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Abstract

In the scenario of Model-as-a-Service (MaaS), pre-
trained models are usually released as inference
APIs. Users are allowed to query those models
with manually crafted prompts. Without access-
ing the network structure and gradient informa-
tion, it’s tricky to perform continuous prompt tun-
ing on MaaS, especially for vision-language mod-
els (VLMs) considering cross-modal interaction. In
this paper, we propose a black-box prompt tun-
ing framework for VLMs to learn task-relevant
prompts without back-propagation. In particular,
the vision and language prompts are jointly opti-
mized in the intrinsic parameter subspace with var-
ious evolution strategies. Different prompt variants
are also explored to enhance the cross-model in-
teraction. Experimental results show that our pro-
posed black-box prompt tuning framework outper-
forms both hand-crafted prompt engineering and
gradient-based prompt learning methods, which
serves as evidence of its capability to train task-
relevant prompts in a derivative-free manner.

1 Introduction
With the promise to learn universal cross-model represen-
tations, pre-trained vision-language models (VLMs) have
achieved impressive performance in an extensive range of re-
search fields [Du et al., 2022]. Increased attention has fo-
cused on potential fine-tuning approaches to adapt these mod-
els to downstream tasks (e.g. linear probe [Radford et al.,
2021], adapter tuning [Houlsby et al., 2019] and prompt tun-
ing [Li and Liang, 2021]). However, making VLMs bene-
fit everyone is still challenging. On the one hand, given a
large number of tunable parameters, previous fine-tuning ap-
proaches can be computationally expensive; Moreover, insti-
tutes tend to keep the pre-trained model parameters closed-
source due to commercial considerations such as GPT-3
[Brown et al., 2020]. Since no gradient information is avail-
able, it’s tricky for local users to perform fine-tuning when a
model is deployed as a remote service (MaaS).
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Derivative-free Optimization, also referred as Black-box
Optimization, is a promising way to optimize problems with-
out the availability of gradient [Larson et al., 2019]. Over
the past decades, various methods have been explored, such
as Bayesian Optimization [Shahriari et al., 2015] and Evo-
lution Strategies (ESs) [Loshchilov, 2014]. Particularly, ESs
are widely used in automated machine learning. However,
most ESs suffer from the “high-dimensional” problem and
can only deal with thousands of parameters, which poses a
challenge for black-box optimization over the large-scale pre-
trained models, especially for the VLMs that involves multi-
ple modalities with more parameters.

Recently, [Sun et al., 2022b] provide a solution to per-
form black-box optimization on pre-trained language mod-
els (LMs). Inspired by the low intrinsic dimension of LMs
[Aghajanyan et al., 2021], the authors use projected prompts
to bridge the gap between black-box optimization and fine-
tuning. Whereas, this work is restricted to the single linguistic
modality, and no cross-modal interaction is involved. More-
over, how to effectively find the optimal intrinsic vector in a
multi-modal parameter subspace remains to be studied.

In this paper, we propose a Black-box Prompt Tuning
framework for VLMs (BPT-VLM) to set the stage in the sce-
nario of MaaS. Our framework regards multi-modal prompt
tuning as black-box optimization based on empirically suc-
cessful ESs (e.g. CMA-ES [Hansen and Ostermeier, 2001]).
From the perspective of evolutionary learning, our BPT-VLM
mainly consists of three parts (as shown in Figure 2):

(1) Population: According to the previous finding that
pre-trained models have very low intrinsic dimensions
[Aghajanyan et al., 2021], optimization can actually per-
form on individuals (intrinsic vectors) from a small pa-
rameter subspace. Individuals forming a population can
be further evaluated for distribution updates.

(2) Objective Function: As shown in Figure 1(a), model as
a service is only allowed to perform forward pass, thus
it’s reasonable to define VLM as a black-box objective
function to evaluate the fitness values of individuals;

(3) Optimization Algorithm: With the fitness values of a
population of individuals, an evolution-based optimiza-
tion algorithm updates its multivariate distribution to
produce a higher-quality population in the next gener-
ation (Figure 1(b)).
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Intrinsic vectors participate in VLM’s forward passes as
projected vision and language prompts. Depending on the
length of propagation path, we explore two variants of prompt
tuning for BPT-VLM, namely Shallow Prompt and Deep
Prompt. After generations of black-box optimization, the
multivariate distribution can produce solid intrinsic vectors
with low loss value. In other words, the task-relevant vi-
sion and language prompts are learned in a derivative-free
manner. Compared to [Sun et al., 2022b], BPT-VLM con-
siders both the visual and linguistic modalities in black-box
tuning, and involves cross-modal interaction by optimizing
vision-language prompts in the shared intrinsic subspace. Ex-
perimental results on 9 downstream tasks show that BPT-
VLM not only surpasses the hand-crafted prompts, but also
outperforms the prompts learned by gradient-based methods,
namely Linear Probe [Radford et al., 2021] and CoOp [Zhou
et al., 2022]. The main contributions of our work can be sum-
marized as follows1:

• We propose a novel black-box prompt tuning framework
for VLMs in the scenario of MaaS, which incorporates
cross-modal interaction by sharing the intrinsic parame-
ter subspace of both vision and language modalities and
jointly optimizing the prompts with different modalities
in a derivative-free manner.

• We extend traditional evolution strategies (CMA-ES,
MM-ES, MA-ES) to a new scope of black-box prompt
tuning on VLMs, and explore different prompt tuning
variants (shallow and deep prompt) to further enhance
the cross-modal interaction.

• Extensive experimental results show that prompts op-
timized in multi-modal intrinsic subspace can success-
fully adapt VLM to downstream tasks without accessing
the gradient and model structure, which is more effective
and efficient compared with the baselines.

2 Related Work
2.1 Vision-Language Models
With the success of pre-trained models in the field of CV
and NLP, many works attempted to pre-train large-scale mod-
els on both vision and language modalities, called Vision-
Language Models (VLMs). According to the method of
integrating multi-modal information, researchers categorize
VLMs into fusion encoder-based models and dual encoder-
based models. Fusion encoder-based VLMs feed the text
embedding and image features into a unified Transformer or
dual Transformers to perform further self-attention or cross-
attention, such that information from two modalities could
be integrated. Instead of relying on heavy transformer net-
works to model vision-language interaction, dual encoder-
based VLMs adopt straightforward methods such as shallow
attention layer or dot product to project the image embedding
and text embedding to the same semantic space.

A representative of dual encoder-based VLMs is CLIP,
which trains two single-model encoders using a contrastive
loss to compute similarity scores for matching image-text

1Code is available at https://github.com/BruthYU/BPT-VLM

(a) Gradient-based and Black-box Prompt Tuning

(b) Covariance Matrix Adaptation Evolution Strategy

Figure 1: As shown in (a), black-box prompt tuning aims to optimize
image and text prompts with derivative-free algorithms. The entire
model is regarded as an objective function to evaluate the fitness of
individuals. (b) gives an example of covariance matrix adaptation
evolution, which searches for the minimum value of a binary func-
tion by adjusting the distribution of individuals through generations.

pairs. After pre-training on 400 million data pairs collected
from the Internet, CLIP demonstrates remarkable zero-shot
image recognition capability on downstream tasks.

2.2 Prompt-based Learning
Prompt-based Learning originates from the NLP domain,
which refers to prepend language instructions to the input
text, and therefore reduces the gap between pre-trained LMs
and downstream tasks. For instance, with the manually de-
signed prompt “English: Hello, French: [MASK]”, GPT-3
will output “Bonjour” as the result of a translation task. In
addition to discrete prompts, recent works propose to treat
prompt as continuous vectors and optimize them with gradi-
ent descent (see Figure 1(a)). Furthermore, prompt tuning can
also be applied successfully to other fields: VPT [Jia et al.,
2022] extend prompt tuning to ViT for performance improve-
ment on vision tasks; CoOp [Zhou et al., 2022] introduces
gradient-based prompt tuning to vision-language model.

In contrast to gradient-based learning, [Sun et al., 2022b]
empirically show that black-box tuning is feasible on large-
scale LMs with prompts acting as a bridge, since the intrinsic
dimension (the minimum number of parameters needed to be
optimized) of pre-trained models can be compressed to sev-
eral hundreds [Aghajanyan et al., 2021].

2.3 Black-box Optimization Algorithms
Black-box optimization refers to optimizing the objective
function without knowing the analytic expression and gra-
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Figure 2: Overview of our black-box prompt tuning framework for VLMs. The recent advanced CLIP model is used as a VLM backbone.
Given sampled joint intrinsic vectors (individuals), the matrices WL and WV project [zL∥zV ] into text and image prompts pL and pV .
Through the forward pass of CLIP, these prompts are then evaluated on a downstream few-shot dataset. According to each sampled intrinsic
vector’s fitness value (loss value), the derivative-free algorithms adjust the distribution and reproduce a new generation of individuals.

dient information, which is similar to model fine-tuning in
the scenario of MaaS. Here we mainly review the studies of
Evolution Strategies (ESs) - a class of powerful algorithms
for black-box optimization. CMA-ES [Hansen and Oster-
meier, 2001] is one of the most successful implementations
of evolution strategy, which adapts the covariance matrix to
approximate the shape of function landscape. The adaptation
of CMA-ES aims to increase the probability of reproducing
individuals towards promising search directions.

However, the sampling procedure requires the decomposi-
tion of the covariance matrix, which leads to Θ(n2) time com-
plexity. Researchers have worked to reduce the computation
the simplify the adaptation. MA-ES [Beyer and Sendhoff,
2017] removes the evolution path the simplify the update for
the Cholesky factor; MM-ES [He et al., 2020] applies fast
mixture sampling to approximate the covariance matrix C in
a non-recursive manner. Recent studies also explore limited-
memory evolution strategy for memory efficient optimization
(e.g. LM-MA-ES [Loshchilov et al., 2018]).

3 Approach
This section introduces the details of our proposed BPT-VLM
framework, where the recent advanced model CLIP is used
as the VLM backbone. In particular, given sampled intrinsic
vectors from the shared original parameter space, the projec-
tion matrices transform them into image and text prompts.
Then the CLIP working as a black-box objective function
evaluates the fitness of these intrinsic vectors for ES-based
black-box optimization. Different prompt variants are also

incorporated for enhancing cross-modal interaction. The de-
tails are introduced in the following sections.

3.1 Intrinsic Vector based Population
As discussed by [Li and Liang, 2021] and [Jia et al., 2022],
dozens of prompt tokens are required to be learned for single-
modality Transformers like RoBERTa [2019] and ViT [2020].
Considering the embedding dimension of CLIP (512 for text
encoder and 756 for image encoder), the total parameters of
the continuous prompts P ∈ RD1+D2 need to be optimized
can be tens of thousands, which is challenging for black-box
optimization. While [Aghajanyan et al., 2021] empirically
demonstrates that large-scale LM actually has a very low in-
trinsic dimension, we extend this insight into VLMs to trans-
fer prompt optimization from the original parameter space
into a intrinsic subspace.

In particular, we define the parameter subspace of language
as zL ∈ Rd1 and the visual counterpart as zV ∈ Rd2 .

Z = [zL∥zV ] (1)

with a concatenation operation ∥, the joint intrinsic parame-
ter subspace is denoted as Z ∈ Rd1+d2 . Intrinsic vectors be-
longing to this subspace can be projected to vision-language
prompt tokens pL and pV through randomly initialized matri-
ces WL ∈ Rd1×D1 and WV ∈ Rd2×D2 .

pL = zLWL, pV = zV WV (2)

Note that the weights of WL and WV are fixed through gen-
erations, but directly initializing them with standard uniform
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distribution N (0, 1/d) [Sun et al., 2022a] may result in slow
convergence and inferior performance. Thus, to approximate
the output distribution of dual encoders’ entry embedding and
convolutional layers, we use normal distribution to initialize
WL and WV with means and standard deviations as follows:

µL =
µ̂L

d1 − σ̂L
2 , σL =

σ̂L√
d1 − σ̂L

2

µV =
3k2µ̂V

d2
, σV = σ̂V

√
3k2

d2

(3)

where µ̂L and σ̂L are observed mean and deviation of the
word embedding layer in the text encoder, and µ̂V and σ̂V

are the counterparts of the entry convolutional layer in the
image encoder, which uses 3-channel kernels with the size k.

In this way, we’re able to perform prompt tuning in a much
smaller parameter subspace (d1 + d2 ≪ D1 +D2), and mul-
tiple intrinsic vectors as individuals can form a population for
evolutionary learning.

3.2 Objective Function
In evolution strategies, an objective function is required to
evaluate the fitness of each individual, and knowing its pre-
cise analytic form is unnecessary. In the scenario of MaaS,
it’s reasonable to recognize CLIP as a black-box objective
function, since only forward pass is allowed and thus cannot
compute gradients or the Hessian matrix.

CLIP consists of two Transformer-based encoders - one
image encoder and the other text encoder (shown in Figure
2). Assume that CLIP-like models take a batch of texts xL

and images xV as input, and we recognize the forward pass
as a black-box function f , which outputs the similarity scores
between each image-text pairs. With the output and the labels
Y , we can calculate the cross entropy loss L. Our framework
aims to learn the optimal prompts in a derivative-free manner:{

f(pL, pV ) = CLIP [(pL, xL); (pV , xV )]

P ⋆ = argmin
pL,pV

L[Y ; f(pL, pV )] (4)

where P is the unified formulation of (pL, pV ). The black-
box function f can be evaluated with forward pass, but is not
available to the optimizer in a closed form.

As discussed in 3.1, optimization of vision and language
prompts actually performs in an intrinsic parameter subspace.
Thus the prompt tuning can also be denoted as

Z⋆ = argmin
zL,zV

L[Y ; f(zLWL, zV WV )] (5)

3.3 Black-box Optimization with ES
Optimization in the intrinsic space only requires algorithms
to deal with hundreds of parameters. Thus Evolution Strat-
egy (ES) is a reasonable approach to tackle black-box prompt
tuning. In the t + 1-th iteration of CMA-ES, individuals are
sampled from the following distribution:

Zt+1 ∼ mt + σtN (0, Ct) (6)

where mt is the mean of top-λ out of all individuals evalu-
ated by the objective function L (Equation 5), σt denotes the

mutation step-size. Through generations, the distribution is
adapted by adding a random Gaussian mutation defined by a
covariance matrix Ct.

However, the original CMA-ES performs eigendecomposi-
tion C = AAT with Θ(n2) time complexity to update the co-
variance matrix C, which precludes its application on large-
scale optimization. While Cholesky-CMA-ES samples can-
didate solutions only with the iteratively updated Cholesky
factor Ac:

Zt+1 ∼ mt + σtAt
cN (0, C0) (7)

which simplifies a lot the implementation of the algorithm.
MA-ES further removes the evolution path and simplifies the
update for the Cholesky factor; While MM-ES applies Fast
Mixture Sampling to approximate the covariance matrix C
in a non-recursive manner. The performance comparison of
different black-box optimization is shown in Figure 4.

3.4 Prompt Design
Given the vision-language model CLIP, we introduce contin-
uous prompts pL and pV to transfer pre-trained knowledge
to downstream tasks. However, there are certain differences
between its dual encoders (linguistic Transformer and ViT),
and the prompt can be involved in multiple Transformer lay-
ers. This section explains different prompt designs used in
our framework.

Preliminaries
For the text encoder, each word token in the input sentence
S is first embedded to a dL-dimensional subspace through an
embedding layer as

eL = Embed(S) (8)
where eL ∈ RmL×dL are the embedding features of the text
input padded to a fixed length mL.

On the other hand, for a plain ViT, an input image G will
be first divided into mV patches, each patch is then projected
to a dV -dimensional vector with a convolutional layer

eV = Conv2D(G) (9)
where eV ∈ RmV ×dV are the convolutional features of the
image patches.

Prompt Location
As is widely used and evaluated in previous works [Li and
Liang, 2021], prefix positioning is adopted for the text en-
coder. Text prompt pL is placed before the sentence embed-
ding eL, and the number of tokens in pL is denoted as nL:

IL = [cL, pL, eL] (10)
where cL is the [CLS] token for text inputs, IL ∈
R(1+nL+mL)×dL represents the input features with prompt
for the text encoder.

While for the image encoder (ViT), suffix positioning is
applied to keep the information of pre-trained positional em-
bedding, which has a length just matched with mV image
patches. A set of nV visual tokens is referred as pV :

IV = [cV , eV , pV ] (11)
where cV is the [CLS] token for image inputs, and IV ∈
R(1+mV +nV )×dV denotes the visual features with prompt fed
to the image encoder.
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Prompt Depth
Since prompts are inserted to transformer-based image and
text encoders, they have a strong ability to influence the
output through sufficient cross-attention with input features.
However, [Liu et al., 2022] point out that long propagation
path from prompt to the final signal may lead to information
loss. Thus we explore two variants of prompt tuning in BPT-
VLM, namely Shallow Prompt and Deep Prompt, depend-
ing on the depth of transformer layers inserted with projected
prompts (Figure 3 takes the text encoder for example).

Transformer Layer-1

CLS [CLASS] .

Transformer Layer-2

P

………

Transformer Layer-1

CLS [CLASS] .

Transformer Layer-2

………

[replace]

PP

[replace]

PP

P P P

Figure 3: Shallow Prompt and Deep Prompt.

Shallow Prompt only inserts prompts for the input features
of text encoder and image encoder (ViT), the propagation pro-
cess can be formulated as:{

[cL, hL, eL]1 = L1(IL)

[cL, hL, eL]i = Li([cL, hL, eL]i−1) i ≥ 2
(12){

[cV , eV , hV ]1 = V1(IV )

[cV , eV , hV ]i = Vi([cV , eV , hV ]i−1) i ≥ 2
(13)

where Li and Vi indicate the i-th transformer layer of image
and text encoder; hL and hV refers to the hidden representa-
tion of text prompt pL and pV . Prompts interacts with input
features along layer-upon-layer propagation.

To avoid information loss caused by long propagation path,
Deep Prompt involves prompts in each layer of transformer-
based text and image encoders:{

[cL,#, eL]i = Li([cL, pL, eL]i−1) i ≥ 1

[cV , eV ,#]i = Vi([cV , eV , pV ]i−1) i ≥ 1
(14)

where # is the hidden states to be replaced by another set of
prompts. Since prompts inserted to different layers belong to
different parameter spaces, multiple projection matrices are
initialized. For N intrinsic parameter spaces, our framework
recognizes the optimization as in-dependent sub-problems:

argmin{Z⋆
i }Ni=1 = (argminZ⋆

1 , ..., argminZ⋆
N ). (15)

when one intrinsic space is under the process of black-box
tuning, vectors belonging to other intrinsic spaces are kept
fixed. Such iterative optimization enhances cross-modal in-
teraction of VLM and generally outperforms shallow prompt.

4 Experiments
4.1 Experiment Setup
Datasets and Metrics
To evaluate the effectiveness of BPT-VLM, we conduct ex-
periments on 9 visual image classification datasets: Ima-
geNet [Deng et al., 2009], Caltech101 [Fei-Fei et al., 2004],

OxfordPets [Parkhi et al., 2012], Flowers102 [Nilsback and
Zisserman, 2008], Food101 [Bossard et al., 2014], UCF101
[Soomro et al., 2012], SUN397 [Xiao et al., 2010], EuroSAT
[Helber et al., 2019] and DTD [Cimpoi et al., 2014]. These
datasets covers a wide range of vision tasks.

The ImageNet and Caltech101 datasets are designed for
generic image classification. While fine-grained object clas-
sification datasets including OxfordPets, Flowers102 and
Food101 focus on differentiating between sub-classes be-
longing to the same meta-class. The SUN397 dataset is built
for scene recognition. EuroSAT and DTD are specialized
datasets catered for satellite classification and texture recog-
nition. Following the few-shot setting adopted in [Zhou et
al., 2022], all methods use the same 16-shot split for prompt
tuning and are evaluated on full test-sets for comparison.

Models for Comparison
As presented in Table 2, we compare BPT-VLM with
two kinds of prompt tuning methods: gradient-based and
derivative-free methods.

For derivative-free method, we consider Manual Prompt
as our baseline: Following the prompt setting introduced
in [Radford et al., 2021], we use hand-crafted templates as
task-relevant prompts to conduct zero-shot evaluation. For
gradient-based methods, two baseline methods are consid-
ered: (1) Linear Probe: As suggested by [Tian et al., 2020],
training a linear layer as the classification head on top of CLIP
can achieve competitive performance compared with other
fine-tuning methods. We followed the same training method
used by [Radford et al., 2021] to train the linear probe model.
(2) CoOp: Recently proposed CoOp [Zhou et al., 2022] mod-
els text prompt’s context words as learnable vectors while the
other parameters of CLIP are kept fixed. We reproduced the
results using on each tasks using 16 middle positional tokens
and default 200 epoch training.

We devise four versions of BPT-VLM for compari-
son, namely MM-ES-Shallow, MA-ES-Shallow, CMA-ES-
Shallow and CMA-ES-Deep, which adopt different evolu-
tion strategies [2001; 2020; 2018] and prompt designs (dis-
cussed in 3.4) for black-box optimization.

4.2 Implementation Details

Hyper-parameter Default Setting

Intrinsic Dimension 1000
Vision Prompt Length 8
Language Prompt Length 5
Population Size 30
Loss Fucntion Cross Entropy

Table 1: Default Setting of Hyper-parameters

Three derivative-free algorithms are introduced to our black-
box prompt tuning frameword: CMA-ES, MM-ES and MA-
ES, all of which are implemented based on open-source li-
braries PyCMA2 and PyPop73. Unless otherwise stated, all

2PyCMA: https://github.com/CMA-ES/pycma
3PyPop7: https://github.com/Evolutionary-Intelligence/pypop
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Gradient-Based
Linear Probe 55.87 90.63 76.42 70.08 70.17 67.15 63.97 82.76 73.72 72.31
CoOp 62.95 91.83 87.01 73.36 74.67 69.26 63.58 83.53 75.71 75.77

Derivative-Free

Manual Prompt 58.18 86.29 85.77 55.61 77.31 58.52 42.32 37.56 61.46 62.56
MM-ES-Shallow – 93.67 90.49 62.49 81.62 – 48.40 86.25 70.76 –
MA-ES-Shallow – 93.59 90.57 65.03 81.54 – 59.63 86.93 76.34 –
CMA-ES-Shallow 65.08 94.16 90.43 64.72 81.31 68.01 60.52 86.11 74.62 76.11
CMA-ES-Deep 64.84 93.39 90.62 67.84 81.38 69.83 64.13 89.37 76.66 77.56
∆(%) +2.13 +2.33 +3.61 -5.52 +4.31 +0.57 +0.16 +5.84 +0.95 +1.79

Table 2: Comparison results on various visual understanding tasks with the pre-trained vision-language model CLIP in 16-shot setting. MM-
ES-Shallow, MA-ES-Shallow, CMA-ES-Shallow and CMA-ES-Deep are four versions of our BPT-VLM with different evolution strategies
and prompt designs. The underlined values indicate the highest accuracy for gradient-based methods on each dataset, and the bold numbers
are the counterparts for our BPT-VLM models. The last line ∆ values indicate our maximum improvements over the best baselines.

models are built with the open-source CLIP with ViT-B/32
as the visual encoder’s backbone. Table 1 demonstrates the
default configuration of hyper-parameters used in our exper-
iments. Note that only the intrinsic vector is required to be
updated and no back-propagation is performed.

Since the optimization process of gradient descent algo-
rithm and derivative-free algorithm are quite different, here
we redefine the meaning of a training epoch. For the shal-
low variant of black-box prompt tuning, every 12 generations
of evolution for the intrinsic vector are regarded as 1 training
epoch. As for the deep prompt variant, 1 epoch of training in-
dicates that each intrinsic vector (belonging to 12 transformer
layers) iteratively performs 1 generation of evolution.

4.3 Main Results
Overall Performance. Table 2 shows the comparison re-
sults of baseline model and four versions of BPT-VLM frame-
work (introduced in 4.1). We observe that the CMA-ES-Deep
model using CMA-ES optimization and Deep Prompt outper-
forms both the derivative-free and gradient-based baselines
on 8 out of 9 datasets, indicating the effectiveness of our
black-box prompt tuning framework for large-scale VLMs.
In particular, we achieve an average improvement of 1.79%
over recent advanced baseline CoOp that uses gradient-based
prompt tuning, which further demonstrates the advantage of
our framework in the scenario of MaaS.
Performance on Various Datasets. It is worth noting that
we achieve 2.13% improvement over the best gradient-based
baseline on ImageNet, which is a challenging task that con-
tains 1000 classes. The performance improvements are also
significant on fine-grained classification datasets such as Ox-
fordPets and Food101, as well as scene and action recog-
nition datasets (i.e. SUN397 and UCF-101). The perfor-
mance of our method on StanfordCars is not so appealing,
thus we further analyze the failure cases. It is observed that
our method under-performs the gradient-based methods when

the text annotations only have subtle differences like “BMW
X3 SUV” and “BMW X5 SUV”, which increase the difficulty
for the derivative-free methods without strong fitting mecha-
nisms like gradient descent.
Performance of Various Optimization Algorithms and
Prompt Designs. We plot the accuracy curves with differ-
ent optimization algorithms and prompting methods during
training in Figure 4. Since the results on each dataset is sim-
ilar, the curves on four datasets are presented due to the lim-
ited space. We observe that the MM-ES algorithm performs
slightly worse while converges faster, and there are no signif-
icant differences between other optimization algorithms. In
addition, by comparing the two models as CMA-ES-Shallow
and CMA-ES-Deep that use different prompting methods,
we find that the shallow prompt achieves faster convergence
speed, while slightly under-performs the deep variant on fi-
nal accuracy. This coincides with our intuition since the deep
prompt is iteratively optimized in different intrinsic subspaces
involving each layer of the pre-trained VLMs, while the shal-
low prompt only involves the input layer that includes less
parameters to be optimized as described in Section 3.4.

4.4 Further Analyses
We conduct further analyses on various hyper-parameters to
explore their effect. Each hyper-parameter is investigated
while keeping the other hyper-parameters as default as listed
in Table 1. For the limits of space, we show the experimental
results on Caltech101 with the same 16-shot split in Figure 5.
Similar results can be observed on other datasets.
Effect of Intrinsic Dimension. The parameter subspace of
the intrinsic vectors is the space where optimization actually
performs. As shown in Figure 5(a), the model with lower in-
trinsic dimension converges faster, but yields higher losses.
When the intrinsic dimension increases over 1000, there are
no significant differences in losses. Thus, the intrinsic dimen-
sion is recommended to be set to 1000 in our experiments.
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(a) Food-101 (b) OxfordPets (c) StanfordCars (d) UCF-101

Figure 4: Accuracy curves on various datasets during training. Since one epoch of training in gradient-based and derivative-free methods
represent different meanings as demonstrated in Section 4.2, the final performance of the recent advanced gradient-based method CoOp is
presented with horizontal purple dash lines. The derivative-free baseline as manual prompt evaluated in zero-shot setting can be deemed as
the initial points of our method, represented with horizontal red dash lines.

(a) Intrinsic Dimension (b) Prompt Length (c) Population Size (d) Parallel Evaluation

Figure 5: Results of ablation experiments on hyper-parameters. (a) and (b) illustrate the loss curves of different intrinsic dimension and prompt
length settings; (c) shows the accuracy curves of black-box prompt tuning with various population sizes; (d) demonstrates comparison of time
efficiency between serial and parallel evaluation.

Effect of Prompt Length. We utilize text prompt and im-
age prompt for better inducing the knowledge contained in
the pre-trained VLMs, which determine the original param-
eter space in text and image encoders. To investigate the ef-
fect of prompt length, we evaluate BPT-VLM with various
lengths. As shown in Figure 5(b), the converged loss de-
creases when the prompt length grows first, but then it tends
to be stable when the length becomes larger. Given that the
model converges slowly with the increasing prompt length,
we use a reliable setting as (V=5, L=8) for the text and prompt
length for performance and efficiency balance.

Effect of Population Size. In one generation of the evolu-
tion strategy, individuals (intrinsic vectors) are sampled from
a multivariate normal distribution. Then the algorithm eval-
uates their fitness to adjust the distribution for the next gen-
eration. Here we explore the effect of population size within
3600 times of individual evaluations. As suggested in Fig-
ure 5(c), a smaller population size as 2 can reach the con-
vergence faster, but a noticeable performance degradation oc-
curs. In addition, the larger population size does not always
yield better results but converges more slowly. On the whole,
the population size between 10 and 60 is recommended to be
a reliable setting in our experiments.

Efficiency of Parallel Training. Open-source black-box
optimization algorithms usually evaluate individuals in a
time-consuming serial manner. To improve efficiency, our
method can be easily adapted to support parallel prompt tun-
ing, which can evaluate all individuals simultaneously in a

single concatenated batch. Figure 5(d) shows the result of the
efficiency analysis. It is worth noting that parallel tuning only
takes about 1/4 time compared with traditional serial tuning
when the population size varies in {5, 10, 15, 20}, and this
advantage in training efficiency will be more prominent when
the population size grows.

5 Conclusions and Future Work
In this paper, we propose a black-box prompt tuning frame-
work for vision-language models in the scenario of MaaS. We
extend derivative-free algorithms to the new scope of prompt
tuning for pre-trained VLMs, and conduct expansive experi-
ments to verify that large-scale VLMs also have very low in-
trinsic dimensions, which is as effective for fine-tuning as the
full parameter spaces. Moreover, we incorporate cross-modal
interaction in our framework by sharing the intrinsic param-
eter subspace of both vision and language modalities. Dif-
ferent prompt designs are also explored to enhance prompts’
influence during propagation.

It could be interesting to consider black-box prompt tuning
in different downstream tasks based on different pre-trained
models, and the black-box algorithms could be exchanged,
such as Particle Swarm and Bayesian Optimization. Our fu-
ture work will also concern a deeper analysis of cross-modal
interaction from the perspective of derivative-free optimiza-
tion in shared intrinsic parameter spaces.
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