rate is 3e-4 We have trained mmVAE by using
a mini-batch size of 4 for 3000 epochs with one Nvidia Tesla
P100 GPU, which takes about two days and nights. All the
input images for training are adaptively cropped, randomly
rotated (90◦, 180◦, and 270◦), and horizontally flipped. For
instance, in the ×4 scale, the HR and LR image patches are
196×196 and 48×48, respectively. All the trained weights
are initialized by the Kaiming distribution, and the bias is ini-
tialized as a constant. In addition to the above operations, we
have not introduced additional training skills.

Datasets. Due to the fact that mmVAE is a data-driven SR
scheme, it requires a lot of high-resolution normal image
pairs. However, the most widely-used Photometric Stereo
datasets, such as the DiLiGenT dataset (10 objects) [Shi et
al., 2019] and the Gourd & Apple dataset (3 objects) [Alldrin
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Figure 4: Visual comparisons of 3D surface SR between 9 methods in the ×4 setting. For a better comparison, the region in the red box
is zoomed in the 2nd-12th columns. “Full” means the original surface, “LR” means the down-sampled object surface, and “GT” means the
ground-truth in the red box. Please zoom in the electronic version for better details.

et al., 2008], do not have enough objects for training. There-
fore we use the latest wonderful photometric stereo dataset
WPS for training [Xie et al., 2022], which contains 400 high-
resolution multimodal samples. To fairly evaluate the perfor-
mance of these methods, we use DiLiGenT, Gourd & Apple
and select 1

6 of the WPS dataset as the testing set. The rest
of the WPS dataset is used as the training (validation) set.
Both the training and testing data are down-sampled with the
Bicubic (BI) degradation by × 1

2 and × 1
4 to generate the LR

images as the network input. To perform a fair evaluation,
all the compared methods are trained from scratch using the
official settings and the same training iterations as mmVAE.
Evaluation Metrics. For quantitative comparisons, we
adopt four quality measurements to evaluate the super-
resolution performance. In the 2D normal image domain,
we take two commonly-used indicators in SISR for evalua-
tion which are Peak Signal-to-Noise Ratio (PSNR) and Struc-
tural Similarity Index Measure (SSIM). Besides, two widely-
used metrics are used to quantitatively measure the 3D recon-
struction results [Quéau et al., 2018], including Mean Angu-
lar Error (MAE) and Mean Relative Depth Error (MRDE).
The final object surface is reconstructed by the Surface-from-
Normal (SfN) method [Xie et al., 2014], [Cao et al., 2021].
Specifically, we have adopted the public available discrete
geometry-based SfN method [Xie et al., 2014] to reconstruct
an enhanced 3D surface. The MAE result is calculated by

MAE =
1

||N||
∑
i,j

arccos(ñi,j · ni,j), (13)

where ñi,j and ni,j denote the predicted normal and the
ground-truth normal, respectively. ||N|| represents the total
number of the input normal pixels.

In addition, MRDE can be computed by

MRDE =
1

||N||
∑
i,j

||p̃i,j − pi,j ||, (14)

where p̃i,j and pi,j represent the vertex position of the recon-
structed surface and the ground-truth surface, respectively.

4.2 Baseline Settings
We have compared our mmVAE with 8 representative meth-
ods, which can be categorized into five groups: mesh-based

method (denoted by “Mesh”), point-cloud-based method
(denoted by “Points”), depth-based methods(denoted by
“Depth”), SISR-based methods (denoted by “SISR”), and
MISR-based methods (denoted by “MISR”). For mesh-based
methods, Catmull-Clark subdivision (C-C) [Loop and Schae-
fer, 2008] is one of the most widely-used mesh subdivision
methods, which can efficiently upscale a triangular mesh by
a heuristic algorithm. For point-cloud-based methods, we
choose the PU-GCN network [Qian et al., 2021] to represent
the SR task of point clouds. In the experiments, we convert
the related meshes into point clouds for PU-GCN, upscale,
and re-convert them into meshes for comparison [Bernardini
et al., 1999]. For depth-based methods, we choose the MSG
network [Voynov et al., 2019] to represent the SR task in
depth images. For normal SISR-based methods, we choose
RCAN [Zhang et al., 2018a] to represent a convolutional at-
tention structure and IPT [Chen et al., 2021a] to represent a
self-attention structure. For normal MISR-based methods, we
choose 3DASR [Li et al., 2019] to represent the hybrid fusion
method, RefVAE [Liu et al., 2021] to represent a hybrid fu-
sion method with the VAE structure, and MNSRNet [Xie et
al., 2022] to represent the multimodal normal-based method
with the transformer structure. The detailed experimental set-
ting is consistent with [Xie et al., 2022].

4.3 Performance Comparisons
Figure 4 demonstrates the visual comparisons of some repre-
sentative 3D objective surfaces. For SISR, due to the small
size of the existing 3D training dataset, the CNN-based struc-
ture as RCAN showed better results than the transformer
structure such as IPT. For MISR, they may not take full ad-
vantage of the additional multimodal information. The sim-
ple structure of 3DASR cannot fuse the modality information
well and hence suffers from the negative effects of instabil-
ity and confusion across multimodalities. MNSRNet with the
transformer structure suffers from the size of the training set.
As seen, RefVAE uses both VAE structure and multimodal
information to obtain the best result in the baseline methods.

Table 1 provides the detailed average results on all test-
ing datasets, including DiLiGenT, Gourd & Apple, and WPS.
Specifically, our method achieves 11 of the first-best results
and 1 of the second-best result in terms of PSNR, SSIM,

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1583



Scale Type Algorithm DiLiGenT Gourd & Apple WPS
PSNR↑/SSIM↑/MAE↓/MRDE↓ PSNR↑/SSIM↑/MAE↓/MRDE↓ PSNR↑/SSIM↑/MAE↓/MRDE↓

×2

Points PU-GCN [Qian et al., 2021] 22.7884/0.8019/10.0552/9.3777 24.1669/0.7876/7.2156/1.5350 23.9856/0.7251/7.5096/5.8443
Mesh C-C [Loop and Schaefer, 2008] 24.5128/0.9105/5.0687/6.3240 26.5517/0.8771/0.8916/0.8736 26.4602/0.7999/4.0879/3.4845
Depth MSG [Voynov et al., 2019] 28.7298/0.9554/4.3926/5.9665 33.2658/0.9890/0.6083/0.6457 34.0693/0.9639/2.5894/2.4289

SISR IPT [Chen et al., 2021a] 28.7556/0.9625/3.8207/5.8153 33.7279/0.9873/1.4558/0.5557 36.7309/0.9775/2.0263/2.1598
RCAN [Zhang et al., 2018a] 30.7655/0.9759/2.8982/3.8772 34.5141/0.9899/1.2404/0.5130 38.3461/0.9782/2.1502/1.6714

MISR

3DASR [Li et al., 2019] 29.6974/0.9664/3.4351/5.1201 34.4950/0.9891/1.2877/0.5387 37.9963/0.9786/2.2238/1.7798
MNSRNet [Xie et al., 2022] 30.7720/0.9763/2.8853/4.4479 34.1527/0.9896/1.2996/0.5769 37.9990/0.9789/2.0050/1.7727
RefVAE [Deng et al., 2021] 30.5138/0.9730/3.0885/4.0017 34.5274/0.9897/1.2235/0.4702 38.4997/0.9780/2.0230/1.6969

Ours 30.7969/0.9766/2.3334/3.7977 34.5723/0.9902/1.1634/0.4476 38.5276/0.9793/2.0231/1.6326

×4

Points PU-GCN [Qian et al., 2021] 18.5747/0.7382/13.2567/10.3674 22.1672/0.7611/9.3709/2.5241 21.7603/0.6727/11.6703/6.0484
Mesh C-C [Loop and Schaefer, 2008] 24.1655/0.8585/8.6984/7.4588 26.9087/0.8777/2.9155/1.1320 24.1063/0.7967/5.8517/3.7967
Depth MSG [Voynov et al., 2019] 24.8738/0.8937/7.8564/7.3132 29.1214/0.9705/2.1031/1.0129 29.9963/0.9185/4.2786/3.4201

SISR IPT [Chen et al., 2021a] 25.2410/0.9136/6.5397/6.6953 30.6276/0.9695/2.7039/0.9519 31.8643/0.9358/3.9953/2.5922
RCAN [Zhang et al., 2018a] 27.1337/0.9304/6.1913/4.7991 32.8232/0.9808/1.8830/0.9292 32.5700/0.9441/3.6573/2.5588

MISR

3DASR [Li et al., 2019] 26.6126/0.9176/7.0156/5.8078 32.0332/0.9723/2.5102/0.8520 31.7228/0.9322/4.1421/2.7914
MNSRNet [Xie et al., 2022] 27.3644/0.9320/5.9156/4.2861 33.0666/0.9814/1.8183/0.7351 32.6350/0.9426/3.7705/2.0440
RefVAE [Deng et al., 2021] 27.2967/0.9323/5.8756/4.5097 33.3056/0.9826/1.7447/0.7752 32.6443/0.9446/3.6538/2.4731

Ours 27.6255/0.9342/5.7964/4.2827 33.4820/0.9833/1.6881/0.6052 33.1782/0.9482/3.5907/2.1511

Table 1: Quantitative comparison results. The average comparison results between 9 methods on three different datasets. “↑” means the
higher the better, while “↓” means the lower the better. The first-best is highlighted in bold, and the second-best is highlighted in underline.

mP mmGMM Cross-scale PSNR SSIM MAE MRDE
× × × 26.9277 0.9208 6.8913 5.9609√

× × 27.2726 0.9298 6.1635 4.6789√ √
× 27.3557 0.9313 6.0589 4.4791√

×
√

27.4190 0.9335 5.9589 4.4532√ √ √
27.6255 0.9342 5.7964 4.2827

Hyperparameter K = 1 27.4521 0.9332 5.9074 4.4511
Hyperparameter K = 2 27.5905 0.9330 5.8404 4.3991
Hyperparameter K = 3 27.6210 0.9339 5.8021 4.3513
Hyperparameter K = 4 27.6255 0.9342 5.7964 4.2827
Hyperparameter K = 5 27.6247 0.9340 5.8009 4.3006

Table 2: Ablation experiments on mP, mmGMM, cross-scale
encoder-decoder and the hyperparameter K of mmGMM.

MAE, and MRDE on both the ×2 and ×4 settings. As seen
in Table 1, our method performs better than other methods in
upsampling small images.

In addition, we have conducted the time and space com-
parison experiments on the DiLiGenT dataset. In the ×4
setting, MNSRNet takes a total of 20.9647s and 11445MB,
while mmVAE takes only 8.2965s and 4265MB. It validates
the effectiveness of the proposed cross-scale structure.

4.4 Ablation Study
mmVAE contains three main modules for multimodal learn-
ing, including mP, mmGMM, and cross-scale encoder-
decoder structure. To verify the effectiveness of these mod-
ules, we further conduct additional experiments on the DiLi-
GenT dataset with the ×4 setting. Five independent experi-
ments are conducted as shown in Table 2, where the related
modules selected (not selected) are denoted by the symbol
“
√

” (“×”). For the mmGMM module, we also performed
ablation experiments for different hyperparameter K. It can
be seen that with the increase of K, the performance has im-
proved. However, this also has marginal effects, and too large
K does not bring significant gains. Meanwhile, it is worth
noting that when K = 1, the properties GMM will be lost.

In the ablation experiments, the replacement of mP is
to use the lightest RGB images as the auxiliary guidance.
The replacement of mmGMM is to directly concatenate
all the related modality information, and then use three
3×3 convolution layers and one 1×1 convolution layer to
shrink the intermediate channels similar to 3DASR. The
replacement of the cross-scale structure is to use the re-
sults for scale 1

4 as the final outputs. In Table 2, the ab-
lation result of mmGMM shows better than MNSRNet.
That is because DiLiGenT has smaller image size, so the
reconstruction results are more easily influenced by low-
frequency information. However, as the image size increases,
the crossmodal information derived from mmGMM plays
a more important role. For instance, mmVAE without the
mmGMM module is less effective than MNSRNet on the
WPS dataset, where the related PSNR/SSIM/MAE/MRDE
results are 32.5947/0.9420/3.8024/2.2555, respectively.

5 Conclusion

In this paper, we have established a multimodal-driven vari-
ational autoencoder super-resolution framework to enhance
3D surfaces in the 2D normal domain. More specifically, we
jointly considered the RGB and normal modalities to restore
high-quality surface details as well as preserve fine-grained
geometry structures. To effectively utilize the multi-modality
information, we extracted two guidance features as auxil-
iary. To effectively fuse the related auxiliary information, we
further investigated a multimodal Gaussian mixture model
for 3D surface super-resolution. Moreover, we developed
a cross-scale encoder-decoder structure to fully utilize the
cross-modality information. Finally, we reconstruct an en-
hanced 3D object surface from the recovered high-resolution
normal image. Experimental results on different benchmark
datasets demonstrate the effectiveness of the proposed ap-
proach qualitatively and quantitatively.
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