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Abstract
Continual test-time domain adaptation aims to
adapt a source pre-trained model to a continually
changing target domain without using any source
data. Unfortunately, existing pseudo-label learning
methods suffer from the changing target domain
environment, and the quality of generated pseudo-
labels is attenuated due to the domain shift, lead-
ing to instantaneous negative learning and long-
term knowledge forgetting. To solve these prob-
lems, in this paper, we propose a simple yet ef-
fective framework for exploring safety supervision
with three elaborate strategies: Label Safety, Sam-
ple Safety, and Parameter Safety. Firstly, to se-
lect reliable pseudo-labels, we define and adjust the
confidence threshold in a self-adaptive manner ac-
cording to the test-time learning status. Secondly,
a soft-weighted contrastive learning module is pre-
sented to explore the highly-correlated samples and
discriminate uncorrelated ones, improving the in-
stantaneous efficiency of the model. Finally, we
frame a Soft Weight Alignment strategy to nor-
malize the distance between the parameters of the
adapted model and the source pre-trained model,
which alleviates the long-term problem of knowl-
edge forgetting and significantly improves the ac-
curacy of the adapted model in the late adapta-
tion stage. Extensive experimental results demon-
strate that our method achieves state-of-the-art per-
formance on several benchmark datasets.

1 Introduction
Deep neural networks have achieved remarkable success in
visual tasks when training and test data follow the same dis-
tribution. These networks, however, suffer from the general-
ization problem in the presence of domain shift. For exam-
ple, a classification network pre-trained in the normal, nat-
ural images domain may not recognize the corrupted im-
ages due to domain shift [Dong et al., 2020; Yang et al.,
2022]. Thus, an adaptation is necessary to transfer knowl-
edge from the source domain to the target one by reducing the
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domain shift. However, the label of the target domain is usu-
ally unavailable, so the problem is known as Unsupervised
Domain Adaptation (UDA) [Ganin and Lempitsky, 2015;
Prabhu et al., 2021; Sun et al., 2019; Dong et al., 2021].
In addition, the source data is often inaccessible during in-
ference time due to privacy or business problems, making
the adaptation problem more challenging but more realis-
tic. Therefore, such adaptation problem becomes Source-
Free/Test-Time domain Adaptation (TTA) [Chen et al., 2022;
Yang et al., 2021; Kurmi et al., 2021; Kundu et al., 2020;
Liu et al., 2021] where only the source model and unlabeled
target data are available in the adaptation process.

Existing TTA methods usually solve the domain shift prob-
lem by updating the adapted model parameters using the gen-
erated pseudo-labels or entropy regularization. These self-
training-based methods are effective when the distribution of
data in the target domain is fixed, but when the distribution of
the target domain is constantly changing [Wang et al., 2022;
Prabhu et al., 2021], these methods become unstable. Noise
problem [Wang et al., 2022] caused by the change of target
domain distribution seriously affects the adaptation process.
CoTTA [Wang et al., 2022] first defines this kind of problem
as Continual Test-Time Domain Adaptation, where a source
pre-trained model needs to adapt to a stream of continually
changing target test data without using any source data. It
uses a weight-average teacher network to improve the quality
of generated pseudo-labels. However, the accurate optimiza-
tion of a network requires the joint action of label and loss
function. The pseudo-labels generated by existing methods
become noisier in the changing target domain environment
because of domain shifts in the adaptation process. Thus,
refining pseudo-label learning requires high-quality pseudo-
labels and a reliable label selection strategy.

In this paper, we propose a simple yet effective frame-
work for continual test-time domain adaptation, which re-
fines the pseudo-label learning process for exploring safety
supervision from three perspectives: Label Safety, Sample
Safety, and Parameter Safety, to alleviate the instantaneous
and long-term impact of noisy pseudo-labels. In terms of la-
bel safety, noisy pseudo-labels will immediately affect the
loss calculation in network optimization. Thus, we define
and adjust the confidence threshold in a self-adaptive man-
ner to restrain the noisy pseudo-labels in the test-time learn-
ing status. Notably, instead of simply presenting a constant
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hyper-parameter and treating all classes equally, we select an
independent threshold for each class through global and lo-
cal strategies to choose more reliable pseudo-labels as super-
vision information. Based on such thresholds, we construct
a soft-weighted contrastive learning module for the sample
safety of contrastive learning module, which pulls the reliable
same-class samples closer and discriminates against uncorre-
lated samples. Moreover, the Fourier transform is introduced
into the contrastive learning process as a strong augmentation
to explore domain-invariant predictions. In this way, we can
alleviate instantaneous negative learning and improve learn-
ing efficiency.

From the perspective of long-term impact, as the model
continually adapts to the target domain with changing distri-
butions, the knowledge from the pre-trained model is con-
stantly forgotten due to error accumulation caused by the
noisy pseudo-labels. To slow down the accumulation of er-
rors and combat knowledge forgetting, we propose a Soft
Weight Alignment (SWA) strategy, which continuously dis-
tills knowledge from the source pre-trained model. In de-
tail, we normalize the distance between the parameters of the
adapted model and the pre-trained model. In doing so, we
continuously distill knowledge from the source pre-trained
model and can effectively alleviate the long-term knowledge-
forgetting problem. Extensive experimental results demon-
strate that our method achieves state-of-the-art performance
on several datasets.

To sum up, our contributions are as follows:

• We design a novel yet efficient continual test-time do-
main adaptation method for exploring safety super-
vision. The learnable thresholds are tuned in a local and
global manner according to the test-time learning sta-
tus to enhance label safety, sample safety, and parameter
safety, further alleviating instantaneous negative learn-
ing and long-term knowledge-forgetting problems.

• We introduce a soft-weighted contrastive learning
module, which pulls the reliable same-class samples
closer and alleviates the false negative samples. The
learnable thresholds and pseudo-labels are utilized to se-
lect more discriminative positive and precise negative
pairs for contrastive learning. Moreover, we employ the
Fourier transform to augment the positives, exploring
domain-invariant predictions.

• We propose a Soft Weight Alignment strategy, which
continuously distills knowledge from the source pre-
trained model. We normalize the distance between the
adapted and pre-trained models’ parameters. In doing
so, we continuously distill knowledge from the source
pre-trained model and can effectively alleviate the long-
term knowledge-forgetting problem.

2 Related Work
2.1 Domain Adaptation
Domain adaptation refers to the goal of learning a concept
from labeled data in the source domain that performs well on
different but related target domains. The critical problem of

domain adaptation lies in the misalignment between the fea-
ture and label spaces of the source and target domains. To
solve this problem, some domain adaptation methods guide
the deep model to learn domain invariant representation and
classifiers. Specifically, some works [Ganin and Lempitsky,
2015; Tzeng et al., 2017; Ganin et al., 2016] utilize adver-
sarial training to align feature distribution with a domain
discriminator, and some works constrain the cross-domain
feature space by entropy constraint [Grandvalet and Bengio,
2004; Saito et al., 2019] or maximum prediction rank [Cui et
al., 2020; Yang et al., 2019].

2.2 Test-Time Domain Adaptation
Recently, some works on test-time domain adaptation fo-
cus on a more challenging setting where only the source
model and unlabeled target data are available. Some test-
time domain adaptation methods [Kurmi et al., 2021; Li et
al., 2020] utilize generative models to achieve the feature
alignment between the source and target domain in the ab-
sence of source data. Kurmi et al. adopt the trained classi-
fier [Kurmi et al., 2021] to generate samples from the source
classes. This method learns the joint distribution of data by
using the energy-based modeling of the trained classifier. Yeh
et al. propose the method of Source-data-free Feature Align-
ment (SoFA) [Yeh et al., 2021] to extract features with class
semantics, thus realizing domain adaptation in the absence of
the source data. In addition, some methods achieve test-time
domain adaptation by finetuning the source model with the
help of target data and do not require explicit domain align-
ment. Test entropy minimization (TENT) [Wang et al., 2020]
introduces entropy minimization as a test-time optimization
objective, which estimates normalization statistics and opti-
mizes channel-wise affine transformations to update online
on each batch. Source HypOthesis Transfer (SHOT) [Liang
et al., 2020] aims to learn the optimal target-specific feature
learning module to fit the source hypothesis. It is worth men-
tioning that SHOT requires using source data to train a spe-
cialized source model, so it cannot support an arbitrary source
pre-trained model. Zhou et al. present Bayesian Adaptation
for Covariate Shift (BACS) [Zhou and Levine, 2021] to ob-
tain both improved accuracy and well-calibrated uncertainty
estimates when faced with domain shift.

Most test-time adaptation methods only consider the of-
fline scenario, where the full set of test data is provided dur-
ing the training process. Further, CoTTA [Wang et al., 2022]
extends test-time adaptation from offline scenario to online
continual scenario. It considers a more challenging but more
realistic problem named Continual Test-Time Domain Adap-
tation, where a source pre-trained model needs to adapt to a
stream of continually changing target test data without using
any source data. In this paper, we also focus on such a more
realistic setting than standard test-time adaptation.

3 Proposed Method
3.1 Problem Definition
Following [Wang et al., 2022], we consider a continual test-
time domain adaptation setting, where a pre-trained model
needs to adapt to a continually changing target domain in an
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Figure 1: This is the flow of our method. At the time t, the model receives an incoming batch of images from the unlabeled target data flow.
After data augmentation, these incoming images are fed into both the teacher and student networks. The average outputs of the augmented
images in the teacher network are utilized as self-adaptive thresholding pseudo-labels to supervise the student network. In addition, the
parameters of the student network are softly aligned with those of the anchor network to prevent knowledge forgetting in the adaptation
process.

online fashion when the absence of source data. Consider
a pre-trained model Fθ(x) with parameter θ trained on the
source data (XS ,YS). Unlabeled target domain data X T is
provided sequentially and the data distribution of X T is con-
tinually changing. At inference time t, when the unlabeled
target data XT (t) = [xT1 (t), ..., x

T
B(t)] is sent to the model

Fθt , whereB is the number of samples. The model Fθt needs
to make the prediction Fθt(X

T (t)) and adapts itself accord-
ingly for the next input (θt → θt+1). It is worth noting that
the total evaluation process is online, and the model only has
access to the dataXT (t) of the current time step t. The frame-
work is shown in Fig. 1.

3.2 Self-adaptive Thresholding Cross-Entropy
Loss

In this section, we detail the self-adaptive thresholding cross-
entropy loss. In the process of adapting to a continually
changing target domain, the quality of pseudo-labels de-
creases significantly because of the distribution shift. To im-
prove the quality of pseudo-labels, following [Wang et al.,
2022], we use a weight-averaged teacher model Fθ̂ to gener-
ate the pseudo-labels. At the time t = 0, the teacher network
is initialized by the pre-trained source model. Then, at time t,
the teacher model Fθ̂ generates the pseudo-label ŷT (t) to help
the learning process of the student model (adapted model)
Fθt . Specifically, we compute the cross-entropy loss between
the output of the student model and the pseudo-label ŷT (t).
The learning process can be denoted as follows:

ŷTb (t) = Softmax(Fθ̂(x
T
b (t))),

Lce = −
1

B

B∑
b=1

∑
k

ŷTbk(t) log y
T
bk(t).

(1)

ŷTbk(t) is the soft predication of the teacher model of class
k ∈ K, and yTbk(t) is the prediction of the student model.

During this process, the accumulation of erroneous
pseudo-labels can severely disturb the model’s predictive per-
formance. This work focuses on pseudo-labeling using cross-
entropy loss with a confidence threshold. Instead of simply
presenting a constant hyperparameter and treating all classes
equally, we advocate that the key to determining thresholds
is that thresholds should reflect the test learning status. Thus,
we present self-adaptive thresholding that automatically de-
fines and adaptively adjusts the confidence threshold for each
class by leveraging the current predictions during test-time
training.

The global threshold should represent the model’s confi-
dence in the test data, reflecting the overall learning status.
We set the global threshold τt as the average confidence from
the model on test data, and estimate the global confidence
as the exponential moving average (EMA) at each time step,
where t represents the t-th time step. The global threshold τt
is defined and adjusted as:

τt =
1

B

B∑
b=1

max(ŷTb (t)). (2)

In addition to the global threshold, the local threshold is
utilized to modulate the global threshold in a class-specific
fashion to account for the intra-class diversity and the pos-
sible class adjacency. We compute the expectation of the
model’s predictions on each class k to estimate the class-
specific learning status:

pt(k) =
1

B

B∑
b=1

ŷTbk(t). (3)
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After integrating the global and local thresholds, we can ob-
tain the final self-adaptive threshold of each class k.

τt(k) =
pt(k)

max{pt(k) : k ∈ [K]}
τt. (4)

Finally, we adopt the self-adaptive threshold to select reliable
samples for supervision, and the training objective of Eq. 1
can be denoted as follows:

Lsat = −
1

B

B∑
b=1

1(max(ŷTb (t)) > τt(argmax ŷTb (t)))

·
∑
k

ŷTbk(t) log y
T
bk(t).

(5)

3.3 Soft-weighted Contrastive Learning
Such pseudo-labels can be further utilized to promise the
model more substantial representation power, while previ-
ous methods have not achieved it. Under the context of con-
trastive learning, in particular, these semantic class structures
can give helpful guidance in selecting contrastive pairs with
similar semantics to improve training efficiency. Specifically,
the similarity of the samples b and q can be calculated with
cosine similarity using pseudo-labels.

wb,q(t) =
ŷTb (t)(ŷ

T
q (t))

>

max(w(t))
. (6)

We adopt the weighted similarity matrix wt to guide the tra-
ditional contrastive loss, which can be written as follows:

Lswc(xTb (t)) = − log
exp(zTb (t) · z̃Tb (t))∑

q∈Nneg(b)
exp(zTb (t) · zTq (t))

,

− log

∑
q∈Npos(b)

wb,q(t) exp(z
T
b (t) · zTq (t))∑

q∈Nneg(b)
exp(zTb (t) · zTq (t))

,

(7)

where zTb (t) = Fθ(x
T
b (t)). We then introduce the compo-

nents of the objective in detail.
Fourier Augmentation. Some work [Xu et al., 2021;

Lu et al., 2022] have demonstrated that Fourier phase in-
formation contained high-level semantics and was not eas-
ily affected by domain shifts, which may be a kind of uni-
versal domain-invariant features. Thus, we introduce the
Fourier transform as a new augmentation and attempt to learn
domain-invariant representations. The Fourier transformation
FFT(x) for a single-channel two-dimensional data x is formu-
lated as:

FFT(x)(u, v) =
H−1∑
h=0

W−1∑
w=0

x(h,w)e−2πj(
h
H u+

w
W v), (8)

where u and v are indices, H and W are the height and the
width, respectively. For data xTb (t) with several channels, the
Fourier transformation for each channel is computed indepen-
dently to obtain the corresponding phase information x̃Tb (t).

z̃Tb (t) = Fθ(x̃
T
b (t)). (9)

Positives. Except for introducing Fourier transform as a
positive sample, we attempt to present more positive samples

by utilizing the correlation between samples during the in-
stantaneous learning process. According to the pseudo-labels
output by the teacher model, we select reliable samples of
the same class with b as the positive sample set through the
learned threshold.

Npos(b) = {q|q ∈ B,max(ŷTq (t)) > τt(argmax ŷTq (t)),

argmax ŷTq (t) = argmax ŷTb (t)}.
(10)

Negtatives. The traditional contrastive loss strives to max-
imize the cosine distances between b and every q in the batch.
Instead, we argue that not pushing away same-class pairs
helps learn better semantically meaningful clusters. Specif-
ically, we adopt the labels to exclude same-class pairs from
all negative pairs:

Nneg(b) = {q|q ∈ B, argmax ŷTq (t) 6= argmax ŷTb (t)}.
(11)

The objective of the contrastive loss can be written as:

Lswc =
1

B

B∑
b=1

Lswc(xTb (t)). (12)

Similar to [Wang et al., 2022], we also use the data aug-
mentation strategy to refine the pseudo-label learning pro-
cess. Specifically, we combine the original images with its
N augmented images into a batch and send it to the stu-
dent network. Large batch size is conducive to the update
of the batch normalization layer and the convergence of the
network, especially for the student model in an online up-
date fashion. We use the average predictions for all aug-
mented samples as the pseudo-labels to supervise the learn-
ing process of the student model. After the update of stu-
dent model (θt → θt+1). The teacher model is updated
by exponential moving average [Polyak and Juditsky, 1992;
Tarvainen and Valpola, 2017] using the weights of the student
model:

θ̂t+1 = αθ̂t + (1− α)θ̂t+1, (13)
where α represents the smoothing factor.

3.4 Soft Weight Alignment
With the help of the pseudo-labels, the pre-trained model can
quickly adapt to the target domain and make a more accurate
prediction of the target data. However, due to the difference
in the data distribution of the source and target domains, there
are noisy pseudo-labels in the adaptation process, which leads
to instantaneous negative learning. Furthermore, as the model
continually adapts to the target domain with changing distri-
butions, the instantaneous errors accumulate, and the knowl-
edge from the pre-trained model is constantly forgotten. For
example, the model may not recover after encountering some
hard samples, which is detrimental to the test of subsequent
data, even if the latter data is not severely shifted. To slow
down the accumulation of errors and combat knowledge for-
getting, we propose a Soft Weight Alignment (SWA) strat-
egy, which continuously distills knowledge from the source
pre-trained model.

Given a pre-trained model Fθ and its two derivative mod-
els: anchor model Fθa and student model Fθt , and both Fθt

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1652



and Fθa are initialized by Fθ. In the continual test-time do-
main adaptation process, the parameters of the anchor model
are fixed, and the parameters of the student network are con-
stantly updated. In fact, the anchor model Fθa is the pre-
trained model Fθ0 at time t = 0. To maintain the knowledge
gained from the pre-training model, we soft-align the param-
eters of the student network Fθt and the anchor network Fθa :

Lswa =
∑
l

1[l /∈ BN] ·
∥∥θla − θlt∥∥22 , (14)

where θla and θlt are parameters of anchor model Fθa and stu-
dent model Fθt at layer l, respectively. BN represents the
Batch Normalization (BN) layer. SWA forces the parame-
ters of the student model to be soft consistent with those of
the anchor model, thereby enhancing the anti-forgetting abil-
ity of the student model. Specifically, the indicator function
l /∈ BN equals 1 if layer l of the anchor or student network is
not the BN layer, and 0 otherwise.

Therefore, we use SWA to constrain the update of the stu-
dent network. The total loss function LT can be formulated
as follows:

LT = Lsat + λ1Lswc + λ2Lswa, (15)

where β1 and β2 are the balance hyper-parameters of the total
loss function.

4 Experiments
In this section, we review the proposed method on sev-
eral benchmark tasks: CIFAR10-to-CIFAR10C (Standard
and Gradual), CIFAR100-to-CIFAR100C, and ImageNet-
to-ImageNet-C. We first introduce several commonly used
datasets and our method’s implementation details; then, we
present several commonly used comparison methods; finally,
we report and analyze the results to validate the effectiveness
of our approach.

4.1 Datasets
We use CIFAR10, CIFAR100, and ImageNet as the
source domain datasets, and CIFAR10C, CIFAR100C, and
ImageNet-C as the corresponding target domain datasets, re-
spectively. The target domain datasets were originally cre-
ated to evaluate the robustness of classification networks
[Hendrycks and Dietterich, 2019]. Each target domain
dataset contains 15 types of corruption with 5 levels of sever-
ity. Following [Wang et al., 2022], for each corruption,
we use 10000 images for both CIFAR10C and CIFAR100C
datasets and use 5000 images for ImageNet-C.

4.2 Implementation Detail
Following [Wang et al., 2022], the corrupted images are pro-
vided to the network online, which means these images can
be used to update the model only once in the adaptation pro-
cess. In addition, different from traditional test-time adap-
tation methods, which adapt to each corruption type data
individually, we adjust the source model to each corrup-
tion type sequentially. We evaluate the adaptation perfor-
mance immediately after encountering each corruption type
data. The total type of corruption is set as 15, and the

corruption level is set to the highest level of 5 (except for
the gradual experiments on CIFAR10-to-CIFAR10C). For
CIFAR10-to-CIFAR10C, we use a pre-trained WideResNet-
28 [Zagoruyko and Komodakis, 2016] model from the Ro-
bustBench benchmark[Croce et al., 2020]. We use Adam to
optimize the network and set the learning rate to 1e-3. The
data augmentation strategy is the same as [Wang et al., 2022],
including color jitter, gaussian blur, gaussian noise, random
affine, and random horizontal flip, N = 8. CIFAR100-to-
CIFAR100C, we use a pre-trained ResNeXt-29 [Xie et al.,
2017] from [Hendrycks et al., 2019], N = 4. For ImageNet-
to-ImageNet-C, we use the standard pre-trained ResNet-50
from RobustBench [Croce et al., 2020], N = 4. The experi-
ments on ImageNet-to-ImageNet-C are performed under ten
diverse corruption orders. The smoothing factor α is set as
0.99.

4.3 Baselines
We compare our method with several state-of-the-art contin-
ual test-time adaptation algorithms, the details of these meth-
ods are as follows: 1) Source: It directly uses the pre-trained
model for adaptation without any specific method for domain
adaptation; 2) BN Stats Adapt: Batch Normalization Statis-
tics Adaptation method keeps the pre-trained model weights
and uses the Batch Normalization statistics from the input
data of the input batch for the prediction [Li et al., 2016;
Schneider et al., 2020]; 3) Pseudo-Label [Lee and others,
2013]: This method picks up the class which has the maxi-
mum predicted probability as the pseudo-labels to update the
model; 4) TENT [Wang et al., 2020]: Test entropy mini-
mization, a test-time entropy minimization scheme to reduce
generalization error by reducing the entropy of model predic-
tions on test data; 5) TENT-continual is a continual learning
version of TENT; 6) CoTTA [Wang et al., 2022]: Contin-
ual Test-Time Adaptation, which reduces the error accumu-
lation by using weight-averaged and augmentation-averaged
predictions and avoids catastrophic forgetting by stochasti-
cally restoring a small part of the source pre-trained weights.

4.4 CIFAR10-to-CIFAR10C
Performance Evaluation. Table 1 shows the classifica-
tion error rate for the standard CIFAR10-to-CIFAR10 task.
Source method shows the highest average error rate. It de-
pends mainly on the distance between the current corruption-
type data distribution and the source domain distribution.
BN Stats Adapt method is simple and effective, dramati-
cally reducing the evaluation error compared with the Source
method. Compared with BN Stats Adapt and Pseudo-Label,
the performance of TENT-continual is not improved or even
decreased. It is mentioned that TENT-continual outperforms
the BN Stats Adapt in earlier stages of the adaptation. How-
ever, after adapting to several types of corruption, the per-
formance of TENT-continual decreases rapidly. This shows
that the TENT-continual can not deal with the error accumula-
tion or forgetting problem in continuous adaptation, and may
be unstable under long-term continuous adaptation. CoTTA
takes the error accumulation into account to further improve
the performance. Our method achieves the best results in
the average error value and most of the corruption-type data.
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Source 72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.5 30.3 43.5
BN Stats Adapt 28.1 26.1 36.3 12.8 35.3 14.2 12.1 17.3 17.4 15.3 8.4 12.6 23.8 19.7 27.3 20.4
Pseudo-Label 26.7 22.1 32.0 13.8 32.2 15.3 12.7 17.3 17.3 16.5 10.1 13.4 22.4 18.9 25.9 19.8
TENT-continual [Wang et al., 2020] 24.8 20.5 28.5 14.5 31.7 16.2 15.0 19.2 17.6 17.4 11.4 16.3 24.9 21.6 26.0 20.4
CoTTA [Wang et al., 2022] 24.6 21.9 26.5 11.9 27.8 12.4 10.6 15.2 14.4 12.8 7.4 11.1 18.7 13.6 17.8 16.5

Ours 23.9 20.5 24.5 11.2 26.3 11.8 10.1 14.0 12.7 11.5 7.6 9.5 17.6 12.0 15.8 15.2

Table 1: Classification error rate (%) for the standard CIFAR10-to-CIFAR10C continual test-time adaptation task. All results are evaluated
with the largest corruption severity level 5 in an online fashion. Bold text indicates the best performance.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Method

G
au

ss
ia

n

sh
ot

im
pu

ls
e

de
fo

cu
s

gl
as

s

m
ot

io
n

zo
om

sn
ow

fr
os

t

fo
g

br
ig

ht
ne

ss

co
nt

ra
st

el
as

tic
tra

ns

pi
xe

la
te

jp
eg Mean

baseline 27.3 23.9 32.1 12.7 30.2 14.1 12.3 17.4 17.0 15.5 9.5 15.0 20.4 15.9 20.9 19.0
+AugTeach 25.6 22.5 27.8 12.6 29.5 14.3 12.5 17.3 16.7 15.4 9.5 15.1 20.9 15.9 19.7 18.4
+AugTeach+SAT 24.5 20.5 25.2 12.0 26.8 13.1 11.5 16.0 14.6 13.2 8.3 11.8 19.3 14.1 16.4 16.5
+AugTeach+SAT+SWC w/o FFT 24.4 20.4 25.2 11.4 26.0 12.5 10.8 15.2 13.6 12.7 8.1 11.4 18.5 13.5 16.0 15.9
+AugTeach+SAT+SWC 23.5 20.5 24.4 11.2 26.2 12.1 10.3 14.3 13.1 12.0 7.5 9.3 17.9 12.9 16.3 15.4
+AugTeach+SAT+SWC+SWA 23.9 20.5 24.5 11.2 26.3 11.8 10.1 14.0 12.7 11.5 7.6 9.3 17.6 12.0 15.8 15.2

Table 2: Ablation experiments for the CIFAR10-to-CIFAR10C task. ‘AugTeach’ means the pseudo-labels are generated by the teacher
model. ‘STA’ means the self-weighted thresholding cross-entropy loss. ‘SWC’ means Soft-weighted contrastive learning, and ‘SWA’ means
Soft Weight Alignment strategy.

Avg. Error (%) Source BN Adapt TENT-continual [Wang et al., 2020] CoTTA [Wang et al., 2022] Ours
CIFAR10C 24.8 13.7 29.2 10.4 ± 0.3 8.0 ± 0.5

Table 3: Gradually changing setup results on CIFAR10-to-CIFAR10C. The severity level changes gradually between the lowest and the
highest. Results are the mean over ten diverse corruption-type sequences. Bold text indicates the best performance.

Compared with the strongest baseline CoTTA, the average er-
ror value of our method is reduced from 16.5% to 15.2%.

Ablation Studies. In addition, we also conducted ablation
experiments to prove the effectiveness of each module of our
method. The results are shown in Table 2. All modules we
propose are helpful for performance gains.

Following [Wang et al., 2022], baseline is a combination
of BN Stats Adapt and Pseudo-Label. Then we add the
‘AugTeach’ strategy to the baseline model, and the average
error value dropped from 19.0% to 18.4%. Further, the addi-
tion of the ‘STA’ strategy reduced the model’s average error
rate from 18.4% to 16.5%, and ‘SWC’ loss further reduces
the average error to 15.5%. It is worth mentioning that after
adding FFT augmentations, the test model achieved better re-
sults. Next, the addition of ‘SWA’ has led to an increase in
overall performance and a significant reduction in the error
of subsequent adaptations. Inevitably, adding this additional
constraint will slow down the adaptation, for example, the
addition of ‘SWA’ makes the performance of the first three
corrupted data worse than not adding. Finally, We randomly
selected a batch of data in the middle and late stages, and the
visualization results are shown in Fig. 3. The results demon-
strate that the proposed label selection strategy is effective for
instantaneous parameter learning.

(a) CIFAR10-to-CIFAR10C (b) CIFAR100-to-CIFAR100C

Figure 2: The influence of λ1 and λ2

Parameters Analysis. We also investigate the parameter
sensitivity in the proposed method. Fig. 2 represents the
change of accuracies with different loss weights, which
indicates that our method is insensitive to the parameters λ1
and λ2 in the range of [0.1,2]. Gradually Changing Setup.
Following [Wang et al., 2022], we also consider a gradually
changing setup. For the standard setup, corruption types
change abruptly in the highest severity. For the gradually
changing setup, the corruption types change is gradual.
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Source 73.0 68.0 39.4 29.3 54.1 30.8 28.8 39.5 45.8 50.3 29.5 55.1 37.2 74.7 41.2 46.4
BN Stats Adapt 42.1 40.7 42.7 27.6 41.9 29.7 27.9 34.9 35.0 41.5 26.5 30.3 35.7 32.9 41.2 35.4
Pseudo-Label 38.1 36.1 40.7 33.2 45.9 38.3 36.4 44.0 45.6 52.8 45.2 53.5 60.1 58.1 64.5 46.2
TENT-continual [Wang et al., 2020] 37.2 35.8 41.7 37.7 50.9 48.5 48.5 58.2 63.2 71.4 72.0 83.1 88.6 91.6 95.1 61.6
CoTTA [Wang et al., 2022] 40.1 37.7 39.7 26.8 38.0 27.9 26.5 32.9 31.7 40.4 24.6 26.8 32.5 28.1 33.8 32.5

Ours 39.4 36.4 37.4 25.0 36.0 26.6 25.0 29.1 28.4 35.0 23.5 25.1 28.5 25.8 29.6 30.0

Table 4: Classification error rate (%) for the standard CIFAR100-to-CIFAR100C continual test-time adaptation task. All results are evaluated
with the largest corruption severity level 5 in an online fashion. Bold text indicates the best performance.

Avg. Error (%) Source BN Adapt TENT [Wang et al., 2020] CoTTA [Wang et al., 2022] Ours
ImageNet-C 82.4 72.1 66.5 63.0 ± 2.3 62.1 ± 2.3

Table 5: Average error of standard ImageNet-to-ImageNet-C experiments over 10 diverse corruption sequences. All results are evaluated
with the largest corruption severity level 5 in an online fashion.

Figure 3: Visualization of the discriminative capability of the sample
features on CIFAR10C. Colors represent sample classes.

Specifically, the change process can be expressed as follows:
. . .2−→1︸ ︷︷ ︸

t-1 and before

change−−−−→
type

1−→2−→3−→4−→5−→4−→3−→2−→1︸ ︷︷ ︸
corruption type t, gradually changing severity

change−−−−→
type

1−→2. . .︸ ︷︷ ︸
t+1 and after

, where the number represents the corruption severity. The
corruption type changes when the severity level is the lowest.
In addition, the severity level changes within each type are
also gradual.

4.5 CIFAR100-to-CIFAR100C
As shown in Table 4, TENT-continual shows the highest av-
erage error rate, and its performance is even worse than the
Source model of doing nothing. Pseudo-Label also offers a
similar performance degradation curve. In the early stage of
adaptation, the performance of Pseudo-Label is better than
BN stats adapt and Source, but lower than these two meth-
ods in the later stage. This phenomenon is also caused by
error accumulation. CoTTA considers the problem of error
accumulation and reduces the error to 32.5%. Further, we
propose a self-adaptive threshold loss to mitigate the instan-

taneous impact of noisy pseudo-labels on optimization ob-
jective, and offer a SWA strategy to alleviate the long-term
knowledge forgetting problem in continuous adaptation. The
performance of our method is better than CoTTA on all cor-
ruption types of data, and the average error value is reduced
to 30.0%.

4.6 ImageNet-to-ImageNet-C
We also make experiments on ImageNet dataset. Following
[Wang et al., 2022], we conduct ImageNet-to-ImageNet-C
experiments over ten diverse corruption type sequences in
severity level 5. The average result of ten experiments is
shown in Table 5. ImageNet is more complex than CIFAR-
100 and CIFAR-10, and the overall average test error is also
greater. Our method outperforms other competing methods
and reduces the average test error to 62.1%.

5 Conclusion
In this paper, we propose a simple yet effective frame-
work for continual test-time domain adaptation, which re-
fines the pseudo-label learning process from the perspec-
tive of the instantaneous and long-term impact of noisy
pseudo-labels. Firstly, we propose a self-adaptive thresh-
olding Cross-Entropy loss to optimize the adaptation pro-
cess, which facilitates learning the adapted model. Secondly,
the learned thresholds and pseudo-labels are utilized to se-
lect more discriminative positive and precise negative pairs
for contrastive learning. Finally, we propose a Soft Weight
Alignment strategy to normalize the distance between the
parameters of the adapted model and the source pre-trained
model, which improves the classification accuracy in the late
stage of adaptation. Extensive experimental results demon-
strate that our method achieves state-of-the-art performance
on various benchmark datasets.
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