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Abstract
In this paper, we introduce semi-supervised video
object segmentation (VOS) to panoptic wild scenes
and present a large-scale benchmark as well as
a baseline method for it. Previous benchmarks
for VOS with sparse annotations are not sufficient
to train or evaluate a model that needs to pro-
cess all possible objects in real-world scenarios.
Our new benchmark (VIPOSeg) contains exhaus-
tive object annotations and covers various real-
world object categories which are carefully di-
vided into subsets of thing/stuff and seen/unseen
classes for comprehensive evaluation. Consider-
ing the challenges in panoptic VOS, we propose a
strong baseline method named panoptic object as-
sociation with transformers (PAOT), which asso-
ciates multiple objects by panoptic identification in
a pyramid architecture on multiple scales. Exper-
imental results show that VIPOSeg can not only
boost the performance of VOS models by panop-
tic training but also evaluate them comprehensively
in panoptic scenes. Previous methods for classic
VOS still need to improve in performance and ef-
ficiency when dealing with panoptic scenes, while
our PAOT achieves SOTA performance with good
efficiency on VIPOSeg and previous VOS bench-
marks. PAOT also ranks 1st in the VOT2022 chal-
lenge. Our dataset and code are available at https:
//github.com/yoxu515/VIPOSeg-Benchmark.

1 Introduction
Video object segmentation (VOS) is a fundamental task in
computer vision. In this paper, we focus on semi-supervised
video object segmentation, which aims to segment all target
objects specified by reference masks in video frames. Al-
though VOS has been well studied in recent years, there are
still limitations in previous benchmark datasets. Firstly, pre-
vious VOS datasets only provide limited annotations. The
annotations of commonly used datasets for VOS, YouTube-
VOS [Xu et al., 2018] and DAVIS [Pont-Tuset et al., 2017]
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are spatially sparse, with a few objects annotated for most
video sequences. Secondly, the classes of YouTube-VOS
only include countable thing objects. While in the real world,
many scenes may contain dozens of objects and other stuff
classes like ‘water’ and ‘ground’. Obviously these datasets
can’t cover such scenarios. As a consequence, previous
datasets are not able to train VOS models thoroughly and
evaluate models comprehensively.

To this end, we study VOS in panoptic scenes as panoptic
VOS and present a dataset named VIdeo Panoptic Object Seg-
mentation (VIPOSeg). VIPOSeg is built on VIPSeg [Miao et
al., 2022], a dataset for video panoptic segmentation. We re-
split the training and validation set and convert the panoptic
annotations in VIPSeg to VOS format. Beyond classic VOS,
we make thing/stuff annotations for objects available as a new
panoptic setting. VIPOSeg dataset is qualified to play the role
of a benchmark for panoptic VOS. First, VIPOSeg provides
annotations for all objects in scenes. Second, a variety of ob-
ject categories are included in VIPOSeg. The large diversity
of classes and density of objects help to train a model with
high robustness and generalization ability for complex real-
world applications. For model evaluation, we divide object
classes into thing/stuff and seen/unseen subsets. A model can
be comprehensively evaluated on these class subsets. In ad-
dition, VIPOSeg can also evaluate the performance decay of
a model as the number of objects increases.

Challenges also emerge when a model tries dealing with
panoptic scenes (Figure 1). The large number of objects
causes occlusion and efficiency problem, and various scales
and diversity of classes require high robustness. In order to
tackle the challenges, we propose a strong baseline method
for panoptic object association with transformers (PAOT),
which uses decoupled identity banks to generate panoptic
identification embeddings for thing and stuff, and uses a
pyramid architecture with efficient transformer blocks to per-
form multi-scale object matching. PAOT achieves supe-
rior performance with good efficiency and ranks 1st in both
short-term/real-time tracking and segmentation tracks in the
VOT2022 challenge [Kristan et al., 2023].

In summary, our contributions are three-fold:

• We introduce panoptic VOS, and present a new bench-
mark VIPOSeg, which provides exhaustive annotations
and includes seen/unseen and thing/stuff classes.
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Motion & occlusion Numerous objects Various scales Unseen classes Stuff classes

Occluded players: 6/9

Occluded runners: 9/10

Unseen class: other machine

Unseen class: fruit

Total object count: 76

Total object count: 79

Sea/person ratio: 4.2×10!

Woods/car ratio: 8.1×10!

Stuff classes: water, tree…

Stuff classes: sky, house…

Figure 1: The figures illustrate challenges of video object segmentation in panoptic wild scenes in VIPOSeg dataset. In crowded scenes,
motion and occlusion are sometimes extremely complex. In addition, numerous objects are challenging to the efficiency of VOS models.
Objects on various scales are also difficult to deal with, especially small objects. As for object classes, VIPOSeg contains seen/unseen classes
and thing/stuff classes. VOS models need to not only generalize from seen to unseen classes, but also learn to process both thing and stuff.

• Considering the challenges in panoptic VOS, we pro-
pose a strong baseline PAOT, which consists of the de-
coupled identity banks for thing and stuff, and a pyramid
architecture with efficient long-short term transformers.

• Experimental results show that VIPOSeg is more chal-
lenging than previous VOS benchmarks, while our
PAOT models show superior performance on the new
VIPOSeg benchmark as well as previous benchmarks.

2 Related Work
Semi-supervised video object segmentation. As an early
branch, online VOS methods [Caelles et al., 2017; Yang
et al., 2018; Meinhardt and Leal-Taixé, 2020] fine-tune a
segmentation model on given masks for each video. An-
other promising branch is matching-based VOS methods
[Shin Yoon et al., 2017; Voigtlaender et al., 2019; Yang et
al., 2020], which constructs the embedding space to mea-
sure the distance between a pixel and the given object.
STM [Oh et al., 2019] introduces the memory networks to
video object segmentation and models the matching as space-
time memory reading. Later works [Seong et al., 2020;
Cheng et al., 2021c] improve STM by better memory read-
ing strategies. A multi-object identification mechanism is
proposed in AOT [Yang et al., 2021a; Yang et al., 2021c;
Yang and Yang, 2022] to process all the target objects simul-
taneously. This strategy is adopted in our framework to model
the relationship between multiple objects, and we further pro-
pose solutions for other challenges in panoptic scenes.

Multi-scale architectures for VOS. CFBI+ [Yang et al.,
2021b] proposes a multi-scale foreground and background in-
tegration structure, and a hierarchical multi-scale architecture
is proposed in HMMN [Seong et al., 2021]. In this work, we
also propose a multi-scale architecture, while the matching
is performed sequentially in our pyramid architecture but not
individually (CFBI+) or with guidance (HMMN). The design
of our method is inspired by general transformer backbones
[Wang et al., 2021b; Liu et al., 2021] but ours is for feature
matching across multiple frames on both spatial and temporal
dimensions but not feature extraction on static images.

Dataset Task Video T /s Class Unseen Stuff Obj./Video
DAVIS [Pont-Tuset et al., 2017] VOS 150 2.9 - ✗ ✗ 2.51
YouTube-VOS [Xu et al., 2018] VOS 4453 4.5 94 ✓ ✗ 1.64

UVO [Wang et al., 2021a] OWOS 1200 3.0 open ✓ ✗ 12.29
OVIS [Qi et al., 2022] VOS/VIS 901 12.8 25 ✗ ✗ 5.80

VIPSeg [Miao et al., 2022] VPS 3536 4.8 124 ✗ ✓ 13.26∗

VIPOSeg VOS 3149 4.3 125 ✓ ✓ 13.26

Table 1: Detailed comparison of related datasets. Obj./Video stands
for the average object number per video. T is the average video
duration time. ∗For VIPSeg, test set is not included when calculating
average object number because it is not public.

Video panoptic segmentation. Among the tasks for video
segmentation [Zhou et al., 2022; Li et al., 2023], video
panoptic segmentation (VPS) [Kim et al., 2020] is also re-
lated to our panoptic VOS. VPS methods [Woo et al., 2021;
Li et al., 2022; Kim et al., 2022] manage to predict object
classes and instances for all pixels in each frame of a video,
while in panoptic VOS all objects are defined by reference
masks when they first appear. Although they both consider
thing and stuff, panoptic VOS is class agnostic and can gener-
alize to arbitrary classes. In addition, most VPS datasets like
Cityscapes-VPS [Cordts et al., 2016] and KITTI-STEP [We-
ber et al., 2021] only cover street scenes with limited object
categories. VIPSeg [Miao et al., 2022] is the first large-scale
VPS dataset in the wild.

Related datasets. Detailed comparison of related datasets
can be found in Table 1, which also covers some datasets be-
yond VOS. DAVIS [Pont-Tuset et al., 2017] is a small VOS
dataset containing 150 videos with sparse object annotations.
YouTube-VOS [Xu et al., 2018] is a large-scale VOS dataset
containing 4453 video clips and 94 object categories. OVIS
dataset [Qi et al., 2022] focuses on heavy occlusion prob-
lems in video segmentation, in which the 901 video clips
mainly include multiple occluded instances. UVO [Wang et
al., 2021a] is for open world object segmentation and has
much denser annotations than YouTube-VOS. VIPSeg [Miao
et al., 2022] is a large-scale dataset for video panoptic seg-
mentation in the wild. We build our VIPOSeg dataset based
on VIPSeg and details are in the following section.
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58 Thing Classes 67 Stuff Classes

Figure 2: Object classes and class subsets in VIPOSeg.
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Figure 3: Comparison among VOS benchmark datasets including
VIPOSeg, YouTube-VOS (YTB) and DAVIS. Figure (a) shows the
object number distribution in VIPOSeg, as well as mean object num-
bers of other datasets. Figure (b) compares the distribution statistics
of scale ratios in different datasets.

3 Benchmark
3.1 Producing VIPOSeg
Exhaustively annotating objects in images is extremely con-
suming, let alone in video frames. Fortunately, recently
VIPSeg dataset [Miao et al., 2022] provides 3536 videos an-
notated in a panoptic manner. It includes 124 classes consist-
ing of 58 thing classes and 66 stuff classes. We adapt this
dataset and build our VIPOSeg dataset based on it.

Splitting dataset and classes. In terms of VIPSeg, the
3536 videos are split into 2,806/343/387 for training, vali-
dation and test. We only use training and validation sets in
our VIPOSeg (3149 videos in total) because the annotations
for test set are private. In order to add unseen classes to val-
idation set, we re-split the videos into new training and vali-
dation set. We first sort 58 thing classes and 66 stuff classes
respectively by frequency of occurrence. Next, we choose
17 thing classes and 17 stuff classes from the tail as unseen
classes. We also split ‘other machine’ into two classes, one
for seen and another for unseen (detailed explanation is in
supplementary material). Then, videos for validation set are
selected by ensuring that enough objects in unseen classes
should be included. Last but not least, we remove the annota-
tions of unseen classes in training set. In summary, there are
four subsets of 125 classes including 41/17 seen/unseen thing
classes and 49/18 seen/unseen stuff classes (Figure 2).

Creating and correcting annotations. In order to gener-
ate reference masks for VOS, we convert the panoptic anno-
tations into object index format and then select the masks that
appear the first time in each video as reference masks. To dis-

tinguish thing/stuff and seen/unseen classes, we also record
the class mapping from object index to class index for each
video. The class mapping enables us to calculate the eval-
uation metrics on seen/unseen and thing/stuff classes. An-
other problem is that the mask annotations in original VIPSeg
are noisy, especially in the edges of objects. To ensure the
correctness of evaluation, we manually recognize low-quality
annotations and cleaned their noises in validation set.
Settings of panoptic VOS. The panoptic VOS task comes
along with the rich and dense annotations. In panoptic VOS,
models are trained with panoptic data. Besides, extra an-
notations indicating whether an object is thing or stuff are
available in both training and test. Previous classic VOS,
where only spatially sparse annotated data is used for training
and test, can be regarded as a simplified version of panoptic
VOS. Our method PAOT provides solutions for both panop-
tic/classic settings (Section 4).

3.2 Significance of VIPOSeg
As a new benchmark dataset, VIPOSeg not only comple-
ments the deficiency of previous datasets but also surpasses
them by a large margin in class diversity and object den-
sity. VIPOSeg has 4× denser annotations, 20× more videos
than DAVIS, and 6× denser annotations than YouTube-VOS
(Table 1 and Figure 3(a)). Denser annotations of panoptic
scenes also includes objects on more diversified scales, with
almost 30× larger mean and 6400× larger variance of scale
ratios than YouTube-VOS (Figure 3(b)). More importantly,
VIPOSeg contains stuff classes which never appear in previ-
ous VOS datasets (Table 1).

3.3 Challenges in VIPOSeg
With much denser object annotation and more diverse classes,
challenges also emerge in the VIPOSeg dataset (Figure 1).
Motion and occlusion. Although previous datasets also in-
clude objects with motion and occlusion, they are not as chal-
lenging as VIPOSeg. The number of objects in VIPOSeg can
be so large that the occlusion can be intractable.
Numerous objects. Another challenge that comes with the
large number of objects is efficiency. Figure 1 column two
shows scenes with numerous objects and Figure 3(a) shows
the distribution of object number in VIPOSeg. VOS mod-
els will need more memory and be slower when the number
of objects becomes larger. According to our experimental re-
sults in Table 3, CFBI+ [Yang et al., 2021b] runs at 2 FPS and
consumes over 30 GB memory when evaluated on VIPOSeg.
Various scales. Since the scenes are exhaustively anno-
tated, objects on all scales are included. Figure 3(b) shows
the mean, median and standard deviation of the scale ratios
in VOS benchmarks. The scale ratio is defined as the ratio
of the pixel numbers of the largest and the smallest objects in
a frame. The scale ratios of frames in VIPOSeg have much
larger mean value and variance than previous benchmarks.
Unseen classes. We deliberately wipe out the annotations
of some classes in training set to make them unseen in val-
idation set. Generalizing from seen to unseen is a common
problem for most deep models. It is not easy to narrow the
performance gap between seen and unseen.
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Stuff classes. Previous VOS datasets never contain stuff
classes while VIPOSeg does. One may be curious about
whether a VOS model can track the mask of flowing water
like ‘sea wave’ (Figure 1 column three) and ‘waterfall’ (Fig-
ure 1 column four). The answer can be found in VIPOSeg.

4 Method
In the face of above challenges, we develop a method Panop-
tic Object Association with Transformers (PAOT), which is
not only designed for panoptic VOS but also compatible with
classic VOS. PAOT consists of following designs, 1) For the
motion and occlusion problem, we employ multi-object asso-
ciation transformers (AOT) [Yang et al., 2021a] as the base
framework. 2) For objects on various scales, a pyramid archi-
tecture is proposed to incorporate multi-scale features into the
matching procedure. 3) For the thing/stuff objects in panop-
tic scenes, we decouple a single ID bank into two separate ID
banks for thing and stuff to generate panoptic ID embeddings.
4) For the efficiency problem caused by numerous objects, an
efficient version of long-short term transformers (E-LSTT) is
proposed to balance performance and efficiency.

4.1 Pyramid Architecture
A pyramid architecture (Figure 4) is proposed in PAOT to per-
form matching on different scales. The scales are determined
by the features x(i) from the encoder. For memory/reference
frames who have masks, the mask information is encoded in
ID embeddings e(i)ID by assigning ID vectors in the ID bank.

Each ID vector is corresponding to an object so the ID embed-
ding contains information of all objects. The ID assignment
can be regarded as a function which maps a one-hot label
of multiple objects to a high dimensional embedding. Each
scale i has an individual ID bank to generate the ID embed-
ding to maintain rich target information. The ID embedding
is fused with the memory frame embedding e

(i)
m as key and

value, waiting for the query of later frames.
For a current frame without a mask, the E-LSTT module

is responsible for performing matching between the embed-
dings of the current frame e

(i)
t and memory/reference frames

e
(i)
m . Next, the decoder block is able to decode the matching

information and incorporate the features on the larger scale
x
(i+1)
t . The matching and decoding process is in a recursive

manner from the current scale to the next scale,

e
(i)′

t = T
(i)
E (e

(i)
t , e(i)m , e

(i)
ID),

e
(i+1)
t = R(i)(s+(e

(i)′

t ) + x
(i+1)
t ),

where T
(i)
E (·) is the E-LSTT module, s+(·) is the up-

sampling function and R(i)(·) is the decoder block (imple-
mented as residual convolutional blocks [He et al., 2016]).

4.2 Generation of Panoptic ID Embeddings
For panoptic VOS, we generate panoptic ID embedding from
thing and stuff mask on each scale (Figure 4, 5). Previous
VOS datasets and methods only consider the countable thing
objects but omit stuff objects. Although thing objects and
stuff objects can be treated equally in a unified manner in
classic VOS methods, the difference between stuff and thing
should not be ignored. Considering this, we decouple the ID
bank into two separate ID banks for thing and stuff objects re-
spectively. We aim to obtain more discriminative ID embed-
dings for thing objects while more generic ID embeddings for
stuff objects, especially unseen stuff objects.

The label of a frame y is first decomposed into thing label
yth and stuff label yst. The thing objects are assigned with
ID vectors from thing ID bank and stuff objects are assigned
wtih ID vectors from stuff ID bank. Last, the thing and stuff
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Figure 6: Comparison between AOT and PAOT models on a video
sequence with objects on various scales. Small objects in boxes are
enlarged for better viewing.

ID embeddings are concatenated and fed into the aggregation
module (implemented as convolutional layers) to obtain the
panoptic ID embedding on scale i,

e
(i)
ID = Conv(Cat(ID

(i)
th (yth), ID

(i)
st (yst))).

4.3 Efficient Long Short-Term Transformers
Long-short term transformers (LSTT) are proposed in AOT
[Yang et al., 2021a] for object matching. Directly using
LSTT in the pyramid structure causes efficiency problem due
to the larger scales, and the problem will become more seri-
ous in panoptic scenes due to numerous objects.

The long-term attention dominates the computational cost
of LSTT because the attention may involve multiple mem-
ory frames. In order to cut down the computational cost, we
use single-head rather than multi-head attention for the long-
term memory. Inspired by [Wang et al., 2021b], we further
apply the dilated attention where the key and value are down-
sampled in the long-term attention on large scales (Figure 4).
More details can be found in supplementary material.

5 Experiment
5.1 Implementation Details
Model settings. The encoder backbones of PAOT mod-
els are chosen in ResNet-50 [He et al., 2016] and Swin
Transformer-Base [Liu et al., 2021]. As for multi-scale object
matching, we set E-LSTT in four scales 16×, 16×, 8×, 4× to
be 2,1,1,0 layers respectively (4 layers in total). It should be
noted that we do not use the 4× scale feature maps for ob-
ject matching but only for decoding considering the compu-
tational burden, and instead duplicate the 16× features twice.
Training procedure. The training procedure consists of
two steps: (1) pre-training on the synthetic video sequences
generated by static image datasets [Everingham et al., 2010;
Lin et al., 2014; Cheng et al., 2014; Shi et al., 2015;
Hariharan et al., 2011] by randomly applying multiple image
augmentations [Oh et al., 2018]. (2) main training on the real
video sequences by randomly applying video augmentations
[Yang et al., 2020]. The datasets for training include DAVIS
2017 (D) [Pont-Tuset et al., 2017], YouTube-VOS 2019 (Y)
[Xu et al., 2018] and our VIPOSeg (V). Models pre-trained

with BL-30K [Cheng et al., 2021b] are marked with ∗ (for
STCN [Cheng et al., 2021c]).

During training, we use 4 Nvidia Tesla A100 GPUs, and
the batch size is 16. For pre-training, we use an initial learn-
ing rate of 4 × 10−4 for 100,000 steps. For main training,
the initial learning rate is 2× 10−4, and the training steps are
100,000. The learning rate gradually decays to 1× 10−5 in a
polynomial manner [Yang et al., 2020].

Task settings. For panoptic setting, V is used for training
and evaluation. PAOT models with panoptic ID are marked
with Pano-ID, otherwise generic ID is used. Note that PAOT
with generic ID is compatible with classic VOS. For classic
setting, Y+D are used for training and evaluation. Training
with Y+D+V is mainly for classic setting and V is regarded
as auxiliary data.

5.2 Evaluation Results on VIPOSeg
Evaluation metrics. For a new benchmark, it is crucial
to choose proper metrics to evaluate the performance. We
set eight separate metrics including four mask IoUs for
seen/unseen thing/stuff (Mth

s /Mth
u /Msf

s /Msf
u ), and four

boundary IoUs [Cheng et al., 2021a] for seen/unseen
thing/stuff (Bth

s /Bth
u /Bsf

s /Bsf
u ) respectively. The overall per-

formance G is the average of these eight metrics. More-
over, four average metrics are calculated to indicate the av-
erage performance on thing/stuff (Gth/Gsf ) and seen/unseen
(Gs/Gu). The results with these metrics can be found in Table
2. Except for these standard metrics, there is also a special
metric on VIPOSeg, the decay constant λ. It is in charge of
evaluating the robustness of models in crowded scenes. More
details can be found in later Crowd decay section.

Panoptic setting. We train AOT [Yang et al., 2021a] and
PAOT models with VIPOSeg (V) as in panoptic VOS. The
evaluation results are in middle of Table 2. Both the pyra-
mid architecture and panoptic IDs in PAOT are beneficial to
panoptic scenes. First, our PAOT model with generic IDs sur-
passes AOT by 1.1% with the same R-50 backbone, which
shows the improvement of the pyramid architecture. Sec-
ond, the PAOT models with panoptic IDs have higher over-
all performance than PAOT models with generic IDs. Their
difference is mainly on the metrics of unseen and stuff. R50-
PAOT (Pano-ID) have around 2% higher mask IoU Msf

u
and 1.5% higher boundary IoU Bsf

u on unseen stuff ob-
jects than generic R50-PAOT. Therefore, decoupling the ID
bank into thing and stuff is beneficial to learn more robust
stuff ID vectors which generalize better on unseen objects.

Classic setting. We test several representative methods in-
cluding CFBI+ [Yang et al., 2021b], STCN [Cheng et al.,
2021c], AOT [Yang et al., 2021a] and our PAOT on VIPOSeg
validation set. The evaluation results are in top of Table 2.
These models are trained with Y+D. First, the overall IoU
scores of previous methods are around 73.0. Compared with
them, our PAOT models are above 75.0, which surpass pre-
vious methods by over 2%. Qualitative results of these
methods are in Figure 7. Second, previous methods like
CFBI+ and STCN perform poorly on thing IoU Gth. By
contrast, multi-object association based methods like AOT
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Average IoU Mask IoU Boundary IoU

VIPOSeg Validation Seen/Unseen Thing/Stuff Thing Stuff Thing Stuff

Methods Training G Gs Gu Gth Gsf Mth
s Mth

u Msf
s Msf

u Bth
s Bth

u Bsf
s Bsf

u λ

CFBI+ [Yang et al., 2021b] Y+D 72.1 73.0 71.3 68.3 76.0 69.6 69.4 80.4 77.3 67.7 66.7 74.4 71.7 1.42
STCN [Cheng et al., 2021c] Y+D 72.4 73.8 71.1 68.4 76.5 70.9 68.3 80.8 78.3 69.0 65.5 74.5 72.3 1.03
STCN∗ [Cheng et al., 2021c] Y+D 72.5 73.6 71.4 69.0 76.0 71.2 69.1 80.1 78.2 69.4 66.4 73.9 72.0 1.08
R50-AOT-L [Yang et al., 2021a] Y+D 73.7 74.8 72.6 72.1 75.4 73.9 72.6 79.7 77.2 72.1 69.8 73.6 70.9 0.88
SwinB-AOT-L [Yang et al., 2021a] Y+D 73.3 74.5 72.2 72.0 74.6 74.4 71.9 78.8 76.9 72.5 69.3 72.2 70.6 0.92

R50-PAOT Y+D 75.4 76.5 74.3 74.2 76.5 76.0 74.7 80.7 78.3 74.2 72.0 74.9 72.2 0.84
SwinB-PAOT Y+D 75.3 76.3 74.4 74.7 76.0 76.4 75.0 80.0 77.9 74.7 72.5 74.1 72.1 0.87

R50-AOT-L [Yang et al., 2021a] V 76.4 78.0 74.8 74.2 78.6 76.8 73.8 82.9 80.0 75.0 71.2 77.3 74.1 0.78
R50-PAOT V 77.5 79.1 75.8 75.9 79.0 78.2 75.7 83.6 79.9 76.5 73.2 78.2 74.4 0.77
R50-PAOT (Pano-ID) V 77.9 79.0 76.8 76.0 79.8 78.1 76.0 83.3 81.8 76.4 73.3 77.9 75.9 0.76

SwinB-PAOT V 78.0 79.5 76.5 76.4 79.6 78.8 76.0 83.7 80.8 77.2 73.7 78.3 75.5 0.70
SwinB-PAOT (Pano-ID) V 78.2 79.5 76.9 76.3 80.1 78.6 75.9 83.9 81.7 76.9 73.7 78.5 76.2 0.70

R50-AOT-L [Yang et al., 2021a] Y+D+V 76.5 77.9 75.0 74.3 78.6 76.7 74.1 82.8 80.2 74.9 71.6 77.2 74.2 0.80
R50-PAOT Y+D+V 77.4 78.4 76.4 75.9 78.8 77.5 76.6 82.9 80.3 75.8 73.9 77.5 74.7 0.79
SwinB-PAOT Y+D+V 77.9 79.3 76.5 76.3 79.5 78.8 75.8 83.3 81.2 77.2 73.5 77.8 75.7 0.73

Table 2: Evaluation results on VIPOSeg validation set. Training datasets include YouTube-VOS (Y), DAVIS (D) and VIPOSeg (V). ∗ denotes
that models are pre-trained with BL-30K. λ is the decay constant.

and PAOT improve thing IoU a lot because the simultane-
ous multi-object propagation with ID mechanism is capable
of modeling multi-object relationship such as occlusion.

Boosting performance by panoptic training. The overall
IoU of AOT or PAOT rises around 3% after replacing the
training data from Y+D to V. There is a huge gap between
models trained with and without VIPOSeg. The VIPOSeg
training set enables the models to learn panoptic object asso-
ciation and to generalize in more complex scenes and classes.
Besides, panoptic training data also benefits VOS models on
previous classic VOS benchmarks, as shown in Table 4.

Crowd decay. Dense annotations in VIPOSeg enable us to
evaluate the performance of models under scenes with dif-
ferent amounts of objects. Here we present the crowd de-
cay evaluation. We model the problem as exponential decay,
G(n) = e−λn/s where s = 100 is a scaling factor and λ is
the decay constant that reflects how fast the performance G
drops when object number n increases. The IoU for each ob-
ject number n is collected to estimate λ by least square. We
show the decay constants for different methods and models
in Table 2 and plot the decay curves in Figure 8. The results
show that multi-object association methods (AOT, PAOT are
around 0.8) have lower decay constants than other methods
(CFBI+, STCN are above 1.0). SwinB-PAOT trained with
VIPOSeg achieves the lowest decay constant 0.70, which
means it deals with crowded scenes better than other models.

Speed and memory. For all methods evaluated on
VIPOSeg, we record the FPS and maximal memory space
they consume during evaluation, which can be found in Ta-
ble 3. The measure of FPS and memory is on Nvidia Tesla
A100 GPU. CFBI+ runs at 2 FPS while STCN and AOT are
at around 10 FPS. This fact shows VIPOSeg benchmark is
very challenging in model efficiency. STCN runs faster with

Methods IDs G Total FPS Memory/GB

CFBI+ [Yang et al., 2021b] - 72.1 2.01 33.13
STCN [Cheng et al., 2021c] - 72.5 11.60 14.17
R50-AOT-L [Yang et al., 2021a] 10 73.7 11.30 12.35
SwinB-AOT-L [Yang et al., 2021a] 10 73.3 9.13 12.21

R50-PAOT‡ 10 77.5 10.45 11.04
SwinB-PAOT‡ 10 78.0 8.35 11.18

R50-PAOT‡ (Pano-ID) 10+5 77.9 11.23 10.58
SwinB-PAOT‡ (Pano-ID) 10+5 78.2 8.48 10.72

R50-PAOT‡ 15 77.4 12.60 9.67
R50-PAOT‡ 20 77.4 13.32 8.34
R50-PAOT‡ 30 76.5 14.16 7.96

Table 3: Speed and memory consumption of different methods on
VIPOSeg validation set. ‡ denotes models trained with V rather than
Y+D. Memory is the maximal GPU memory used by the method.

more memory while AOT and PAOT run slightly slower with
less memory. However, all of these models demond over 11
GB memory, which leaves a large space for further improve-
ment. A larger ID capacity and better memory strategy may
help with the efficiency problem.

5.3 Results on YouTube-VOS and DAVIS

The evaluation results on YouTube-VOS [Xu et al., 2018]
and DAVIS [Perazzi et al., 2016; Pont-Tuset et al., 2017]
are listed in Table 4. More detailed tables can be found in
supplementary material. For models trained with Y+D, our
PAOT model with Swin Transformer-Base backbone achieves
SOTA performance on all benchmarks. Adding VIPOSeg to
training can further boost performance.
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Figure 7: Qualitative results of different methods evaluated on VIPOSeg validation set. The scene is a basketball contest and includes multiple
players moving fast and occluding each other. Difficult areas are marked with boxes.

Methods Training Y19 D17 D17-T D16

CFBI+ [Yang et al., 2021b] Y+D 82.6 82.9 74.8 89.9
HMMN [Seong et al., 2021] Y+D 82.5 84.7 78.6 90.8
STCN [Cheng et al., 2021c] Y+D 82.7⋆ 85.4 76.1 91.6
STCN∗ [Cheng et al., 2021c] Y+D 84.2⋆ 85.3 79.9 91.7
RPCM [Xu et al., 2022] Y+D 83.9 83.7 79.2 91.5
R50-AOT-L [Yang et al., 2021a] Y+D 85.3⋆ 84.9 79.6 91.1
SwinB-AOT-L [Yang et al., 2021a] Y+D 85.3⋆ 85.4 81.2 92.0

R50-PAOT Y+D 85.9⋆ 85.3 81.0 92.2
R50-PAOT Y+D+V 86.1⋆ 86.0 82.1 92.5

SwinB-PAOT Y+D 86.4⋆ 86.2 84.0 93.8
SwinB-PAOT Y+D+V 86.9⋆ 87.0 83.6 93.3

Table 4: Evaluation results on YouTube-VOS 2019 validation (Y19),
DAVIS 2016/2017 validation (D16/D17) and 2017 test (D17-T). ⋆
for Y19 denotes testing using all frames. ∗denotes models pre-
trained with BL-30K.

6 Ablation Study and Discussion
Capacity of ID banks. The capacity of ID banks is a trade-
off between efficiency and performance. The results are in
Table 3. When the ID number increases, the performance
drops while the speed rises and memory consumption de-
creases. Training more IDs results in less training data for
each ID on average, and IDs with poorer generalization abil-
ity may affect the performance. For the classic setting, the
best ID capacity is 10. For the panoptic setting, the best ID
capacity is 10 for thing and 5 for stuff. For both R50-PAOT
and SwinB-PAOT, panoptic ID strategy achieves better per-
formance by decoupled ID banks with larger ID capacity.

Pyramid architecture. The pyramid architecture in PAOT
is proposed to improve the original architecture of AOT. Here
we compare two architectures and extend the LSTT in AOT-
L from three to four layers (AOT-L4) for fair comparison.
The results of SwinB backbone AOT and PAOT models on
YouTube-VOS 2019 and VIPOSeg are in Table 5. Our pyra-
mid architecture performs consistently better than AOT-L or
AOT-L4 on different benchmarks.

Efficient LSTT. E-LSTT helps the PAOT models to better
balance performance and efficiency. In Table 6, we compare
the R50-PAOT models with and without E-LSTT. Models are

Y19 VIPOSeg

Models Pyramid G⋆ G
SwinB-AOT-L ✗ 85.3 73.3
SwinB-AOT-L4 ✗ 85.4 74.2

SwinB-PAOT ✓ 86.5 75.3

Table 5: Comparison between AOT
(no pyramid architecture) and PAOT.
G⋆ denotes results of all-frame test.

Y19 VIPOSeg

E-LSTT G⋆ G FPS Mem./GB

✗ 86.1 77.6 6.22 22.00
✓ 86.1 77.410.45 11.04

Table 6: Results before/after
substituting E-LSTT for orig-
inal LSTT. G⋆ denotes results
of all-frame test.
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Figure 8: Crowd decay of different methods on VIPOSeg.

trained with Y+D+V and evaluated on YouTube-VOS 2019
and VIPOSeg. It can be found in the table that E-LSTT causes
a little performance drop, but boosts the FPS from 6 to 10, and
cuts down the memory consumption from 22 GB to 11 GB.

7 Conclusion
In this paper, we explore video object segmentation in panop-
tic scenes and present a benchmark dataset (VIPOSeg) for
it. Our VIPOSeg dataset contains exhaustive annotations,
and covers a variety of real-world object categories, which
are carefully divided into thing/stuff and seen/unseen subsets.
Training with VIPOSeg can boost the performance of VOS
methods. In addition, the benchmark is capable of evaluating
VOS models comprehensively. As a strong baseline method
for panoptic VOS, PAOT tackles the challenges in VIPOSeg
effectively by the pyramid architecture with efficient trans-
former and panoptic ID for panoptic object association. We
hope our benchmark and baseline method can help the com-
munity for further research in related fields.
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Kristian Kämäräinen, Hyung Jin Chang, Martin Danelljan,
Luka Čehovin Zajc, Alan Lukežič, et al. The tenth visual
object tracking vot2022 challenge results. In Computer
Vision–ECCV 2022 Workshops: Tel Aviv, Israel, Octo-
ber 23–27, 2022, Proceedings, Part VIII, pages 431–460.
Springer, 2023.

[Li et al., 2022] Xiangtai Li, Wenwei Zhang, Jiangmiao
Pang, Kai Chen, Guangliang Cheng, Yunhai Tong, and
Chen Change Loy. Video k-net: A simple, strong, and
unified baseline for video segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 18847–18857, 2022.

[Li et al., 2023] Xiangtai Li, Henghui Ding, Wenwei Zhang,
Haobo Yuan, Jiangmiao Pang, Guangliang Cheng, Kai
Chen, Ziwei Liu, and Chen Change Loy. Transformer-
based visual segmentation: A survey. arXiv preprint
arXiv:2304.09854, 2023.

[Lin et al., 2014] Tsung-Yi Lin, Michael Maire, Serge Be-
longie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Com-
mon objects in context. In European conference on com-
puter vision, pages 740–755. Springer, 2014.

[Liu et al., 2021] Ze Liu, Yutong Lin, Yue Cao, Han Hu,
Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using
shifted windows. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 10012–
10022, 2021.
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