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Abstract

Vision model have gained increasing attention due
to their simplicity and efficiency in Scene Text
Recognition (STR) task. However, due to lacking
the perception of linguistic knowledge and infor-
mation, recent vision models suffer from two prob-
lems: (1) the pure vision-based query results in
attention drift, which usually causes poor recog-
nition and is summarized as linguistic insensitive
drift (LID) problem in this paper. (2) the vi-
sual feature is suboptimal for the recognition in
some vision-missing cases (e.g. occlusion, etc.).
To address these issues, we propose a Linguistic
Perception Vision model (LPV), which explores
the linguistic capability of vision model for accu-
rate text recognition. To alleviate the LID prob-
lem, we introduce a Cascade Position Attention
(CPA) mechanism that obtains high-quality and ac-
curate attention maps through step-wise optimiza-
tion and linguistic information mining. Further-
more, a Global Linguistic Reconstruction Module
(GLRM) is proposed to improve the representa-
tion of visual features by perceiving the linguis-
tic information in the visual space, which gradu-
ally converts visual features into semantically rich
ones during the cascade process. Different from
previous methods, our method obtains SOTA re-
sults while keeping low complexity (92.4% accu-
racy with only 8.11M parameters). Code is avail-
able at https://github.com/CyrilSterling/LPV.

1 Introduction

Scene Text Recognition (STR) is a meaningful task in com-
puter vision that aims to understand the textual information
from the cropped image of natural scenes [Long et al., 2021;
Shi et al., 2016a; Fang et al., 2021; Xu et al., 2022; Sheng
et al., 2019]. Due to the lack of language modal informa-
tion of other perception tasks, STR is widely used in Visual
Questions and Answers (VQA), automatic pilots, efc.

Early work has generally treated STR as a visual task, us-
ing an encoder to get visual features and, after sequence mod-
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Figure 1: Our motivation. (a) The basic structure of previous vision-
only models with an attention-based decoder and a visual query to
decode the characters, which has the problem of attention drift. (b)
The visualization of the dot similarity between the query vectors at
each position of ABINet [Fang et al., 2021].

eling, a CTC-based [Graves et al., 2006] or attention-based
decoder to obtain the predicted characters. The attention-
based decoder uses a visual query to decode the position of
each character, so it is accurate for arbitrary shape text recog-
nition. In addition, due to its simplicity and effectiveness,
the attention-based decoder is currently the mainstream solu-
tion for vision model [Wang er al., 2021; Fang et al., 2021;
Wang et al., 2022a; Zheng et al., 2021; Wang et al., 2022b].
Such methods have a simple structure that can be efficient in
most application scenarios. Though these vision-only meth-
ods have achieved promising results, there are still two prob-
lems.

The first problem is the attention drift in the attention-based
decoders, which is not received enough attention in recent
researches. Attention drift is when the area of attention re-
gion is not aligned with the target character (Figure. 1 (a)).
RobustScanner [Yue et al., 2020] deeply analyzed attention
drift and proved that the query vectors in the decoder encode
not only context but also positional information. However,
this positional information is easily drowned out by the in-
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troduction of other information. Note that recent methods
use a pure vision-based query, which is fixed when inputting
different images. We further visualize the dot similarity be-
tween the query vectors at each position in ABINet [Fang et
al., 2021]. As shown in Figure. 1 (b), it is observed that the
query at each position is similar to that at neighboring posi-
tions. This will lead to similar features when decoding the
attention map of neighboring characters, thereby causing at-
tention drift. Therefore, we indicate that the attention drift
comes from decoding different images with the fixed vision-
based query, which is linguistic insensitive. We summarize
this issue as the Linguistic Insensitive Drift (LID) problem.
Thus, how to eliminate the LID issue and obtain an accurate
attention map is the key for robust text recognition.

Another problem is that visual feature is suboptimal for
recognition in some vision-missing cases. To solve this prob-
lem, recent methods introduce the linguistic knowledge to as-
sist the vision model. However, it is hard for vision model
to obtain linguistic information efficiently and accurately. Vi-
sionLAN [Wang et al., 2021] designed a masked language-
aware module to randomly occlude a character in the train-
ing stage which guides the vision model to utilize the lin-
guistic information in text images. But the model intro-
duces additional modules and requires separate pre-training.
MGP-STR [Wang er al., 2022a] proposed a multi-granularity
prediction strategy to inject information from the language
modality into the model in an implicit way. However, this
network requires a huge number of parameters. Thus, how to
perceive linguistic information with an efficient structure and
a simple training strategy is a great challenge for text recog-
nition.

To enhance the linguistic perception of both query and fea-
ture in a simple way, we propose a concise Linguistic Percep-
tion Vision model (LPV). The pipeline of our LPV is shown
in Figure. 2. The pipeline mainly consists of two parts: the
GLRM branch and the CPA branch. The GLRM branch con-
tinuously enhances the features of the input image. In this
branch, the visual features F© are firstly extracted from the
backbone. Then, Global Linguistic Reconstruction Module
(GLRM) enhances the features of the previous stage Fi~!
into the features of the current stage F* using the mask gen-
erated by the attention map A’~!. In this way, linguistic in-
formation is aggregated in GLRM and the visual features can
be gradually transformed into semantic-rich features. Mean-
while, the GLRM ensures the simplification of the pipeline
and there are no redundant modules. The CPA branch hierar-
chically optimizes the attention map and the query using the
cascade position attention mechanism. Each Position Atten-
tion Module (PAM) takes the visual features F? as input, and
obtains the attention map A and the features R* of each char-
acter. Note that the prior query of the first PAM is initialized
to 0, which means we have no prior to each character. PAM at
i" stage uses R~! as the prior query. Such an operation can
take the recognition result of the previous stage as a priori and
re-perform the similarity calculation for the enhanced fea-
tures to obtain more accurate attention positions. Meanwhile,
positional and linguistic information is constantly introduced
in the PAM, so as to alleviate the linguistic insensitive drift
problem. Compared with previous methods, we have a more
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concise structure and training strategy, while achieving better
performance.
The main contributions of our work are as follows:

* We are the first to point out the attention drift due to
lack of linguistic information, which is called Linguistic
Insensitive Drift (LID) problem, and propose a Cascade
Position Attention mechanism to effectively handle the
LID problem.

We propose a Global Linguistic Reconstruction Module
to reconstruct the features of each character by aggre-
gating global linguistic information during the process
of sequence modeling. The method does not introduce
extra parameters.

Our method achieves state-of-the-art performance while
keeping a very low parameter quantity with a simple
end-to-end training strategy.

2 Related Work

2.1 Scene Text Recognition

Scene Text Recognition (STR) has been a significant research
term in computer vision. Early methods use a backbone and
a sequence modeling network for feature extraction and use a
Connectionist Temporal Classification (CTC) [Graves et al.,
2006] decoder or attention decoder for prediction [Qiao et
al., 2020; Lyu et al., 2019a]. CTC-based decoder aims to
maximize the probability of all the paths for final prediction,
while attention-based decoder aims to localize the position
of each character by attention mechanism. To further extract
linguistic information of the visual predictions, SRN [Yu et
al., 2020] proposed a language model to learn the relation-
ship between each character. ABINet [Fang et al., 2021] fur-
ther proposed a stronger bi-directional language model for
autonomous linguistic modeling. We believe that a powerful
recognizer must have the ability of contextual linguistic mod-
eling, but explicit language models have a large number of
parameters, which severely limits recognition efficiency.

Recently, the simplicity of model reasoning has been em-
phasized. Considering the CTC-based decoder has an advan-
tage in speed while the attention-based decoder has an ad-
vantage in precision, GTC [Hu et al., 2020] used a powerful
attention-based decoder to guide the training of a CTC-based
decoder. MGP-STR [Wang et al., 2022a] used ViT as the
backbone to achieve high performance, which proved that the
structure of ViT is applicable to STR. Further, SVTR [Du
et al., 2022] proposed a faster and more lightweight back-
bone for STR task. We think that in order to design a more
powerful recognizer, the model must have linguistic model-
ing capability while keeping the structure simple. Thus, we
propose the Global Linguistic Reconstruction Module, which
can aggregate the contextual linguistic information during the
process of sequence modeling. Such a design ensures the sim-
plicity of the model.

2.2 Attention Drift

The visual attention drift problem in STR refers to the fact
that when an attention-based decoder is used, the attention
region of the decoder cannot be accurately aligned with the
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Figure 2: The pipeline of our LPV. The pipeline mainly contains two branches: GLRM branch and CPA branch. GLRM branch continuously
enhances the feature using proposed GLRM. CPA branch takes the feature as input and hierarchically decodes the attention map and feature

of each character. CE Loss means the cross-entropy loss.

target character. [Cheng et al., 2017] first identified this prob-
lem and proposed a Focusing Attention Network (FAN) that
is composed of an attention network for character recogni-
tion and a focusing network to adjust the attention drift. Ro-
bustScanner [Yue e al., 2020] deeply investigated the decod-
ing process of the attention-based decoder and empirically
find that a character-level sequence decoder utilizes not only
context information but also positional information. They
further suggested that the drowning of position information
leads to attention drift problems. Using the above analysis,
they solve this problem by a position enhancement branch
to introduce position information. We further point out that
attention drift comes from decoding different images with a
linguistic insensitive query, which also lacks positional infor-
mation. Based on this, we propose a Cascade Position Atten-
tion mechanism to solve this problem, which has a concise
framework and does not introduce extra modules.

3 Proposed Method

In this section, we first detail the pipeline of proposed method
in Sec. 3.1, and then we introduce Cascade Position Attention
and Global Linguistic Reconstruction Module in Sec. 3.2 and
Sec. 3.3 respectively.

3.1 Pipeline

The pipeline of our LPV is shown in Figure.2. We can view
the pipeline as two branches. Given an input image of size
H x W x 3, the features F¢ € RT*T %E are obtained by the
GLRM branch, which continuously enhances the features to
obtain long-distance contextual linguistic information using
proposed GLRM. Meanwhile, in the CPA branch, F? are fed
into the i*" Position Attention Module (PAM) to get the atten-
tion map A and the feature R’ of each character. The CPA
branch constantly rectifies the recognition results to alleviate
linguistic insensitive drift using a linguistic-sensitive query.
Note that the parameters in each PAM are NOT shared.
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Figure 3: The structure of Position Attention Module in the CPA.
Qpri is the prior query. ’Encoding’ can be one FC layer.

3.2 Cascade Position Attention

The Cascade Position Attention mechanism hierarchically
optimizes the recognition result using the enhanced feature
F? in each stage and outputs the attention map of each char-
acter.

As shown in Figure. 3, a cross-attention mechanism is uti-
lized to transcribe visual features into character sequences.
Specifically, the attention map A’ € R7* ‘%" and the fea-
tures R € RT*F of each character is calculated by the
queries, keys, and values as Eq. 1, where 7T is the maxi-
mum length of the character sequence. The prediction results
Y? € RT*C can be further obtained by a classification head
(e.g. FC Layer), where C' indicates the number of character
classes. P(-) is the classification head.

A’ = softmaz(K'Q'" /VE)
R' = A"V’ (1)
Y' = sofmax(P(R"))

Concretely, K = G(F?) € R'T6 *¥, where G(-) is imple-
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Figure 4: The structure of Global Linguistic Reconstruction Mod-
ule. GLRM consists of a Parallel Mask Generator and L x Masked
Transformer Encoder.

mented by a mini U-Net. Vi = H(F?) € R'16 *F, where
H(+) is identity mapping. The most important, Q° € RT*¥
is used to decode the position of each character and can be
regarded as the priori of each character. Therefore, Q° is
generated by a given prior Q;m and a position encoding P
through the encoding layer (e.g. one FC layer). At the begin-
ning of decoding, we do not know the specific information
about the character so Q0 . is initialized to the O vectors. At

pri
the ' stage of decoding, ori 18 set as the features of each
character from the previous stage. The generation process of

Q! can be formalized as follows:

7 o 07
pri T Rifl’

Ql:]:( prz+P)

Where F () is the encoding layer.

To deal with the problem of linguistic insensitive drift, on
the one hand, through the continuous iteration of Qi, the net-
work gradually gets a linguistic-sensitive query to decode the
attention map. On the other hand, the positional information
is constantly introduced by position encoding, which can en-
hance the positional sensitivity of the model.

i=0
otherwise 2)

3.3 Global Linguistic Reconstruction Module

We argue that the input feature F of each stage can not be the
same and it needs to be dynamically adjusted, e.g. sequence
modeling. We will prove this inference in the ablation study.
Therefore, it is necessary to add a sequence modeling net-
work between stages but the simple sequence modeling net-
work has no linguistic awareness, so we propose Global Lin-
guistic Reconstruction Module to aggregate global linguistic
information during sequence modeling without introducing
extra parameters.

The details of GLRM is shown in Figure. 4, it takes
the feature and attention map of the previous stage as in-
puts and outputs the enhanced feature of the current stage.
GLRM contains two parts: Parallel Mask Generator (PMG)
and Masked Transformer Encoder. The transformer encoder
is proven to be effective for modeling long-range dependen-
cies in recent computer vision tasks [Carion et al., 2020;
Lyu et al., 2019b], which can be used well for sequence mod-
eling and contextual information aggregating. To guide the
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model learning linguistic knowledge, we design a novel way
that reconstructs the features of each character by masking
each character. To achieve this, PMG transforms the atten-
tion map A~ into a parallel mask M € R'T6 %'t as Eq.
3, where U(z) is the unit stage function which takes the value
of 1 for z > 0 and O for z < 0. ¢ is the threshold of fore-
ground and background, which is set to 0.05 in our experi-
ments. ® is matrix multiplication.

MP=UA" —t)T @ UA™! —1t)
—o0, M! >0 3)
M;; = ’ v
/ {O, otherwise

Then, the attention operation inside multi-head self-
attention blocks can be formalized as follows:

_ Fifl‘hf
T 4

By using such a mask, the tokens in one character can not
see the tokens in the same character during the self-attention
operation, which means that features within each character
region are reconstructed from features other than that char-
acter. Benefiting from such a design, the visual features are
gradually transformed into semantic-rich features during the
cascade stage.

Compared with BERT [Devlin et al., 2018] and Vision-
LAN [Wang er al., 2021], though all approaches mask out
the information in a certain time step, there are two differ-
ences: 1) BERT and VisionLAN mask the tokens of the input
features, which leads to loss of origin features. But GLRM
masks the tokens in the self-attention operation, which can
ensure self-attention to model the global linguistic informa-
tion. Meanwhile, the origin local features of each character
are not lost due to the shortcut of the transformer encoder; 2)
BERT and VisionLAN can only mask one character in a for-
ward process, it can only guide the model to learn linguistic
knowledge, but GLRM can mask all characters in a parallel
way, which can reconstruct the features of each character and
obtain an enhanced feature.

Q. K, V]

F' = softmax(

3.4 Training Objective

The final objective function of the proposed method is formu-
lated in Eq. 5. NV is the number of cascade stages and Y is
the prediction at the 7*" stage. g; is the ground truth. T is the
max length of the character sequence which we set to 25 in
our experiments.

L Y s

i=0 j=0

P(Y'|gt)) (&)

4 Experiment

4.1 Datasets

For fair comparison, we conduct experiments following the
setup of [Wang et al., 2022a; Fang et al., 2021]. We use
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Regular Irregular #Params | Speed
Method Ic13 SVT mmTsk | 1c15 sviP cuUtE | YO | o | (ms)
CRNN [Shi et al., 2016b] 919 81.6 82.9 694  70.0 65.5 78.6 8.3 -
ASTER [Shi et al., 2018] 91.8 89.5 934 76.1 78.5 79.5 86.7 27.2 -
SEED [Qiao et al., 2020] 92.8 89.6 93.8 80.0 814 83.6 88.3 - -
RobustScanner [Yue et al., 2020] | 94.8  88.1 95.3 77.1 79.5 90.3 88.4 - -
TextScanner [Wan et al., 2020] 929 90.1 93.9 79.4 84.3 83.3 88.5 - -
SRN [Yu et al., 2020] 95,5 915 94.8 82.7 85.1 87.8 90.4 54.7 -
VisionLAN [Wang er al., 2021] 957 91.7 95.8 83.7 86.0 88.5 91.2 32.8 21.73
ABINet [Fang er al., 2021] 974 935 96.2 86.0 893 89.2 92.3 36.7 46.86
MGP-Small [Wang er al., 2022a] | 96.4  93.5 95.3 86.1 87.3 87.9 92.0 52.6 -
MGP-Base [Wang er al., 2022a] 97.3 94.7 96.4 87.2 910 90.3 93.3 148.0 -
SVTR-Tiny [Du et al., 2022] 96.3 91.6 94 .4 84.1 85.4 88.2 90.8 6.03 4.11
SVTR-Small [Du et al., 2022] 95.7 93.0 95.0 84.7 87.9 92.0 91.6 10.3 4.81
SVTR-Base [Du et al., 2022] 97.1 91.5 96.0 852 899 91.7 92.3 24.6 5.80
LPV-Tiny (Ours) 96.7 929 96.3 864  86.7 90.6 92.5 8.11 5.17
LPV-Small (Ours) 96.8 93.7 96.7 87.1 89.8 92.4 93.3 13.99 5.77
LPV-Base (Ours) 97.6 94.6 97.3 875 909 94.8 94.0 35.13 7.41

Table 1: Results on IC13, SVT, IIIT5K, IC15, SVTP and CUTE datasets. Following [Fang er al., 2021; Wang et al., 2022al, all the results
are under NONE lexicon. The speed is the inference time on one NVIDIA 2080Ti GPU averaged over 1000 English image text.

MIJSynth [Jaderberg et al., 2014; Jaderberg er al., 2016]
and SynthText [Gupta er al., 2016] as training data and
they contain 9M and 7M synthetic text images respectively.
The performance is evaluated on 6 benchmarks containing
IIT 5K-Words (IIIT5K) [Mishra et al., 2012], ICDAR2013
(IC13) [Karatzas et al., 2013], ICDAR2015 (IC15) [Karatzas
et al., 2015], Street View Text (SVT) [Wang et al., 2011],
Street View Text-Perspective (SVTP) [Phan er al., 2013] and
CUTES0 (CUTE) [Risnumawan et al., 2014]. Details of the
above 6 datasets can be found in previous works [Wang er al.,
2022a; Fang et al., 2021].

4.2 Implementation Details

We use the backbone proposed in SVIR [Du et al., 2022]
as our backbone due to its impressive performance in STR.
Particularly, to use the attention-based decoder, we change
the stride of the merging module to 1 and remove the fi-
nal mixing head to obtain visual features at 1/4 resolution.
The image size is set to 100 x 32. Following the most re-
cent works [Wang et al., 2022a; Baek et al., 20191, for fair
comparison, we use the same code framework and data aug-
mentation. We conduct the experiments on 4 NVIDIA 3090
GPUs with batch size 384. The vocabulary size C of charac-
ter classification head is set to 38, including 0 - 9, a - z, [PAD]
for padding symbol and [EOS] for ending symbol.

The network is trained end-to-end using Adam [Kingma
and Ba, 2014] optimizer of initial learning rate le-4 and the
learning rate is decayed to le-5 after six epochs. We trained a
total of 20 epochs. The first 10 epochs do not use the mask we
proposed in GLRM so that the position attention can obtain
a relatively accurate attention map. The last 10 epochs add
the mask for finetune so that the network can learn contextual
linguistic knowledge.
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4.3 Comparisons with State-of-the-Arts

We compare our method with previous state-of-the-art meth-
ods on 6 benchmarks in Table. 1. Our model shows signifi-
cant performance in both regular (IC13, SVT and IIIT5K) and
irregular (IC15, SVTP and CUTE) datasets while keeping a
very low parameter quantity. Notably, LPV-Tiny has already
outperformed most of the state-of-the-art methods with only
8.11M parameters while LPV-Small and LPV-Base obtain
the performance of 93.3% and 94.0% with only 13.99M and
35.13M parameters respectively. For inference time, LPV-
Tiny only needs 5.17ms, which is faster than most of the ex-
isting methods.

Many previous works, such as SRN [Yu et al., 2020], ABI-
Net [Fang et al., 2021], VisionLAN [Wang et al., 2021], and
MGP [Wang er al., 2022a] tried to introduce linguistic knowl-
edge to assist recognition. Compared to them, LPV shows the
best performance on all datasets. This result implies that our
cascade position attention mechanism and GLRM are effec-
tive. Additionally, compared with SVTR, our tiny, small, and
base model obtains 1.6%, 1.7%, and 1.7% improvement re-
spectively.

4.4 Ablation Study

The Effectiveness of Cascade Position Attention

We propose the Cascade Position Attention (CPA) mecha-
nism to alleviate the linguistic insensitive drift problem. To
prove the effectiveness of CPA, we perform ablation from two
aspects.

From the aspect of model performance, we conduct several
experiments to evaluate the effect of the number of stages
N in Table. 2. Especially, N = 1 means no extra stage to
optimize the recognition result. The first row of Table 2 is
the baseline with a CTC-based decoder instead of attention-
based decoder. From the statistics we can conclude: 1) Our
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Table 2: Ablation study of Cascade Position Attention (CPA) mech-
naism in LPV-Tiny, N is the number of stages in CPA. The first row
is the baseline with a CTC-based decoder.

model with 3 stages outperforms 1.581% more improvement.
2) Due to the concise structure of the hierarchical optimiza-
tion strategy, the increase of stages will result in great gains in
average accuracy while little increase in parameter quantity.
3) As the number of stages increases gradually, performance
improvement is limited. For the trade-off between parameter
quantity and accuracy, we choose 3 stages in our model.

From the aspect of attention drift, we further visualize it.
In the position attention mechanism, the query guides the de-
coder to find the position of each character. As described in
Sec. 1, the high similarity of queries between neighboring
locations leads to the problem of attention drift. Based on
LPV-Tiny, we visualize the similarity between query vectors
at different positions in Figure. 5. Due to stages 2 and 3
having a linguistic-sensitive query that is different when in-
putting different images, we calculate the average similarity
with all images in IC15 [Karatzas et al., 2015] of each se-
quence length. As shown in Figure 5, the query in the first
stage has no position and linguistic prior about the input im-
age so it does not have a centralized similarity. In stages 2
and 3, the queries consist of a linguistic prior query Qy4,
and the position encoding is introduced again to enhance po-
sition sensitivity. Therefore, the similarity is centered in the
diagonal, which means the position of each character is more
certain. When decoding characters, the feature similarity of
neighboring characters is reduced, so the attention drift is mit-
igated. Note that the similarity in stage 3 is more concentrated
than that in stage 2 due to the stronger prior and more position
information. Additionally, the difference is even more pro-
nounced with long text, because attention drift is more likely
to occur in the case of long text.

The Effectiveness of GLRM

As described in Sec. 3.3, we argue that the input features F*
of each stage can not be the same and needs to be dynami-
cally adjusted, so a sequence modeling network is necessary.
To prove this inference, we first use a simple transformer en-
coder as the sequence modeling network to obtain dynamic
features. For fair comparison, we place the transformer en-
coder before the CPA decoder to fix the features and keep the
same parameter quantity. As shown in Table. 3, the perfor-
mance is not good (91.763% vs 92.012%) when we place the
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IC13  SVT TSk
Str Feat Mask IC15 SVTP CUTE AVG
95683 92736 95.800
D X 5583 87597 o027 92012
Tiny 96733 92.890 96300
D V' 86361 86667 90625 22481
95683 91499 95433
F o X §5910 86512 90972 01763
96383 93.045 96533
D X 6582 8217 89583 92701
Small
96.849 93.663 96.663
D V' gr134 89767 92361 o3240

Table 3: Ablation study of GLRM, in the column of Feat, ’D’ means
dynamic feature in the sequence modeling and *F’ means fixed fea-
ture. Mask indicates if use the mask we peoposed.

LN o o e T
B U e s e
s R N e
I T s o

Table 4: Ablation study of the layer number of GLRM. L is the layer
number of GLRM. Experiments were performed on LPV-Tiny.

transformer layer before the CPA and input the same features
into each stage.

Furthermore, to acquire linguistic knowledge, we propose
GLRM as the sequence modeling network which uses a paral-
lel mask to enhance the feature and obtain the contextual lin-
guistic information. As shown in Table. 3, for LPV-Tiny and
LPV-Small, the proposed mask obtains 0.469% and 0.539%
improvement on average accuracy respectively.

The Layer Number of GLRM

Our GLRM consists of a Parallel Mask Generator and L x
Masked Transformer Encoder. To determine the number of
layers L, we conduct several experiments. From the results in
Table. 4 we can observe: 1) More layers in GLRM can pro-
vide stronger contextual modeling capacity and obtain higher
performance. 2) We can obtain 0.69% improvement when L
increases from 1 to 2, which is greatly larger than 0.234%
when L goes from 2 to 3. That is because the masked trans-
former encoder can only model the area around each charac-
ter at a shallow layer, and gradually model the global feature
as it moves deeper. This conjecture can be verified by the
visualization of the attention map in the masked transformer
encoder. We calculate the average attention map of the pixels
in the area masked and show the visualization in Figure. 6.
From the attention map, we can find that the attention in the
first layer of the first GLRM is limited around each character
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Figure 5: The visualization of the similarity between the queries at different positions in LPV-Tiny.

GLRM#1 l
(a)

Figure 6: The average attention map of the pixels in the area masked and the area masked is shown in white. (a) LPV-Tiny with 2 layers in

each GLRM. (b) LPV-Small with 3 layers in each GLRM.

because there is no global feature in the input. When it goes
deep, the attention area goes global.

Finally, considering the total parameter quantity, we set L
to 2 in LPV-Tiny and 3 in LPV-Small and LPV-Base.

4.5 The Qualitative Analysis

GLRM in Subword Perception

From the visualization in Figure. 6, we can further analyze
the attention area. As we all know, there are some sub-words
that occur frequently in words (e.g. ’ing’, "pri’, ‘'mer’, ’tion’,
etc). Such knowledge can assist the model to obtain a more
accurate result when the visual clue is confused. Our GLRM
guides the model to reconstruct the feature of each charac-
ter using the feature of other characters so it will be sensitive
to the sub-words. As shown in Figure 6 (a), the sub-words
’din’ and ’ing’ pay attention to themselves individually. This
demonstrates the ability of our GLRM to learn contextual lin-
guistic knowledge.

Lguistic Insensitive Drift Problem

Figure. 7 shows some sample cases of attention drift being
corrected. For each input image, LPV can get three stages
of recognition results: one preliminary result and two cor-
rection results. From the attention map, we can observe that
if the 15! stage gets a drift result, the remaining stages have
the ability to correct benefiting from the linguistic-sensitive
query in CPA.

5 Conclusion

This paper first notices the Linguistic Insensitive Drift (LID)
problem and analyzes the linguistic perception of the model.
To find an efficient and accurate method, LPV is proposed to
enhance the linguistic information of both query and feature
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GT: raffles

Pred 1: Pred 2: Pred 3:
raafles raffles raffles

Pred 2:
chimney

Pred 1:
chimne_

Pred 3:
chimney

Figure 7: The visualization of attention map in each stage of CPA.
Experiments were performed on LPV-Small. The model has three
stages in CPA so there are three predict results for each input.

(Linguistic More). To be specific, LPV introduces CPA to
obtain an accurate attention map by using linguistic-sensitive
query instead of visual query, and designs GLRM to aggre-
gate the global linguistic information to enhance the visual
feature. Compared with previous methods, our LPV is able
to take a further step toward efficient and accurate recogni-
tion, which obtains dominant recognition performance while
maintaining a concise pipeline. We believe that LPV will in-
spire recent works in simple network design and efficient lin-
guistic perception, and we will further explore its potential in
the future.
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