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Abstract

Fine-tuning large vision-language models is a chal-
lenging task. Prompt tuning approaches have been
introduced to learn fixed textual or visual prompts
while freezing the pre-trained model in downstream
tasks. Despite the effectiveness of prompt tun-
ing, what do those learnable prompts learn remains
unexplained. In this work, we explore whether
prompts in the fine-tuning can learn knowledge-
aware prompts from the pre-training, by design-
ing two sets of prompts — one in pre-training and
the other in fine-tuning. Specifically, we present
a Video-Language Prompt tuning (VL-Prompt)
approach for video captioning, which first effi-
ciently pre-train a video-language model to ex-
tract key information (e.g., actions and objects)
with flexibly generated Knowledge-Aware Prompt
(KAP). Then, we design a Video-Language Prompt
(VLP) to utilize the knowledge from KAP and fine-
tune the model to generate full captions. Exper-
imental results show the superior performance of
our approach over several state-of-the-art baselines.
We further demonstrate that the video-language
prompts are well learned from the knowledge-
aware prompts.

1 Introduction
In 1959, three computer science pioneers envisioned that
AI is to create a computer program that simulated human
problem-solving behavior. Humans can process novel tasks
effortlessly by using existing knowledge and learning from
new information. Artificial systems, however, need a heav-
ily pre-trained base model (e.g., CNNs [He et al., 2016] and
Transformers [Dosovitskiy et al., 2021; Wang et al., 2022a])
with extensive fine-tuning on curated data for each problem.
This practice is common in deep learning. But adapting these
large-scale models to downstream tasks is hard. Full fine-
tuning requires storing and deploying a separate copy of the
backbone parameters for every task, which is expensive and
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Figure 1: Our method includes two phases: 1) Key Information
Learning: model pre-training to extract key information for each
video with a knowledge-aware prompt. 2) Context Prompt Recov-
ery: model fine-tuning to recover the pre-trained knowledge-aware
prompt for each video and generate the full caption.

impractical, especially for modern Transformer-based archi-
tectures such as Swin-L [Liu et al., 2021d] (284M param-
eters), ViT-Huge [Dosovitskiy et al., 2021] (632M parame-
ters), and iGPT-L [Chen et al., 2020] (1362M parameters).
Inspired by human-like learning, a substantial amount of con-
current scientific efforts for intelligent systems have been de-
voted to the development of a novel training strategy in both
natural language processing (NLP) and computer vision (CV)
to efficiently transfer knowledge across domains.

This appetite for training has been successfully addressed
in natural language processing (NLP) by prompt tuning.
The solutions are based on generative language modeling in
GPT [Alec and Karthik, 2018] and masked language pre-
training in BERT [Devlin et al., 2018]. The idea is to re-
formulate downstream tasks to look more like those solved
during the language model (LM) pre-training with the help
of a textual prompt [Liu et al., 2021b]. For example, when
recognizing the emotion of a social media post, we may con-
tinue with a prompt “I felt so ”, and ask the LM to fill
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the blank with an emotion-bearing word. Creating and ex-
perimenting with these prompts takes time and experience,
so methods have been proposed to automate the template
design process. These methods can be separated into two
broad types: a) discrete prompts, which automate search
for templates described in a discrete space, usually corre-
sponding to natural language phrases [Zhengbao et al., 2019;
Shin et al., 2020], and b) continuous prompts, which are di-
rectly described in the embedding space [Li and Liang, 2021;
Lester et al., 2021]. These emerging methods enable quick
training of generalizable NLP models containing over one
hundred billion parameters for novel tasks [Liu et al., 2021c].

Prompt tuning is a generic form of prefix virtual tokens
construction that is natural and applicable in computer vi-
sion as well [Lester et al., 2021] [Li and Liang, 2021]. Vi-
sual Prompt Tuning (VPT) [Jia et al., 2022] introduces only
a small amount of trainable parameters into the image feature
input space while keeping the model backbone frozen. Sev-
eral CLIP-based [Radford et al., 2021] methods adopt VPT-
like architectures into their image encoders [Uzair Khattak
et al., 2022; Huang et al., 2022], achieving impressive per-
formance in terms of efficiency and accuracy. Researchers
recently began to investigate how to jointly optimize prompts
across vision and language. For example, UPT [Zang et al.,
2022] trains a tiny neural network to generate the prompt for
CLIP text and visual encoders, both of them are started with
a shared initial prompt. MVLPT [Shen et al., 2022] finds that
many target tasks can benefit each other from sharing prompt
vectors and thus can be simultaneously learned via multitask
prompt tuning.

Despite significant interest in this idea following the tri-
umph of VPT, however, prompt tuning methods for cross-
domain tasks have been lagging and face limitations.: First,
learnable prompts lack explainability and their embeddings
are too abstract to provide a human-understandable explana-
tion. Concurrent work has not explored what these prompts
actually learn. Second, learnable prompts lack explainabil-
ity. The concurrent work fails to explore what those learn-
able prompts learn. The embeddings of these learnable
prompts are so abstract that it is difficult to provide a human-
understandable explanation. Third, vision-language Trans-
former models require extensive self-attention computation,
leading to inefficiencies and lack of knowledge transferabil-
ity due to the heavy parametric architecture. In light of this
view, we ask: how to learn explainable prompts to enable
effective learning for across-domain language-vision tasks?

To address these limitations, we present VL-Prompt, a
powerful, explainable, and efficient prompt tuning approach.
Our contributions are three-fold, as shown in Fig. 1:

• We introduce VL-Prompt, a novel framework for video
captioning that splits the task into two parts: a) the Key
Information, which is extracted from a pre-training mod-
ule with flexible textual prompts; b) the Context Prompt,
which is fine-tuned with the frozen pre-trained model.
The design enables VL-Prompt to handle the translation
of a large-scale vision-language model.

• We propose Knowledge-Aware Prompt (KAP) and
Vision-Language Prompt (VLP) to investigate the ex-

plainability of the learned prompts. KAP uses syntactic
knowledge to guide sentence generation in pre-training.
VLP inserts context prompts between keywords to de-
code captions in fine-tuning. VLP recovers KAP’s in-
formation and learns the mutual information in the key
information.

• Our method has two main benefits. First, in pre-training,
it trains the Transformer model to extract key informa-
tion with sparse attentions, simplifying the model. Sec-
ond, in fine-tuning, it can handle more frames on a lim-
ited GPU memory, because the main network is frozen
and does not need gradient storage.

VL-Prompt is an intuitive yet general video-language
framework; it is compatible with different video-language
network architectures and tasks. We experimentally show:
In §4.2, with efficient video-language Transformer [Tay et
al., 2020], VL-Prompt outperforms other Transformer-based
counterparts, O2NA [Liu et al., 2021a] and SwinBERT [Lin
et al., 2022], ↑ 7.5 ∼ 31.7 in terms of CIDEr and ↑ 5.3 ∼ 8.1
in terms of B@4, on MSVD benchmark. In §4.4, VL-Prompt
acquires further improvement by applying our pre-training
with KAP on a larger dataset and tuning into a smaller dataset,
i.e., for MSVD benchmark, pre-trained on MSR-VTT (↑ 0.6
in B@4, ↑ 0.2 in M), and pre-trained on VATEX (↑ 1.4 in
B@4, ↑ 0.4 in M). These results are particularly impressive,
considering the number of parameters in the tunable prompt
is very small. We hope this work could bring fundamental in-
sights into related fields.

2 Related Work
2.1 Video Transformer and Video Captioning
Recently, base on the impressive performance of Vision
Transformers (ViT) [Dosovitskiy et al., 2021], TimeS-
former [Bertasius et al., 2021] and ViViT [Arnab et al.,
2021] are two popular video Transformer method. More re-
cently, after Swin Transformer [Liu et al., 2021d] is intro-
duced as a general-purpose vision backbone for image under-
standing, Video Swin Transformer [Liu et al., 2022] extends
the scope of local attention computation from only the spa-
tial domain to the spatio-temporal domain. Traditional video
captioning methods are based on CNN-RNN structure, in-
cluding S2VT [Venugopalan et al., 2015], PickNet [Chen et
al., 2018], OA-BTG [Zhang and Peng, 2019], SAAT [Zheng
et al., 2020], ORG-TRL [Zhang et al., 2020], GLR [Yan
et al., 2022a], etc. Most recently, SwinBERT [Lin et al.,
2022] claims to be the first end-to-end fully Transformer-
based model for video captioning.

2.2 Prompt Tuning
Prompt tuning methods can be divided into two categories.

Discrete Prompt Tuning can tune themselves for differ-
ent tasks by manually constructing different prompts (e.g.,
CLIP [Radford et al., 2021]) like “A photo of a [object]”.
This strategy has been widely used in recent researches, for
example, ALPRO [Li et al., 2021] and STALE [Nag et al.,
2022] proposes a prompt of “A video of [ENTITY]” for video
classification and action detection. A good design for prompt
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Figure 2: The framework of our proposed method. The knowledge-aware prompt is a discrete prompt, while the video-language prompt is
a continuous prompt. We use the continuous prompt to learn the discrete prompt.

sentence can achieve a better performance. For example, Det-
Pro [Du et al., 2022] judge whether a predicted object detec-
tion box is good by two types of prompt: given a ground
truth bounding box of an object class, it says “a photo of
[CLASS]”; while given a foreground proposal of a partial ob-
ject, it would instead say “a photo of partial [CLASS]”. Other
methods such as KDDAug [Chen et al., 2022] design differ-
ent strategies to generate prompts for different VQA question
types (e.g., “[NUMBER] [OBJECT] are there” when asking
the number of an object). All of these methods generate fixed
prompts with invariant structure.

Continuous Prompt Tuning automates the process by
learning soft prompts (e.g., embeddings). For example,
CoOp [Zhou et al., 2022b] tries to learn a prompt content
optimization for CLIP text encoder on image classification
tasks. CoCoOp [Zhou et al., 2022a] optimizes that learn-
able text prompt contents by the output of the CLIP image
encoder. TPT [Shu et al., 2022] learns textual prompts in
a zero-shot manner, via different augmented views of a sin-
gle test image. For video tasks, [Ju et al., 2022] attempts
to learn prompt vectors for CLIP text encoder on some sim-
ple video understanding tasks including action classification
and localisation. Recently, VPT [Jia et al., 2022] intro-
duces only a small amount of trainable visual prompts in
the input space while keeping the model backbone frozen.
MaPLe [Uzair Khattak et al., 2022] uses VPT to fine-tune the
text encoder and image encoder in the CLIP [Radford et al.,
2021]) model. VoP [Huang et al., 2022] also inserts prompt
embeddings into the CLIP network for text-video retrieval.
However, to the best of our knowledge, all these methods
have not explored vision-language generative tasks, and none
of them have explored what the prompts have learned.

3 VL-Prompt
3.1 Overview
The task of video captioning is to generate a text sequence
that summarizes a given video. In this work, we propose a
video-language prompt tuning approach for effective caption
generation. The overall model architecture of VL-Prompt

is shown in Fig. 2, which consists of two key phases, pre-
training with Knowledge-Aware Prompt (KAP) and fine-
tuning with Video-Language Prompt (VLP). Intuitively, in
the pre-training phase, the video encoder and decoder ef-
fectively learns the complex knowledge (the “difficult” part)
about the actions and objects from the videos, with the guid-
ance of textual knowledge-aware prompts generated from the
annotations. During fine-tuning, the model only needs to
tune a few trainable video-language prompts representing the
structure of the caption (the “easy” part) while freezing the
well-learned encoder and decoder. We adopt an Video Swin
Efficient Transformer [Lin et al., 2022] as the video encoder,
while the decoder is constructed by a stack of Efficient Trans-
former Layers [Tay et al., 2020].

3.2 Pre-Training with Knowledge-Aware Prompt
The main responsibilities of the pre-training module is to
learn an efficient and effective video encoder for video rep-
resentation. To this end, we introduce a novel pre-training
approach with knowledge-aware prompts.
Textual Knowledge-Aware Prompt. A textual KAP is a
discrete prompt which is automatically generated from the
annotations of caption. For example, the KAP from origi-
nal caption of “A teacher is writing a mathematical problem
on a whiteboard in a classroom” is “A is writing a math-
ematical on a in a ”. The pipeline consists of the fol-
lowing two steps: 1) Predict Part-Of-Speech (POS) tags on
those annotations via POS tagging model (e.g., FLAIR [Ak-
bik et al., 2019]); 2) Select important types of POS tags
(e.g., noun or verb) and mask the corresponding words in
the original caption; 3) The knowledge-aware prompt X =
{x1, x2, ..., xm} (a.k.a., function words) contains remaining
words in the caption. The purpose of pre-training is to learn
effective video encoder and decoder by recovering the se-
quence of the marked out keywords Y = {y1, y2, ..., yn} with
the guidance of the KAP. Essentially, KAP helps reduce the
search space of the target words, which provides additional
supervision for video captioning.
Sparse Attention Learning. Dense attention for video fea-
tures in the Transformer decoder is very computationally in-
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tensive. To remove unnecessary attention and refine effi-
cient features in the model, the decoder is supervised by the
above keywords to learn the sparse attention patterns [Belt-
agy et al., 2020; Zaheer et al., 2020; Qin et al., 2023;
Wang et al., 2022b], which reduces redundancy among the
learned video representation. Following SwinBERT [Lin et
al., 2022], the attention mask is defined as a learnable matrix
with a size of M × M , where M is the length of the video
embedding from the encoder. Each value Ci,j in this matrix
indicates the attention connection between the ith position of
the input video embedding and the jth position of the output.
This matrix is trained to be more sparse, with the loss de-
signed to reduce the percentage of non-zero elements in the
attention connection maps.
Learning Objective. To sum up, the final training objec-
tive of the pre-training model is defined as the Cross-Entropy
(XE) loss collaborated with the number of non-zero elements
in the attention connection maps:

argmin

[∑
y∈Y

p(ŷ) log p(y|X) + ω ·
M∑
i=1

M∑
j=1

|Ci,j |

]
(1)

where y and ŷ denotes the predicted words and the ground-
truth respectively, and Y represents the set of notional words
(e.g., noun or verb) that removed from the sentence in the
KAP. The weight of attention connection count ω will be an-
alyzed in the experiments.

3.3 Fine-Tuning with Video-Language Prompt
With the limited memory of the GPU, it is often impossible to
sample a large number of frames from the video when train-
ing a large video-language model. To reduce GPU memory
usage and increase the model capability for processing more
frames, inspired by VPT [Jia et al., 2022], we propose to fine-
tune the pre-trained large-scale model with Video-Language
Prompt (VLP), which introduces only a small amount of
trainable parameters while keeping the model backbone
frozen. We transfer the VPT into a multi-modal prompt tun-
ing framework via designing video-language prompt tokens
into the collection of text embeddings and video embeddings.
We denote the collection of text embeddings and video em-
beddings as Etext and Evideo respectively.
Video-Language Prompt. The prompt content is defined
as a learnable d-dimensional vector as Tj ∈ Rd for the jth
prompt token. Those prompt tokens are fed into a fully con-
nected linear layer f(·) to get video-language prompt embed-
dings. Following VPT, our tuning process with VLP also has
two variants, VLP-Shallow and VLP-Deep.
VLP-Shallow. Prompts are inserted into the first Trans-
former layer T1 only. Each video-language prompt is a learn-
able d-dimensional vector. A collection of N prompt tokens
is denoted as T(0) = {Tj = (t0, t1, ..., ti, ...., td) | ti ∈
R}Nj=1, the shallow-prompted decoder with l Transformer
layers is defined as:

[E(1)
text,E

(1)
video,E

(1)
prompt] = T1([E(0)

text,E
(0)
video, f(T

(0))])

[E(k)
text,E

(k)
video,E

(k)
prompt] = Tk([E(k−1)

text ,E(k−1)
video ,E

(k−1)
prompt])

Z = Logit(E(l)
text)

(2)

where E(k)
prompt represents the prompt embeddings computed

from the kth Transformer layer (1 ≤ k < l), and Logit in-
dicates the Transformer head which convert embeddings into
the log-likelihood scores Z for word prediction.

VLP-Deep. Prompts are introduced at every Transformer
layer’s input space. For kth Transformer Layer Tk, we denote
the collection of input learnable prompts as T(k) = {Tj =
(t0, t1, ..., ti, ...., td) | pi ∈ R}Nj=1. As shown in Fig. 2, the
deep-prompted decoder with l Transformer layers is formu-
lated as:

[E(k)
text,E

(k)
video,E

(k)
prompt] = Tk([E(k−1)

text ,E(k−1)
video , f(T

(k−1))])

Z = Logit(E(l)
text)

(3)

Different colors indicate learnable and frozen parameters.

Fine-tuning Objective. During fine-tuning, the sparse at-
tention mask is also frozen. The VLP linear projection and
the decoder head are trainable. Following BERT [Devlin
et al., 2018], the ground-truth text sentence Ẑ is randomly
masked (e.g., “[MASK] teacher is [MASK] a [MASK] prob-
lem on [MASK] whiteboard in [MASK] classroom”) and the
model prediction Z try to store the masked tokens. Therefore,
the fine-tuning objective with VLP becomes:

argmin
∑
z∈Z

p(ẑ) log p(z) (4)

where z and ẑ denotes predicted words and the ground-truth
respectively. Z denotes all possible words in vocabulary.

3.4 Theoretical Analysis - Prompt Learns Prompt
The core idea of our system is that different words carry dif-
ferent amounts of information. For example, a frequent word
(e.g., function words like “on”) carries very little information,
while a rare word (e.g., notional words like “teacher”) is much
more informative. In the following analysis, we show that the
entropy of the video-language prompt (VLP) and knowledge-
aware prompt (KAP) are equivalent, indicating that our model
is able to transfer the prompt knowledge from KAP to VLP.

Assuming that the KAP only contains function words with
all notional words (nouns and verbs) removed. Mathemati-
cally, given an input video V and a knowledge-aware prompt
X , our pre-training model M is trained to output a sequence
of notional words Y , as shown in Fig. 3. Those function and
notional word sequences can be represented by these two ran-
dom variables. According to the Shannon’s theory [Shannon,
1948], the information content or entropy of the pre-trained
model can be defined as a conditional entropy:

H(M) = H(Y |X,V )

= −
∑

x∈X ,y∈Y

pX,Y (x, y, V ) log
pX,Y (x, y, V )

pX(x) · p(V )
(5)

where X and Y denote the set of function words and no-
tional words respectively. When fine-tuning the model with
the video-language prompt network F , which consists of the
learnable vectors T and the linear layer f(·), the final sen-
tence output Z can be viewed as a combination of X and Y
(i.e., Z is the union distribution of X and Y ). We denote
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Figure 3: Theoretical analysis of our pre-training and fine-tuning
models. V denotes the input video. M denotes the pre-training
model including the encoder and the decoder. The prompt network
F contains the learnable prompt tokens T, and the linear layer f(·).
X and Y indicates the knowledge-aware prompt which consists of
function words and the predicted notional words respectively.

pZ(z) = pX,Y (x, y). Then the joint entropy of the full model
is given by:

H(M,F ) = H(X,Y |V )

= −
∑

x∈X ,y∈Y

pX,Y (x, y, V ) log
pX,Y (x, y, V )

p(V )
(6)

Then we can measure the expected entropy of the video-
language prompt F in condition of M as:

H(F ) = H(M,F )−H(M) + I(M ;F )

=
∑

x∈X ,y∈Y

pX,Y (x, y, V ) log
pX,Y (x, y, V )

p(V )

−
∑

x∈X ,y∈Y

pX,Y (x, y, V ) log
pX,Y (x, y, V )

pX(x) · p(V )
+ I(M ;F )

=
∑

x∈X ,y∈Y

pX,Y (x, y, V ) log
1

pX(x)
+ I(M ;F )

(7)

where I(M ;F ) denotes the mutual information between the
distribution of the model M and the prompt parameters F .
Since M is pre-trained to predict notional words with the
guidance of function words and then frozen in the fine-tuning
phase, the mutual information I(M ;F ) is very small. There-
fore, we can approximate the expected information of our
proposed video-language prompt F to the information of
knowledge-aware prompt X , according to the information
theory [Thomas and Joy, 2006]:

H(F ) ≈
∑

x∈X ,y∈Y

pX,Y (x, y, V ) log
1

pX(x)

=
∑

x∈X ,y∈Y

pX,Y (x, y, V ) log
pX,Y (x, y, V )

pX(x)

−
∑

x∈X ,y∈Y

pX,Y (x, y, V ) log pX,Y (x, y, V )

= −H(y, V |x) +H(x, y, V ) = H(X)

(8)

From the above analysis, we show that the information con-
tents in video-language prompt (VLP) and knowledge-aware
prompt (KAP) are equivalent, indicating that VLP learns
from KAP, to guide the recovery of the full caption. The full
sentence recovery can be viewed as a diffusion process, where
function words are diffused among those predicted notional
words and then restored.

4 Experiments
4.1 Experimental Setup
Datasets. We conduct experiments on two public video
captioning datasets: a) MSR-VTT [Xu et al., 2016] con-
sists of 10K video clips. Each video clip has 20 ground-truth
captions. We use the standard split, which has 6.5K train-
ing videos, 497 validation videos and 2.9K testing videos. b)
MSVD is a collection of 2K video clips downloaded from
YouTube. Each video clip has roughly 40 ground-truth cap-
tions written by humans. Similar to the prior articles [Chen
et al., 2018; Zheng et al., 2020], we use the standard split
which contains 1.2K training videos, 100 validation videos,
and 670 test videos. We further leverage a larger dataset, VA-
TEX, to study the effect of pre-training. VATEX contains
41.3K videos. Each video clip has 20 ground-truth captions.
We use the official training set for training, and evaluate the
results using the public test set.

Implementation Details. The number of the Swin Trans-
former layers in the video encoder is set to 3. The output
length of the video feature embedding from the encoder is set
to M = 392. The dimension of the video feature embedding
from the encoder is 768, while the dimension of the hidden
state of the decoder is 512. To ensure the same dimension-
ality of the video embedding in the encoder and decoder, we
transform the video embedding using a linear fully connected
network. The number of the transformer layers in the decoder
is set to 11. The dimension of the video-language prompt is
set to d = 1024. The number of the video-language prompt
tokens is set to 100. The max length of the text sequence is
set to 50. The max epoch number is set to 10 for both pre-
training and fine-tuning. The learning rate is set to 10−4 in
pre-training, and 10−5 in fine-tuning.

4.2 Main Results
We compare our VL-Prompt with several state-of-the-art
methods on the above commonly used benchmarks. Follow-
ing previous research [Yan et al., 2022b; Lin et al., 2022],
we provide detailed comparisons using a diverse set of per-
formance metrics, including BLEU4 [Papineni et al., 2002],
METEOR [Banerjee and Lavie, 2005], ROUGE-L [Lin and
Och, 2004] and CIDEr [Vedantam et al., 2015]. Table 1
shows detailed comparisons with eleven LSTM-based and
five transformer-based methods for video captioning. In our
method, we sample a large number of frames (F = 64) from
each video, since our Efficient VL Transformer can avoid
overly dense features. It can be seen from the results that:
a) Compared to those methods using 2D and 3D CNN en-
coders, Transformer based method can jointly learn the fea-
tures of 2D appearance and 3D motion. For example, the
popular SAAT [Zheng et al., 2020] uses spatial and temporal
feature to represent the static scene and the dynamic motions,
but it fails to jointly train the 2D and 3D representation, which
can be learned via a visual Transformer. Thus, on MSR-VTT
test, our method outperforms SAAT ↑ 4.3 in B@4, ↑ 2.4
in M, ↑ 1.5 in R, and ↑ 4.3 in terms of CIDEr. b) Compared
to those methods using Transformer as decoder, prompt tun-
ing methods rely on the well pre-trained large-scale models,
which is difficult to be trained. SwinBERT [Lin et al., 2022]
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Encoder MSR-VTT MSVD
Method

2D Appearance 3D Motion
Decoder PT F

B@4 M R C B@4 M R C
SA-LSTM [Xu et al., 2016] VGG C3D

LSTM

× 16 36.3 25.5 58.3 39.9 45.3 31.9 64.2 76.2
RecNet [Wang et al., 2018a] VGG C3D × - - 26.6 59.3 42.7 52.3 34.1 69.8 80.3

ORG-TRL [Zhang et al., 2020] IncepResnetV2 C3D × 28 43.6 29.7 62.1 50.9 54.3 36.4 73.9 95.2
STGraph [Pan et al., 2020] ResNet-101 I3D × 10 40.5 28.3 60.9 47.1 52.2 36.9 73.9 93.0

SGN [Ryu et al., 2021] ResNet-101 3D-ResNext × 30 40.8 28.3 60.8 49.5 52.8 35.5 72.9 94.3
RCG [Zhang et al., 2021] ResNet-152 I3D × 28 42.8 29.3 61.7 52.9 - - - -
HRL [Wang et al., 2018b] ResNet-152 - × - 41.3 28.7 61.7 48.0 - - - -

PickNet [Chen et al., 2018] ResNet-152 - × 7 38.9 27.2 59.5 42.1 46.1 33.1 69.2 76.0
POSRL [Wang et al., 2019] IncepResnetV2 I3D × 64 41.3 28.7 62.1 53.4 53.9 34.9 72.1 91.0
SAAT [Zheng et al., 2020] IncepResnetV2 C3D × 28 39.9 27.7 61.2 51.0 46.5 33.5 69.4 81.0

HMN [Ye et al., 2022] IncepResnetV2 C3D × 16 43.5 29.0 62.7 51.5 59.2 37.7 75.1 104.0
GL-RG [Yan et al., 2022b] ResNeXt-101 3D-Resnet-18 × 30 42.9 29.9 62.2 54.3 60.5 38.9 76.4 101.0
O2NA [Liu et al., 2021a] ResNet-101 3D-ResNext

Trans.

× 8 41.6 28.5 62.4 51.1 55.4 37.4 74.5 96.4
SwinBERT [Lin et al., 2022] Video Swin Transformer × 64 41.9 29.9 62.1 53.8 58.2 41.3 77.5 120.6

VPT [Jia et al., 2022] ViT ✓ 32 41.2 27.9 61.5 50.3 54.6 36.0 73.1 94.7
Prompting [Ju et al., 2022] CLIP Image Encoder ✓ 16 42.0 28.8 62.3 52.2 56.4 38.6 75.4 99.8
VoP [Huang et al., 2022] CLIP Image Encoder ✓ 12 42.1 28.9 61.9 51.7 57.9 40.2 76.3 105.9

Ours (VL-Prompt) Efficient VL Transformer ✓ 64 43.2 30.1 62.7 55.3 63.5 41.6 78.9 128.1

Table 1: Comparisons with state-of-the-art methods on MSR-VTT test and MSVD test. PT means prompt tuning. F denotes the
number pf sampled frames per video. All of those VPT-based image or video analysis methods are transferred into the video captioning task
via replacing the [cls] token into the text sequence token. Our method is first pre-trained on 16 frames and then tuned on 64 frames.

Method B@4 M R C training fps
VL-Prompt 63.5 41.6 78.9 128.1 7.7
w/o KAP 53.1 34.6 72.4 102.9 8.1
w/o VLP 59.3 37.8 76.1 115.6 8.0

Table 2: Impact of KAP and VLP on MSVD test.

introduces a BERT-based training method with sparse atten-
tion, which indeed benefits the pre-training of the large-scale
video-language models, but fails to explore the inner rela-
tionships over the semantic context. Thus, on MSVD test,
our method outperforms SwinBERT ↑ 5.3 in B@4, ↑ 0.3 in
M, ↑ 1.4 in R, and ↑ 7.5 in terms of CIDEr. c) VL-Prompt
outperforms those prompt tuning baselines, indicating the ef-
fectiveness of our prompt design and learning. The learned
video-language prompts are more explainable [Wang et al.,
2023], which effectively decouple the structured knowledge
in the captions and restore them efficiently.

4.3 Ablation Study

We conduct a comprehensive ablation study on MSVD and
MSR-VTT benchmarks to investigate the capability of the
proposed model.

Impact of KAP and VLP. To analyze the impact of KAP
and VLP, we conduct ablation experiments on two variants by
removing KAP and VLP from the VL-Prompt respectively.
As reported in Table 2, we observe significant performance
drop after removing either type of prompts, indicating the im-
portance of both KAP and VLP in the model. This demon-
strates that our VLP prompts can capture the internal rela-
tions, which denote the semantic correlation between tokens
within a sentence, by applying reasoning and linking the in-
put keywords (nouns and verbs) together. Nevertheless, our
VL-Prompt with both prompts achieves the best performance
with slightly lower training fps.

Masking B@4 M R C Attn. training fps
KAP 63.5 41.6 78.9 128.1 12% 7.7

Alternate 56.8 36.9 74.8 104.3 59% 7.5
Random 57.7 37.8 75.6 106.2 31% 7.5

Noun 58.7 41.0 77.8 118.2 10% 7.8
Verb 58.8 41.2 77.7 117.7 8% 7.9

Table 3: Different masking strategies of KAP on MSVD test.
“Alternate” denotes masking words alternately (e.g., 1st, 3rd, 5th,
etc.). “Random” strategy is to randomly mask words. “Noun” and
“Verb” denote only masking nouns and verbs, respectively.

Method B@4 M R C fps
Full Fine-Tuning 65.2 41.3 80.6 147.0 7.6
Linear Probing 62.3 41.1 80.1 140.3 8.0
VLP-Shallow 65.5 42.0 80.3 150.2 8.1

VLP-Deep 66.4 42.7 81.3 153.8 7.9

Table 4: Different fine-tuning strategy on MSVD val. The pre-
training with KAP and a frame number of 64 is used in all methods.

Prompt Design in KAP. We further conduct experiments
of different masking strategies in learning context prompt, in-
cluding alternative masking, random masking, noun masking
and verb masking, to understand the effectiveness of different
prompt designs. Table 3 shows the ablation results on MSVD.
It can be seen that our original KAP (Noun and Verb mask-
ing) outperforms all other strategies with big margins, while
only masking nouns or verbs achieves a faster speed. This is
consistent with our expectation as these nouns and verbs are
the most informative words in the caption, representing the
objects and actions in the video.

VLP-Shallow vs. VLP-Deep vs. Full. We compare the
results of different VLPs with Linear Probing and Full fine-
tuning in Table 4. It is clear that VLP-Deep outperforms
all the other parameter-efficient tuning protocols, including
VLP-Shallow, Linear Probing, and even outperforms full
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D
L

10 20 50 100 200

256 139.9 141.6 143.1 145.4 148.5
512 142.7 143.5 148.0 152.9 153.7

1024 146.3 149.8 152.1 153.8 153.4
2048 147.2 150.1 152.9 153.0 153.6

Table 5: The ablation study of VLP on MSVD val. ‘D’ denotes
the dimension of VLP and ‘L’ means the length of VLP.

F in Fine-TuneMethod F in
Pre-Train 4 8 16 32 64

w/o KAP 4 125.3 126.8 127.6 129.1 131.1
16 131.5 134.1 136.0 138.2 139.7

VL-Prompt 4 136.0 139.9 146.5 150.3 152.7
16 135.8 137.2 144.1 149.6 153.8

Table 6: The comparison of different number of frames F on
MSVD val. CIDEr is used as the evaluation metric.

OOM

Figure 4: The memory used per GPU when the model is fine-
tuned with different strategy. The batch size is fixed to 1. When
full fine-tuning is adopted, the F = {32, 64} frames will cause an
Out-Of-Memory (OOM) error with a large batch size. In contrast,
the VLP can reduce the GPU memory usage since the gradients of
the Transformer parameters do not need to be saved.

fine-tuning. VLP-Shallow achieves the fast speed with a com-
parable performance over all methods. Similar observations
have been found in VPT [Jia et al., 2022].

Prompt Length & Dimension. To investigate the impact
of prompt length and dimension in VLP, we conduct ablation
study of different combinations of VLP length and dimen-
sion. As shown in Table 5, the best choice for prompt tokens
is a length of 100 and a dimension of 1024.

Sampled Frame Number. We uniformly sample F =
{2, 4, 8, 16, 32, 64} frames from the given video clip to train
and test our method on both MSVD and MSR-VTT datasets.
As we increase the number of frames, we observe consistent
performance improvements in terms of CIDEr (see Table 6).
We also find that without VLP fine-tuning, the network is too
large for F = {32, 64} which causes an Out-Of-Memory er-
ror, as shown in Fig. 4. In contrast, the network works well
on that 11GB GPU during fine-tuning with our VLP, demon-
strating the efficiency of our VL-Prompt.

4.4 Effect of Pre-training
To further illustrate the effect of our proposed pre-training
method, Table 7 shows the performance of VL-Prompt with

Fine-Tune Add. Data B@4 M R C

MSR-VTT MSVD 43.6↑0.4 30.4↑0.3 62.9↑0.2 55.4↑0.1
VATEX 44.2↑1.0 30.6↑0.5 63.4↑0.7 55.7↑0.4

MSVD MSR-VTT 64.7↑1.2 42.2↑0.6 79.4↑0.5 128.4↑0.3
VATEX 65.2↑1.7 42.4↑0.8 79.8↑0.9 128.6↑0.5

Table 7: Effects of pre-training with additional data for our VL-
Prompt on MSR-VTT and MSVD test. Results show we could
further improve the performance by pre-training on a larger dataset.
The up-arrow (↑) number indicates the improvement compared to
self pre-training (as shown in Table 1).

ω 0 0.1 0.3 0.5 0.7
CIDEr on MSVD 102.9 115.4 119.5 128.1 124.2

Table 8: Impact of different values of ω on MSVD test. ω = 0
means keeping the attention connection ratio as 100%.

additional pre-training data. It can be seen that pre-training
on a large dataset achieves better performance in all cases,
especially when combining with large VATEX dataset in pre-
training. For example, VL-Prompt improves the performance
by ↑ 1.2 and ↑ 1.7 in terms of B@4 on MSVD through adding
MSR-VTT and VATEX to pre-training, respectively. More-
over, we evaluate the efficiency of our approach by comparing
it with the baselines. For example, on the MSVD dataset, our
model attains an average fps of 7.7, and outperforms Swin-
BERT and GL-RG in terms of efficiency (which achieve 7.2
and 6.3 fps respectively). This observation validates the ef-
fectiveness of pre-training, which is crucial in the later VLP
fine-tuning.

4.5 Impact of ω
To understand the impact of the hyper-parameter ω, we eval-
uate the model performance by varying the hyper-parameters
ω from {0, 0.1, 0.3, 0.5, 0.7}. The model performances with
different hyper-parameter values are reported in Table 8. It
can be seen that ω = 0.5 achieves the best performance, in-
dicating that the model needs to identify a good trade-off be-
tween efficiency and effectiveness.

5 Conclusion
In this paper, we propose a novel prompt tuning based video
captioning approach, VL-Prompt, by designing two differ-
ent sets of prompts in pre-training and fine-tuning phases re-
spectively. We first pre-train a video-language model to ex-
tract key information with the guidance of knowledge-aware
prompts. Then, we design a video-language prompt to trans-
fer the knowledge from the knowledge-aware prompts and
fine-tune the model to generate full captions. Experimental
results show the superior performance of our approach over
several state-of-the-art baselines. Theoretical analysis on how
the information from knowledge-aware prompts is transferred
to the video-language prompts is also conducted. A poten-
tial drawback of our method is the low generalization ability
that may result from the limited number of parameters and
data samples. In future, we plan to investigate VL-Prompt
in zero-shot settings. We also plan to apply VL-Prompt in
other downstream tasks such as VQA. We hope this work can
inspire future studies in video-language prompt tuning.
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