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Abstract
The key to video action detection lies in the under-
standing of interaction between persons and back-
ground objects in a video. Current methods usu-
ally employ object detectors to extract objects di-
rectly or use grid features to represent objects in
the environment, which underestimate the great po-
tential of multi-scale context information (e.g., ob-
jects and scenes of different sizes). How to exactly
represent the multi-scale context and make full uti-
lization of it still remains an unresolved challenge
for spatial-temporal action localization. In this pa-
per, we propose a novel Actor-Multi-Scale Con-
text Bidirectional Higher Order Interactive Rela-
tion Network (AMCRNet) that extracts multi-scale
context through multiple pooling layers with dif-
ferent sizes. Specifically, we develop an Interactive
Relation Extraction Module to model the higher-
order relation between the target person and the
context (e.g., other persons and objects). Along this
line, we further propose a History Feature Bank and
Interaction Module to achieve better performance
by modeling such relation across continuing video
clips. Extensive experimental results on AVA2.2
and UCF101-24 demonstrate the superiority and ra-
tionality of our proposed AMCRNet.

1 Introduction
Video action detection needs to locate each actor in a video
and classify its action. It not only requires spatial-temporal
features of the actor across the context before and after the
keyframe, but also needs to make predictions based on other
people, objects and scenes in the background. As Figure 1
(a) shows, the objects that the actor interacted with in differ-
ent actions have different scales. Thus, comprehensive con-
text including other persons and objects of different scales
in the background as well as the background scene should
be considered when detecting a person’s action. We call the
background information the multi-scale context, which was
extracted by multiple pooling layers of different scales. The
heat map visualization in Figure 1 (a) demonstrates that our
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(a) Multi-scale context

(b) Background information extraction method

Figure 1: Visualization of multi-scale context and comparison of
different background extraction methods. In (a), the top row repre-
sents the background object interacting with the subject person. The
heat map in the bottom row shows the sensitivity of interaction with
the subject person. In (b), we compare background information ex-
tracted by AIA (left), ACAR (middle) and our AMCRNet (right).

AMCRNet can recognize the interaction between the subject
and cellphone, person, bench and door in the background ac-
curately, where each background objects have different sizes.

There are two methods to extract background objects, but
both have the potential of missing background information.
Figure 1 (b) demonstrates the output using a detector, grid
feature and our method from left to right. The result of AIA
[Tang et al., 2020] represents the methods with a detector.
Although it can accurately detect background information, it
can only detect vases, while missing the wall lamp and the
door due to the limitation of classification labels during train-
ing. ACAR [Pan et al., 2021] can extract background object
information from grid feature, but the area covered by the grid
is very small, which can neither represent large objects such
as door or scene information, nor small or medium objects
such as vase and wall lamp. Thus, in order to extract back-
ground objects with different sizes, AMCRNet uses various-
sized pooling layers to extract different-sized background ob-
jects. For example, a 3 × 3 pooling layer can extract the vase,
a 5 × 5 pooling layer can extract the wall lamp, and a 7 × 7
pooling layer can extract the door.
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Despite the outstanding progress of recent interactive
relation-based models, most of them have two limitations:
(1) Background information leakage. [Sun et al., 2018;
Pan et al., 2021; Girdhar et al., 2019; Zhao et al., 2022;
Feng et al., 2021] use various methods to model the interac-
tive relation between actor feature and grid feature to gener-
ate actor-context relation. Due to the limited coverage area of
single grid feature, a large amount of background information
is lost, especially the information on medium and large-scale
objects and scenes. LFB[Wu et al., 2019] does not consider
background information. AIA relays on a pre-trained object
detector to discover background objects as context. Since
spatial-temporal action localization datasets generally do not
provide bounding-box annotations of objects, the pre-trained
object detector may easily miss various background objects.
(2) Failing to construct complete information about an actor
in a long video. Both LFB and AIA directly model the cur-
rent actor feature and the history actor feature, ignoring the
interaction information between actor and the context. ACAR
[Pan et al., 2021] misses the interaction between person in the
current video clip. TubeR misses movement information in
history video clips. We consider both movement information
of actor and actor-context interaction in current and history
video clips important while detecting current action.

To solve the above problems, we propose our action de-
tection method based on extracting a higher-order interactive
relation between actor and multi-scale context. The two ma-
jor components are 1) Interactive Relation Extraction Mod-
ule; and 2) History Feature Bank and Interaction Module,
which are responsible for modeling the interaction between
actor and multi-scale context in the current video clip and the
interactive relationship between actors in current video clip
and actors in historical video clip respectively. Bidirectional
Higher Order Interactive Relation Extraction (BHOI) Module
is the core of Interactive Relation Extraction Module and is
composed of multiple multi-head self-attention (MHSA) lay-
ers, which can model the interaction between actor and multi-
scale context, and provide enough information for action de-
tection. In order to extract comprehensive background infor-
mation, multi-scale context represents persons, objects and
scenes extracted by pooling layers of various scales. There-
fore, the performance of our method would not be limited
by object detector and our method can be easily migrated to
other scenarios. History Feature Bank and Interaction Mod-
ule are designed for storing interactive feature from BHOI
and movement feature from ROIAlign [Ren et al., 2015] as
same as [Gu et al., 2018]. Thus, we can model the interaction
between features from viewed videos and current features to
achieve long-term interaction for each actor.

We experiment with our method on AVA2.2 and UCF101-
24 [Soomro et al., 2012]. Compared to the baseline, our
method increases the mAP by 4.0%. In addition, the visu-
alization for the case study demonstrates that our proposed
method could pay more attention to useful context.

The main contributions can be summarized as follows:

• We observe the great potential of multi-scale context in-
formation, and propose a novel AMCRNet to represent
it for better spatial-temporal action localization.

• We develop an Interactive Relation Extraction Module to
model the higher-order relation between the target per-
son and the context.

• We design a History Feature Bank and Interaction Mod-
ule to model the higher-order relation across continuing
video clips.

• Extensive experiments demonstrate the superiority and
rationality of our proposed method.

2 Related Work
2.1 Action Classification
With the successful accomplishments of deep learning, deep
networks have achieved impressive performance in various
computer vision tasks, such as video classification [Wang et
al., 2020], sentiment analysis [Ruan et al., 2021a] and image
synthesis [Ruan et al., 2021b]. Action Classification algo-
rithms try to extract video features containing motion infor-
mation. Earlier algorithms [Lin et al., 2018; Karpathy et
al., 2014; Donahue et al., 2015; Yue-Hei Ng et al., 2015;
Shi et al., 2015] used 2D classification network to extract
semantic features from each frame, then merged image fea-
tures to video features by clustering, pooling or recurrent
neural network (RNN). [Simonyan and Zisserman, 2014;
Feichtenhofer et al., 2016] adopted a two-stream architecture
process spatial semantic and temporal optical flow separately,
then fused them together as the overall video feature to get a
decent result. [Zolfaghari et al., 2018; Tran et al., 2019;
Feichtenhofer, 2020; Feichtenhofer et al., 2019] 3D convolu-
tion layer takes advantage of temporal receptive field, which
helps the model learn from motions. It performs well under
replicating weights of 2D classification networks as well as
pretraining on large-scale video datasets. [Yan et al., 2022;
Bertasius et al., 2021; Liu et al., 2022; Fan et al., 2021] could
learn from long-term dependencies, and help model the over-
all temporal feature, which makes transformer-based meth-
ods take the lead comparing to 3D convolution methods when
classifying an action video.

2.2 Action Detection
Earlier methods [Gu et al., 2018; Girdhar et al., 2018] are
directly based on Faster RCNN [Ren et al., 2015] struc-
ture, which utilized ROIAlign to get the temporal feature
for each person. Since the actual perception field is rather
limited, actor features extracted from ROIAlign might miss
the perception and connection to persons and objects in the
background. ACRN [Schumann and Stiefelhagen, 2017] sug-
gested concatenating actor feature and the whole video fea-
ture together to generate the relationship between actor and
each background object, while Video Action Transformer
leveraged cross attention to generate the relation. [Zhang
et al., 2019] proposed to model actor-actor relation and actor-
context relation separately using two independent networks.
[Pan et al., 2021; Feng et al., 2021] constructed one or-
der actor-context interaction first as in ACRN. Then adopted
Non-Local [Wang et al., 2018] or transformer [Vaswani et
al., 2017] to form the higher order actor-context-actor rela-
tion. AIA piled up multiple cross attention block to model
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Figure 2: Overall framework of AMCRNet.

actor-actor, actor-context and actor-history actor interactions.
ORBNet [Herzig et al., 2022] constructed actor-context in-
teraction on each multi-head attention block and outperforms
the baseline model. [Arnab et al., 2021; Li et al., 2022;
Wu et al., 2022] used the transformer structure to extract
video features, and automatically generated the high-order re-
lationship between actor and background context, since each
position has the global perception of the spatial and temporal
dimension. Self-supervised learning-based methods such as
[Wei et al., 2022; Tong et al., 2022] achieved the best result.
TuBeR utilized tublet query regression to get actor position
and form accurate cuboids, then further extracted motion in-
formation for each person based on cuboids. LFB proposed
to store actor features to gain support from a longer context.
The non-local mechanism was used to model the relation be-
tween persons in the current video clip and persons in the
past video clips. [Zhao et al., 2022] directly adopted cross-
attention layer to do computation on the background features
in the current video clip and past clips to fertilize the current
background feature. Memvit [Wu et al., 2022] stored the key
and value matrix in the attention layer, so the perception of
history information could be reached.

3 Method
In this section, we provide detailed descriptions of our pro-
posed AMCRNet. AMCRNet aims at effectively modeling
bidirectional higher-order relations between actor and multi-
scale context for achieving more accurate action localization.

3.1 Overall Structure
Figure 2 demonstrates the overall structure of AMCRNet.
Similar to the most advanced action detection algorithm, AM-
CRNet is built on top of an actor detection network and a
video feature extraction network. Interactive Relation Extrac-
tion Module is the core component, which establishes inter-
action between actor and context in longer videos to provide
rich information that can be used to support action detection.

A uniformly sampled frame sequence within 2 seconds
range of a keyframe from a video clip is used as the input.
The frame sequence(input frames) is sent through a video
feature extraction network (BackboneNet) to extract spatial

Figure 3: Architecture of PosNet.

and temporal video feature, the equation follows:

X slow,X fast = BackboneNet(input frames), (1)

where X slow ∈ RC×T 1×H×W and X fast ∈
RC×T 2×H×W denote the video features.

The dimension of a video feature is C×T×H×W, which
represents channel, time, height and width respectively. Then
we convert X slow,X fast to X1 ∈ RC×H×W,

Meanwhile, the person detector would detect N person on
the keyframe. While extracting movement information, we
use ROIAlign to get a fixed-sized (8 × 8) actor feature from
the video feature and then finalize the actor feature A ∈ RC

by average pooling on space. As Figure 2 shows, the dot-
ted red box represents Interactive Relation Extraction Mod-
ule, which takes video feature X1 and actor feature A as the
input, and outputs an action label for each person by extract-
ing the relation between actor and multi-scale context.

3.2 Interactive Relation Extraction Module
Interactive Relation Extraction Module is used to model the
interaction between actor and multi-scale contexts such as
other persons, objects and scenes in the background, so it can
provide global information that action prediction needs. As
shown in Figure 2, it has three components: Position Embed-
ding Network (PosNet), Multi-Scale Context Module (Con-
text Module) and Bidirectional Higher Order Interactive In-
teraction Module (BHOI Submodule).
PosNet. [Islam et al., 2020] exposed that padding operation
during convolution helps the network learn positional infor-
mation. Transformer Network such as [Chu et al., 2021;
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Yuan et al., 2021] makes use of this to learn the hidden posi-
tional embedding. However, we discover that a single convo-
lution layer cannot form a global perception field nor transfer
padding signal to all positions due to its limited perception
field, which generates inaccurate positional embedding. [Is-
lam et al., 2020] also proved that later modules and deeper
layers in a network predict more accurate positional embed-
ding. Thus, we construct a lightweight positional embedding
network in which the perception field covers input size by
stacking multiple narrow (channel size of 2) convolution lay-
ers. As shown in Figure 3, PosNet consists of multiple di-
lated blocks that increase perception filed size. When gen-
erating positional embedding, we first randomly initialize a
tensor Input pos ∈ R1×1×H×W which has the same scale
as the video feature, then pass it to PosNet for the positional
embedding of the whole video feature:

Pos = PosNet(Input pos), (2)

where Pos ∈ R1×C×H×W denotes the positional embedding
of video feature.

The theoretical perception field size of the output layer is
greater than the size of the input tensor, so the embedding of
each position can represent the relevant position of video fea-
ture. ROIAlign uses average pooling (AvgPooling) to ex-
tract positional embedding for actor based on its detection
bound box (Box) by the following equation:

Pos person = AvgPooling(ROIAlign(Pos,Box)), (3)

where Pos person ∈ RC is the positional embedding for the
actor.
Context Module. We consider that action detection need
support from multi-scale context, such as background ob-
jects of different sizes or background scene.Therefore, we
construct a multi-scale context extraction module to extract
multi-scale context and corresponding positional embedding.
As Figure 2 shows, Context Module is built by a series of
self-adapted pooling layer or convolution layer of different
sizes running in parallel. By inputting video feature and po-
sitional embedding feature into Context Module, multi-scale
context feature and corresponding position embedding can be
obtained as follows:

Context, Pos context = CM(X1, Pos). (4)

where Context ∈ RC , Pos context ∈ RC denote the multi-
scale context feature and the corresponding position embed-
ding, respectively. Here, CM means Contex Module. The
sum of context feature and positional embedding is used as
the input of BHIO Module.
BHOI Module. BHOI Module is formed by stacking mul-
tiple multi-head self-attention (MHSA) layers. We first
construct the input feature by adding the actor feature
and context feature with their corresponding positional em-
bedding: I = {{A1

i + Pos personi}Ni=1, {Contextj +
Pos contextj}Mj=1}, while N is the number of actors and M
is the number of multi-scale contexts. BHOI Submodule is
used to compute the self-attention {Attni,j}N+M

j=1 of each fea-
ture, while Qi, Ki, Vi is generated by passing the input fea-
ture sequence {Ii}N+M

i=1 through a 1 × 1 convolution layer,

Figure 4: Computation graph of attention mask. By adding masks
and attention, the disruption of padded elements can get removed.

and the output Hi of each position is calculated by the sum
of Vj linearly weighted by Attni,j . Thus, the overall bidi-
rectional interaction is constructed with in person, object and
scene, shown by the following equations:

Qi,Ki, Vi = conv2d(Ii),

Attni,j = softmax(
⟨Qi,Ki⟩√

C
),

Hi =

N+M∑
j

Attni,j .

(5)

In order to process multiple videos concurrently, we add a
mask in the multi-head attention. As shown in Figure 4, since
the number of actors is different in each video, the length
of input feature sequence within the same batch for BHOI
Submodule is also different. Thus, all input sequences in the
same batch need to be padded to same length with a mask and
add an infinite constant to the attention correspondingly.

By repeating the above computational process, we man-
aged to construct different levels of bidirectional interaction
between actor features and multi-scale context.

3.3 History Feature Bank and Interaction Module
For the purpose of supporting the modeling of interaction be-
tween actor and multi-scale context on a longer video clip, we
use a History Feature Bank to store higher-order interactive
relation feature and original movement feature for actors in
each video clip, then construct the interaction between actor
and context and the movement information of actor in parallel
during the inference over longer video clip.

History Feature Bank. When training the second stage
AMCRNet to store the history feature, we used two methods
to set up the history feature bank. The first method is simi-
lar to ACAR, which constructs a history feature bank offline.
Then train a full AMCRNet with a history feature bank, the
actor’s high-order interactive relation features and movement
features of 2W (W=7) video clips were extracted from the
feature bank interact with the actor’s current high-order in-
teractive relation features and movement features calculated
by AMCRNet respectively. The second method is similar to
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Model Backbone Pre-train Params(M) mAP (%)

Slowfast R50 [Feichtenhofer et al., 2019] SlowFast R50 8 × 8 Kinetics-400 35 24.8
Mvit-B [Wu et al., 2022] Mvit-B Kinetics-400 53.21 27.5
AIA R50 [Tang et al., 2020] SlowFast R50 4 × 16 + NL Kinetics-700 75.8 29.8
ACAR R50 [Pan et al., 2021] SlowFast R50 8 × 8 Kinetics-400 NA 28.84
ORViT [Herzig et al., 2022] MViT-B 32 × 3 Kinetics-400 NA 28.0
TubeR [Zhao et al., 2022] CSN-50 IG + Kinetics-400 NA 29.2
AMCRNet-slim R50(Ours) SlowFast R50 4 × 16 Kinetics-400 73.4 28.77
AMCRNet R50(Ours) SlowFast R50 4 × 16 Kinetics-400 149 29.17
AMCRNet-slim R50(Ours) SlowFast R50 8 × 8 Kinetics-400 73.2 29.85
AMCRNet R50(Ours) SlowFast R50 8 × 8 Kinetics-400 148 30.23
Slowfast R101 [Feichtenhofer et al., 2019] SlowFast R50 8 × 8 Kinetics-400 65 29.8
AIA R101 [Tang et al., 2020] SlowFast R101 8 × 8 + NL Kinetics-700 104.1 32.26
ACAR R101 [Pan et al., 2021] SlowFast R101 8 × 8 Kinetics-700 NA 33.3
TubeR [Zhao et al., 2022] CSN-152 IG + Kinetics-400 NA 33.6
AMCRNet-slim R101(Ours) SlowFast R101 8 × 8 Kinetics-700 101.7 34.2

Table 1: Comparing to advanced models on AVA2.2.

AIA, which is constructed online. During training, a zero vec-
tor would be used to represent the unprocessed video. The
latest features will be updated to the history feature bank if
it has a lower loss. Although the ways that offline history
feature bank and online history feature bank have been con-
structed are different, the interaction between the history fea-
ture and current feature is the same. Here, we denote the fea-
ture bank that stores both the high-order interaction feature
and movement feature as High Relation-Action Feature Bank
(HR-AFB), and the one only stores the high-order interaction
feature as High Relation Feature Bank (HRFB).

History Feature Interaction. We first take the sum of
high-order interactive feature from current video clip (H),
features from history feature bank (F ), and temporal posi-
tional embedding of video clip (temporal pos) as the input
sequence send into a BHOI Submodule to get the high-order
interactive feature (O) of long video. The equation follows:

Qi,Ki, Vi = conv2d({{H,F}+ temporal pos}i),

Attni,j = softmax(
⟨Qi,Ki⟩√

C
+HMask(i, j)),

Oi =

N+M∑
j

Attni,j .

(6)

Similar to Mask in Figure 4, HMask here is used to mark
the padding of the feature sequence. The movement feature is
computed in a similar fashion, where the current movement
feature (A1) and history movement feature (M ) are used to
get the final movement feature (P ) for the long video.

4 Experiments
AVA is a video dataset of spatial-temporally localized atomic
visual actions, which contains 430 video clips from movies,
with 235 training clips, 64 validation clips and 131 test
clips. Each video clip is within 15 to 30 minutes and labels
were added on each keyframe, which is extracted at 1 frame
per second. Those labels include person bounding box and
80 action labels cover action, person-person interaction and

person-object interaction. Since our method is designed for
action detection, we use the AVA2.2 dataset for ablation ex-
periments and performance comparison. During testing, we
use an IOU threshold greater than or equal to 0.5 to calculate
mAP on 60 action labels as the final performance metric. Our
codes are publicly available online. *.

4.1 Implementation Details
Actor Detector. For the actor detector, we use Faster
RCNN with the same configuration following ACAR-Net,
which is pre-trained on the COCO dataset and fine-tuned on
the AVA dataset. For a fair comparison, we do not use the
latest detector that has better performance.
Backbone Network. SlowFast network is used as the back-
bone for feature extraction, and we use the version pre-trained
on Kinetics-400 in our model. SlowFast takes two video se-
quences of different lengths as the input, and it can effectively
learn temporal information and rich context information.
Training. During training, we use the pre-trained SlowFast
to initialize the backbone, then fine-tune the model on AVA.
For the input image sequence, we scale the shorter side of
input frames to 256 pixels. The training hardware is 2 Tesla
V100, and the training is done under the batch size of 8 (4
sequences on each one) with SGD optimizer. Since the batch
size is small, we freeze the batch normalization layer to en-
sure stability. The base learning rate is 0.02, and we totally
train the model for 10 epochs, while reducing it by 10 times
on the 7th and 9th epoch. To accelerate convergence, we es-
tablished a warm-up schedule [Yue-Hei Ng et al., 2015] for
the first 3 epochs.

4.2 Comparison on AVA
We compare the performance of AMCRNet against advanced
action detection models on the AVA2.2 dataset. For a com-
prehensive comparison, we experiment on various versions of
backbone such as SlowFastR50 and SlowFastR101. As Table
1 shows, our method outperforms advanced detection mod-
els including ACAR-Net, AIA and TubeR. With the support

*https://github.com/manzhihuangnian/AMCRNet

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1680



Model mAP (%)

Baseline 20.6
Baseline+ACRN 21.9
Baseline+AIA 22.77

Baseline+HR2O 23.46
Baseline+BHOI 23.88

(a) Relational modeling methods

Depth mAP (%)

1 21.13
2 22.45
4 22.92
6 23.16
8 23.02

(b) Depth of BHOI module

Context module mAP (%)

w / o pooling layer 23.16
kernel size=3 23.62
kernel size=5 23.65
kernel size=7 23.46

kernel size=3,5,7 23.88

(c) Depth of BHOI module

Spatial pos mAP (%)

w / o pos 23.61
learned fix pos 23.32

sin pos 23.75
posnet(ours) 23.88

(d) Positional embedding

Feature bank mAP (%)

LFB 24.21
ACFB 24.72
HRFB 25.64

HR-PFB 25.85

(e) Feature bank

Training method mAP (%)

Offline 25.62
Online 25.64

(f) Training method of feature bank

Table 2: Ablation study on AVA2.2 dataset.

Model Inputs mAP (%)
AIA [Tang et al., 2020] V 78.8
ACAR [Pan et al., 2021] V 84.3
HIT [Faure et al., 2023] V+P 84.8
Ours V 84.9

Table 3: Comparing to advanced models on UCF101-24.

of 15s video clips before and after the video split, we achieve
34.2 % mAP, which proves that our modeling method with the
BHOI module can extract spatial and temporal context that
action detection needed effectively. Here, AMCRNet-slim
is a slim version that reduces the number of stacked MHSA
from 6 to 4 in the BHOI Submodule and reduces the channel
dilation multiplier on MLP from 4 to 1 in the MHSA module.

4.3 Comparison on UCF101-24
UCF101-24 is another action detection dataset with 3207
videos labeled with 24 different action types. We experi-
ment on the first split and report frame-level mAP with an
IoU threshold of 0.5. Similar to ACAR, we also use Slow-
Fast R50 pre-trained on Kinetics-400 as our backbone, and
the actor detector is the one from [Pan et al., 2021]. During
training, we freeze all batch normalization layers of the back-
bone. We train the models for 10 epochs with a base learning
rate of 0.006, while decreasing it by 10 times at epoch 7 and
9. Also, to accelerate converges, we deploy a linear warm-up
schedule for the first 3 epochs. As Table 3 shows, AMCR-
Net outperforms advanced methods such as AIA or ACAR,
HIT [Faure et al., 2023] which proves that the bidirectional
higher-order interaction is effective when extracting interac-
tion between actor and background environment. Here, V
refers to visual frames and P refers to the pos extracted by
pos estimation network.

4.4 Ablation Experiments on AVA2.2
To explore the effectiveness of each module of AMCRNet,
we perform ablation experiments on AVA2.2. Due to the lim-
itation of training resources, SlowOnly R50 4×16 pre-trained

on Kinetics-400 is used as the backbone. The baseline model
only includes a backbone, a detector and a one-layer classi-
fier. ACFB is the Actor-Context Feature Bank in ACAR-Net,
whereas HR2O is the High-order Relation Reasoning Opera-
tor in ACAR-Net.

Compare relational modeling methods. To prove our
method that model the bidirectional higher-order relation is
effective, we compare against several previous approaches.
Thus, the history feature bank is not included in this specific
experiment. In the comparing methods, ACRN-Net focuses
on learning the interaction between actor and background,
AIA extracts actor-actor and actor-context interaction in se-
rial, and ACAR-Net constructs actor-context-actor interac-
tion using the background information at the same position,
while our method proposes BHOI. BHOI can directly gen-
erate the bidirectional higher-order interaction between per-
sons, objects, and background scenes. From Table 2 (a), we
notice that model using BHOI performs the best. In addition,
AIA outperforms ACRN-Net since it models multiple inter-
actions. Since ACAR-Net includes all background informa-
tion, it performs better than AIA.BHOI outperforms ACAR-
Net with the support of bidirectional higher-order interaction
and multi-scale context.

Compare depth of BHOI module. In Table 2 (b), we
compare the performance change with a different number of
stacks of MHSA module. We notice that, with more MHSA
modules stacked together, the overall performance increase.
While stacking 8 MHSA modules, the accuracy decrease pre-
sumably because of over-fitting. Thus, the default number of
stacks of MHSA is 6.

Compare pooling layer of context module. In Table 2 (c),
we compare the performance on different scales of pooling
layer that is used to extract context information. We discover
that adding a pooling layer would boost the performance re-
gardless of kernel size according to table 1c. Although us-
ing all scales performs the best, to avoid increasing compu-
tational cost too much as a smaller pooling size result in a
longer sequence, the default kernel size of the pooling layer
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Figure 5: Visualization of correlation between actor and the multi-scale context in the AVA2.2 test set. The red bound box marks the actor,
and heat maps represent the level of correlation between the actor and the multi-scale background context.

is 3, 5, and 7. Without using kernel size 1, we reduce the
computation cost of multi-head attention by 6 times.
Compare positional embedding. Since the height and
width of different video varies, the scale of video feature
also varies. Traditional methods that interpolate fixed-sized
positional embedding to different scales would decrease the
performance. We compared it to our positional embedding
method, and Table 2 (d) shows that our method can achieve
higher accuracy, even exceeding the sin pos.
Compare feature bank. We use 2 × W + 1 consecutive
video clips before and after the current one to achieve a 15s
perception field when W is set to 7. We compare our history
feature bank with other feature bank methods. From Table 2
(e), the Baseline gains a small boost with the support of LFB,
as it uses movement information in the feature bank. After re-
placing LFB with ACFB, the one stores interaction between
actor and background, the performance increases. A great
boost to performance happens when using HRFB, but HR-
AFB reaches the best accuracy. It proves that while expand-
ing the perception over the temporal dimension, both higher-
order interaction and movement information is effective.
Training method of feature bank. The cost to construct
an offline history feature bank is expensive since we need to
train twice. Therefore, we compare the performance while
using an online history bank or an offline ban. For the offline
method, an AMCRNet-lite without a feature bank has to be
trained to obtain the history feature, then use the generated
bank to train an AMCR-Net. Since two networks are opti-
mized independently, the performance gain of two phrases
may not be in a linear relationship, which indicates that a

AMCRNet trained with offline history bank is unstable. On-
line history bank updates feature to the bank while training,
which is efficient and achieves end-to-end. From Table 2
(f), we notice that the performance using an online history
bank or an offline bank is similar, so the online history bank
method is used in later experiments.

4.5 Visualization
Since our proposed method makes use of stacked self-
attention in the BHOI module to model the interaction be-
tween the actor and multi-scale context, we can show the at-
tention by visualizing its weight. From Figure 5, odd rows
show the keyframes whereas even row shows the heat map
of attention weight. We discover that the attention is focused
on objects of different scales interacting with actors in each
video. All small objects such as cellphone and paper slip,
median scale objects such as newspaper and laptop as well as
large objects such as horse and door can be covered by atten-
tion. Thus, we prove that AMCRNet can pay attention to the
context of various scale that is related to the actor.

4.6 Discussion
Although AMCR-Net is capable of extracting multi-scale ob-
jects in the background, it may not extract objects with irreg-
ular shapes effectively. As Figure 5 shows, regular shape ob-
jects such as paper slip, laptop or camera box can be extracted
through a single pooling layer, whereas only some partial in-
formation can be extracted from door and guitar. For objects
with unbalanced height and width like guitar, we can only ex-
tract its information by applying a 3×3 pooling layer multiple
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times to avoid introducing useless noise. We will add pool-
ing layers with different scales and different aspect ratios to
cover different shaped objects or use a network to predict the
approximate range of persons and objects of different sizes
and background scene associated with the people.

5 Conclusion
In this paper, we argued that the multi-scale context infor-
mation is quite helpful for spatial-temporal action localiza-
tion. To this end, we proposed a novel Actor-Multi-Scale
Context Bidirectional Higher Order Interactive Relation Net-
work (AMCRNet) to represent and utilize multi-scale con-
text information in a long video. Specifically, we developed
an Interactive Relation Extraction Module to extract bidirec-
tional higher-order relations between target person and other
persons and objects in the context. Along this line, to bet-
ter model such relations and original movement information
across multiple continuing video clips, we further proposed a
History Feature Bank and Interaction Module. Extensive ex-
perimental results demonstrated the superiority and rational-
ity of our proposed AMCRNet. In the future, we will explore
to use deformable convolution or transformer for automati-
cally multi-scale context representation.
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