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Abstract

In this paper, we propose an HOI-aware adaptive
network named AdaAct for weakly-supervised ac-
tion segmentation. Most existing methods learn a
fixed network to predict the action of each frame
with the neighboring frames. However, this would
result in ambiguity when estimating similar actions,
such as pouring juice and pouring coffee. To ad-
dress this, we aim to exploit temporally global but
spatially local human-object interactions (HOI) as
video-level prior knowledge for action segmenta-
tion. The long-term HOI sequence provides cru-
cial contextual information to distinguish ambigu-
ous actions, where our network dynamically adapts
to the given HOI sequence at test time. More
specifically, we first design a video HOI encoder
that extracts, selects, and integrates the most repre-
sentative HOI throughout the video. Then, we pro-
pose a two-branch HyperNetwork to learn an adap-
tive temporal encoder, which automatically adjusts
the parameters based on the HOI information of
various videos on the fly. Extensive experiments
on two widely-used datasets including Breakfast
and 50Salads demonstrate the effectiveness of our
method under different evaluation metrics.

1 Introduction
Action segmentation aims to predict the action for ev-
ery frame in the video. While previous methods have
achieved remarkable performance in the fully-supervised set-
ting [Kuehne et al., 2016; Lea et al., 2017; Rohrbach et
al., 2012; Singh et al., 2016; Yi et al., 2021; Park et al.,
2022], framewise annotation still requires huge labor costs
and is hard to obtain. Therefore, action segmentation with
weaker forms of supervision gradually gains its popularity
in recent years. In particular, transcript supervision [Bo-
janowski et al., 2014; Kuehne et al., 2017; Huang et al., 2016;
Ding and Xu, 2018; Li et al., 2019a; Lu and Elhamifar, 2021]
provides an ordered list of actions occurring in the video
without the starting and ending time, which significantly re-
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duces the annotation costs and improves the applicability to a
rapidly-growing number of videos on the Internet.

To learn from the transcript, previous approaches mainly
follow the “generating-matching” pipeline [Richard et al.,
2018; Li et al., 2019a; Lu and Elhamifar, 2021]. With
the given training videos, they first apply a temporal en-
coder to generate framewise action probabilities, and then
match the predicted probabilities sequence with the transcript
based on Viterbi decoding or dynamic time warping. How-
ever, to estimate the action probability of frame t during the
generating step, most existing approaches only take a fixed
number of neighbor frames around it [Richard et al., 2018;
Li et al., 2019a], and feed such video clip features into an
RNN-based [Chung et al., 2014] architecture. In this case,
the temporal encoder would fail to distinguish the attribute
of similar actions such as pouring coffee and pouring juice,
which may lead to counter-intuitive results of pouring coffee
in a juice-making video. Although tremendous efforts have
been made to remedy such ambiguity in the matching step,
the results are still unsatisfying due to the inherent defect in
the previous generating process.

In this paper, we address the ambiguity problem by de-
signing an adaptive weakly-supervised action segmentation
framework called AdaAct. Different from previous methods
which take a series of fixed-length video clips as input suc-
cessively (as shown in Figure 1 (a)), we exploit rich con-
textual information from temporally global but spatially lo-
cal human-object interactions (HOI) throughout the whole
video. Such HOI sequence further instructs the network as
prior knowledge, where our temporal encoder can be dynam-
ically adapted to it at the test time. As illustrated in Figure 1
(b), our method first extracts key interactions with objects at
different video timestamps, such as the knife, orange, and
squeezer. The obtained HOI sequence is further incorporated
into the temporal encoder, thereby the network parameters of
the encoder dynamically change with the HOI information on
the fly. More specifically, we design a three-step video HOI
encoder with the “extracting-selecting-integrating” process.
We first apply a pre-trained HOI detector to extract positive
interaction bounding boxes for the whole video and design
a simple selecting algorithm to pick the most representative
ones from them. Then, we explore the relations between these
key HOI boxes and integrate them into a single feature vec-
tor via a transformer-based network. To dynamically adapt
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Figure 1: (a) Most existing methods estimate the action probability of frame t using features of the adjacent frames (blue box in the figure).
They are difficult to distinguish actions such as pouring juice, coffee, and water considering the high representation similarity. (b) Our method
exploits temporally global but spatially local HOI information to learn an adaptive temporal encoder, which provides essential contextual
information to distinguish similar actions. As shown in the figure, considering the interactions with a knife, orange, and squeezer in the
video, the query action would be more likely to be pouring juice rather than coffee or water.

the network parameters, we propose a two-branch Hyper-
Network that simultaneously learns HOI-dependent and HOI-
independent knowledge. Our HOI-independent branch aims
to unearth the general characteristics of instructional videos
by iteratively updating a learnable embedding list through-
out the training process. Such transferable information will
later be encoded as a part of instruction used in the tem-
poral encoder during the test time. On the other hand, our
HOI-dependent branch takes the encoded feature vector from
the video HOI detector as input and adapts the temporal en-
coder to the given HOI knowledge occurring in the video.
Finally, late fusion is utilized to merge the knowledge from
two branches, resulting in more precise action segmentation.

We summarize our key contributions as follows:

1) To our best knowledge, this is the first work to learn an
adaptive temporal encoder for weakly-supervised action
segmentation, where the parameters of the network are dy-
namically adapted according to the input video on the fly.

2) We propose to exploit temporally global but spatially lo-
cal HOI information in weakly-supervised action segmen-
tation, which provides essential contextual information to
address the ambiguity problem of similar actions.

3) We validate our method on two challenging datasets,
Breakfast and 50Salads, and achieve state-of-the-art re-
sults for both weakly-supervised action segmentation and
alignment tasks.

2 Related Work
Fully-supervised action segmentation. Fully-supervised
action segmentation methods learn action segments under the

guidance of framewise annotations. Earlier attempts [Kara-
man et al., 2014; Rohrbach et al., 2012] applied action classi-
fication on the sliding window, followed by non-maximum
suppression to filter out redundant predictions. However,
these approaches failed to model the temporal dependency
between action sequences. Kuehne et al. [2016] tackled this
problem via the hidden Markov model, while Pirsiavash et
al. [2014] applied context-free grammar to capture tempo-
ral structure. In recent years, various network architectures
were proposed for learning long-range dependency. Lea et
al. [2017] introduced an encoder-decoder architecture for ac-
tion segmentation and detection. Lei et al. [2018] further ap-
plied deformable convolutions and residual stream. Farruha
et al. [2019] and Li et al. [2020] introduced dilated tempo-
ral convolution and proposed a multi-stage temporal convo-
lutional network, while various methods improved the multi-
stage network using graph-based temporal reasoning [Huang
et al., 2020] or boundary-aware cascade network [Wang et
al., 2020b]. With the success of transformer-based models in
computer vision, Yi et al. [2021] first introduced the trans-
former into the action segmentation task. Different from pre-
vious methods, Li et al. [2022] reformulated the action labels
as text prompts and paired them with corresponding video
clips, and co-trained the text encoder and the video encoder
through a contrastive approach.

Weakly-supervised action segmentation. Many of the
weakly-supervised methods utilize transcripts as supervision
during training. Huang et al. [2016] first introduced the con-
nectionist temporal classification framework to evaluate all
possible matching between the videos and transcripts. Ding et
al. [2018] started from the initial uniform mapping of the ac-
tion transcript, and iteratively refined the transcript during the
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Figure 2: Overview of the network architecture. Our method simultaneously learns HOI-dependent knowledge s from the video HOI encoder
and HOI-independent knowledge z from various videos across the dataset. The obtained knowledge is further incorporated through the two-
branch HyperNetwork and late fusion, which generates the network parameters of the adaptive temporal encoder. In this way, our network
dynamically adapts to the video contents when estimating the action probability of frame t, leading to better discrimination for similar actions.

training procedure. However, these methods fail to achieve
end-to-end training. Richard et al. [2018] instead generated
pseudo frame labels using the Viterbi algorithm and trained
a classifier based on framewise cross-entropy loss. Li et
al. [2019a] further extended the NN-Viterbi [Richard et al.,
2018] by introducing a new constrained discriminative for-
ward loss, which maximized the energy difference between
valid and invalid segmentation of training videos. In D3TW,
Chang et al. [2019] first applied a discriminative model for
solving the degenerate sequence problem. As these methods
have to search all the transcripts during testing and thus suf-
fer from long inference time, Souri et al. [2021] proposed
MuCon, a two-branch network that predicted both transcript
and framewise label of action segmentation, and designed the
mutual loss to ensure the consistency of representations. In
recent years, different weakly-supervised settings besides the
transcripts have been studied. Fayyaz et al. [2020] and Li
et al. [2020] reduced the supervision level, assuming only
the unordered list of actions is available for each training
video. Inspired by the point supervision in semantic seg-
mentation [Bearman et al., 2016], Li et al. [2021] trained a
segmentation model using timestamps annotations, in which
case only one arbitrary frame is annotated for each action. As
these methods use different kinds of supervision for training,
we do not directly compare them with our approach.

Human object interaction. The existing HOI detection
can be mainly categorized into single-stage approaches [Liao
et al., 2020; Wang et al., 2020a; Kim et al., 2020; Chen
et al., 2021] and two-stage approaches [Li et al., 2019b;
Zhang et al., 2021; Zhou and Chi, 2019; Zhou et al., 2020;
Ulutan et al., 2020]. Single-stage approaches integrate
bounding boxes detection and interaction recognition into a

single model. Liao et al. [2020] and Wang et al. [2020a] first
simultaneously generated bounding box candidates and inter-
actions, and then outputted final predictions after the match-
ing step. Chen et al. [2021] instead reformed the HOI detec-
tion as an adaptive set prediction problem. Compared with
one-stage methods, two-stage approaches first detect humans
and objects following the object detection pipeline and then
apply an interaction model to analyze the relations of the
bounding boxes. Qi et al. [2018] and Zhang et al. [2021]
modeled the relations using graph neural network. Fang et
al. [2018] emphasized the importance of human-part knowl-
edge in HOI detection. Although different methods have been
proposed in the image domain, research on video-level HOI
detection is still under-exploited.

3 Methodology
Our goal is to address the weakly-supervised action seg-
mentation problem under transcript supervision. Formally,
we define each video with its supervision as a tuple{
v, xT

1 , a
O
1 , l

O
1

}
, where v represents the video as a stack

of raw frames, xT
1 = [x1, ..., xT ] denotes the unsupervised

framewise features with length T , aO1 = [a1, ..., aO] indicates
the transcript, an ordered list of O actions occurred in the
video, and lO1 = [l1, ..., lO] records the number of frames for
each of the corresponding actions. Every action ao belongs
to the set of A action classes, namely ao ∈ A = {1, ..., A}.
During the inference, the objective is to predict the optimal
action list â and corresponding length l̂ based on the frame-
wise features x of the video v.

In this paper, we propose an adaptive network named
AdaAct that utilizes video-level HOI to distinguish similar
actions. As shown in Figure 2, our method mainly consists
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of a video HOI encoder and an adaptive temporal encoder.
For the video HOI encoder, it first takes the input video and
extracts all the valid interactions, then selects top-K interac-
tions by removing redundant and low-score detection. These
interactions are finally integrated as HOI-dependent knowl-
edge s. For the adaptive temporal encoder, it incorporates
HOI-dependent knowledge s with HOI-independent knowl-
edge z via a two-branch HOI-aware HyperNetwork [Ha et
al., 2016], which predicts the network parameters of the tem-
poral encoder. In the following, we describe the video HOI
encoder and the adaptive temporal encoder in detail, as well
as the training strategy to learn these two models.

3.1 Video HOI Encoder
The goal of our video HOI encoder is to model the depen-
dencies between key HOI through the whole video and en-
code them as HOI-dependent knowledge s. It mainly contains
three levels from the bottom to the top: extracting, selecting,
and integrating.

Extracting
We take the video as input at the first level. Since the majority
of HOI detection methods are developed only for image sce-
narios, we pre-process the video by down-sampling and ex-
tracting the raw frames under 15 FPS. After that, we employ
the detector on every frame iteratively following the tempo-
ral order. To avoid introducing additional computation cost,
here we follow the 100 Days of Hands [Shan et al., 2020]
with its weight frozen during training and testing. The model
outputs the predictions as tuple {bh, bo, c, t}, where bh and bo
represent the bounding boxes of hands and object, c ∈ [0, 1]
denotes the interaction confidence score, and t indicates the
timestamp of the frame.

Selecting
Inspired by the non-maximum suppression (NMS) [Neubeck
and Van Gool, 2006] used for filtering proposals in object de-
tection, we propose a video-NMS algorithm to select top-K
object bounding boxes from the predictions pool. Different
from the traditional NMS algorithm that filters the proposals
only by the intersection over union (IoU), our method also
adds the temporal constraint, so that the duplicates of highest-
score proposals are removed based on IoU and time interval.
After that, K tuple predictions with the highest score are se-
lected and ranked by timestamp order for the next step.

Integrating
In the integrating step, we propose a ViT-based network to
generate HOI-dependent knowledge s. To handle all the K
object bounding boxes bo, we use a frozen ResNet50 [He
et al., 2016] and project them into a sequence of HOI em-
beddings [e1, ..., eK ]. Following ViT’s design, we append a
learnable embedding etoken before the sequence, the state of
which serves as the HOI-dependent knowledge s at the trans-
former output. We also add the 1D learnable position embed-
dings P = [ptoken, p1, ..., pK ] to the HOI embeddings and
feed the resulting sequence into the ViT network.

Given the input E0 = [etoken, e1, ...eK ] + P , the network
conducts the following procedures for layer n from 1 to N :

E′
n = MSA(LN(En−1)) + En−1, (1)

En = MLP(LN(E′
n)) + E′

n, (2)
where MSA stands for the multi-head self-attention module,
MLP represents multi-layer perceptron and LN denotes Lay-
erNorm. The obtained HOI-dependent knowledge s is then
merged with HOI-independent knowledge z, which will be
further explained in the following section.

3.2 Adaptive Temporal Encoder
For a fair comparison, we apply the GRU followed by a linear
layer as the temporal encoder backbone in consistence with
the previous methods [Richard et al., 2018; Li et al., 2019a;
Lu and Elhamifar, 2021]. To instruct the temporal encoder
with video-level knowledge, we employ the two-branch HOI-
aware HyperNetwork [Ha et al., 2016], a sub-network used
to learn parameters for the temporal encoder in the action pre-
dicting process. Specifically, for the linear layer in the tem-
poral encoder, its weights and bias are separately generated
by feeding learnable embedding z into the HOI-independent
branch and s into the HOI-dependent branch. The pipeline
can be written as follows:

W = F (Hi(z), Hd(s)), (3)

b = F (H ′
i(z), H

′
d(s)), (4)

where Hi, Hd represent the independent and dependent
branches for weights generation, and H ′

i , H
′
d are for bias.

Finally, we apply the late fusion module F to integrate in-
formation from the two branches. Instead of fixing the net-
work during test time in typical deep learning networks, our
method adaptively adjusts the network parameters by incor-
porating different video-level prior knowledge into framewise
action prediction, thus eliminating the potential ambiguity oc-
curring between similar actions.

Multi-head HOI-independent Branch
Since the weight and bias can be considered as matrices with
different dimensions, here we use the weight generation Hy-
perNetwork as the example. We suppose the weight param-
eters generated from the HOI-independent branch are stored
in matrix W z ∈ RCout×A, where Cout represents the frame
representation dimension after processed by GRU. Therefore,
the HOI-independent branch can be written as below:

W z = Hi(z). (5)
Instead of formulating the HOI-independent knowledge

as a single vector, we initialize the embedding list z =
[z1, ..., zm], zi ∈ RD. These vectors are fed into the two-
layer linear network Hi, yielding m different vectors with the
same length Cout×A

m . Finally, the outputs are reshaped and
concatenated together as the W z . To ensure the correctness
of dimension, Cout must be divisible by m. Formally, the
network processes the following procedures:

W z
i = φ(MLP(zi)), i = 1, ...,m, (6)

W = [W1, ...,Wm],Wi ∈ R
Cout
m ×A, (7)
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Breakfast MoF MoF-BG IoU IoD

ECTC [Huang et al., 2016] 27.7 - - -
HMM/RNN [Richard et al., 2017] 33.3 - - -
TCFPN [Ding and Xu, 2018] 38.4 38.4 24.2 40.6
NN-Viterbi* [Richard et al., 2018] 41.9 38.9 33.3 42.8
D3TW [Chang et al., 2019] 45.7 - - -
CDFL* [Li et al., 2019a] 49.8 47.1 35.3 45.6
MuCon [Souri et al., 2021] 49.0 - - -
TASL* [Lu and Elhamifar, 2021] 47.2 44.4 36.1 45.8
AdaAct (Ours) 51.2 48.3 36.3 46.4

50Salads MoF MoF-BG IoU IoD

NN-Viterbi [Richard et al., 2018] 49.4 - - -
CDFL [Li et al., 2019a] 54.7 49.8 31.5 40.4
AdaAct (Ours) 55.6 50.3 35.2 44.6

Table 1: Action segmentation results on the Breakfast and the 50Sal-
ads datasets. The dash line indicates that no prior result is available.
We report the reproduced results for the methods with an asterisk.

where φ(·) represents the reshape operation. Compared with
the original multi-head mechanism that uses different linear
layers to project the same input, our method initializes a list
of vectors and keeps the same network parameters.

Multi-head HOI-dependent Branch
Similar to the HOI-independent branch, we maintain the em-
bedding list with the same size and separately sum them with
the HOI-dependent knowledge s. The resulting vectors are
projected by the two-layer linear network Hd, followed by
the reshaping and concatenation to get the matrix W s.

Finally, we generate the weight of the linear layer by
element-wise multiplying W z and W s:

W = W z ⊙W s. (8)

3.3 Transcript Decoding and Training
We formulate the action segmentation problem as finding the
most likely labeling based on the video features. Specifically,
the optimal (âO1 , l̂

O
1 ) can be obtained as follows:

argmax
aO
1 ,lO1

{
p
(
aO1 , l

O
1 | xT

1

)}
= argmax

aO
1 ,lO1

{
p
(
xT
1 | aO1 , lO1

)
· p

(
lO1 | aO1

)
· p

(
aO1

)}
= argmax

aO
1 ,lO1

{
T∏

t=1

p
(
xt | ao(t)

)
·

O∏
o=1

p (lo | ao) · p
(
aO1

)}
.

(9)

In the above formula, p (xt | a) can be further transformed:

p (xt | a) ∝
p (a | xt)

p(a)
, (10)

where p (a | xt) is modeled by the output of our adaptive tem-
poral encoder. For the modeling of p (lo | ao) and p

(
aO1

)
, the

same settings with previous work [Richard et al., 2018] are
utilized for the fair comparison.

Breakfast MoF MoF-BG IoU IoD

ECTC [Huang et al., 2016] 35.0 - - 45.0
HMM/RNN [Richard et al., 2017] - - - 47.3
TCFPN [Ding and Xu, 2018] 53.5 51.7 35.3 52.3
D3TW [Chang et al., 2019] 57.0 - - 56.3
CDFL [Li et al., 2019a] 63.0 61.4 45.8 63.9
MuCon [Souri et al., 2021] - - - 66.2
TASL [Lu and Elhamifar, 2021] 64.1 - 49.9 64.7
AdaAct (Ours) 64.4 62.3 49.9 65.3

50Salads MoF MoF-BG IoU IoD

CDFL [Li et al., 2019a] 68.0 65.3 45.5 58.7
AdaAct (Ours) 69.8 66.5 47.5 60.3

Table 2: Action alignment results on the Breakfast and the 50Salads
datasets. The dash line indicates that no prior result is available.

Figure 3: HOI detection in the frying egg activity. Our model only
encodes the representation of spatula, since there is no direct inter-
action between human hands and egg.

We apply the constrained discriminative forward loss pro-
posed by [Li et al., 2019a] for the network training, and pro-
vide detailed comparisons with the baseline method in the fol-
lowing section. It is worth noting that our method shows great
flexibility and can be plugged into different existing methods.

4 Experiments
We validate our proposed method by comparing it with sev-
eral state-of-the-art weakly-supervised action segmentation
approaches, and discuss the effectiveness of each component
in the following ablation studies.

4.1 Experimental Setup
Datasets. We conduct our experiments on two real-world
instructional video datasets: Breakfast [Kuehne et al., 2014]
and 50Salads [Stein and McKenna, 2013]. The Breakfast
dataset contains more than 1.7k videos of people perform-
ing 10 different cooking activities, such as preparing juice or
preparing salad. The cooking activities are comprised of 48
fine-frained actions. Each video has 6.9 action segments on
average, and the length of the video varies from several sec-
onds to a few minutes. The 50Salads dataset has 50 long
videos with 17 different action classes. On average, each
video contains 20 action instances.
Evaluation metrics. We use the following four metrics for
evaluation. (1) Mean over frame accuracy (MoF) is de-
fined as the number of correctly predicted frames divided
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cereals coffee fried-egg juice milk pancake salad sandwich scrambled-egg tea Total MoF

NN-Viterbi [Richard et al., 2018] 39.5 39.0 48.4 74.2 56.8 16.9 46.0 57.0 45.0 44.9 41.9
CDFL [Li et al., 2019a] 37.9 37.0 54.1 75.8 58.2 31.1 27.4 38.8 43.4 34.6 49.8
TASL [Lu and Elhamifar, 2021] 51.8 43.6 59.2 74.2 56.5 24.9 46.0 58.8 50.4 42.1 47.2
AdaAct (Ours) 56.1 57.3 49.1 76.1 58.7 47.0 48.2 63.4 44.7 35.5 51.2

Table 3: Action segmentation performance on the Breakfast dataset. We report the mean over frame accuracy (MoF) of every cooking activity
and across all the activities, where “cereals” indicates “making cereals”, etc.

Figure 4: Action segmentation results of CDFL, TASL, and our approach on the coffee-making video (top) and juice-making video (bottom),
where GT stands for the ground truth segmentation.

by the total number of frames. (2) Mean over frame ac-
curacy without background (MoF-BG) removes the back-
ground frames when calculating MoF, thus eliminating the
drawback when video contains long periods of irrelevant in-
formation. (3) Intersection over union (IoU) is calculated as
|GT ∩ correct| / |GT ∪ correct|, where GT stands for the
ground truth frames and correct denotes the correctly classi-
fied frames. (4) Intersection over detection (IoD) is defined
as |GT ∩ correct| / |GT |.
Implementation details. For the video HOI encoder, we
follow the same HOI detector pre-trained on the 100K dataset
as mentioned in 100 Days of Hands [Shan et al., 2020]. We
set 0.5 as the HOI detection threshold and pick K = 10
bounding boxes after the selection process. For the ViT net-
work, we replace the image patching and linear projection
steps with the ResNet50 backbone, leading to 10 × 2048
input size. We use D = 128 for the dimension of both
HOI-dependent and HOI-independent knowledge, and set the
multi-head number as 8. For the adaptive temporal encoder,
we use the 64-hidden unit GRU. We maintain the learning
rate of 0.01 with 12500 epochs through the training process.

4.2 Experimental Results
We report the experimental results for two tasks, namely ac-
tion segmentation where only the video is available during the

inference, and action alignment where both video and tran-
script are provided.

Quantitative Results
We quantitatively compare our method with prior works in
this section. Table 1 reports the action segmentation re-
sults on two instructional video datasets under four evalua-
tion metrics, where the best results are indicated in bold. We
can observe that by introducing HOI-aware knowledge, our
method exceeds state-of-the-art methods by 1.4% MoF and
1.2% MoF-BG on the Breakfast dataset, and 0.9% MoF and
0.5% MoF-BG on the 50Salads dataset. This validates that
when only video is given during testing, our method learns
rich video-level knowledge and instructs the decision-making
of the temporal encoder, leading to significant performance
improvement on both datasets.

Table 2 shows the action alignment results following the
same metrics in Table 1. Notice that in this setting the tran-
script is available during inference, thus providing stronger
video-level knowledge compared with learned HOI-aware
knowledge in our method. Despite this, our method still out-
performs existing approaches on both datasets and achieves
+1.8% MoF and 1.2% MoF-BG improvement on the 50Sal-
ads, which proves that the HOI-aware knowledge also helps
to refine the starts and ends of predicted actions in the video.

We also report the per-activity MoF results on the Break-
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Figure 5: Visualization of HOI detection and corresponding action
probability results. Only 4 frames with top-3 action predictions are
shown due to the figure size limit. The correct predictions with the
highest probability score are marked in red color.

fast dataset under the action segmentation setting. In Table 3,
we can observe that our methods outperforms the baseline ap-
proaches for most of the cooking activities as expected. For
those activities containing similar actions, such as pouring
cereals in “cereals”, pouring coffee in “coffee”, and pouring
milk in “pancake”, our method achieves a large performance
gain (+4.3% MoF in “cereals”, +13.7% MoF in “coffee” and
+15.9% MoF in “pancake”). This validates the effectiveness
of our method in distinguishing ambiguous actions among
different cooking activities.

However, we notice that our method still suffers from low
performance in tea-making and egg-making (“fried-egg” and
“scrambled-egg”) videos. Since our method applies the con-
strained discriminative forward loss and follows the temporal
encoder architecture in CDFL, our method is inevitably af-
fected by its performance. From this perspective, we still out-
performs CDFL for +0.9% in “tea” and +1.3% in “scrambled-
egg”. We also investigate the reason for performance drop-
ping in the “fried-egg” activity. By visualizing the selected
HOI bounding boxes in Figure 3, we observe that our HOI
extractor tends to capture the spatula, while limited egg in-
formation is selected due to the long distance between itself
and human hands. Despite the fact that people in the videos
directly interact with the spatula for a long period of time,
with the absence of egg detection, such HOI still could not
provide enough information to instruct the temporal encoder.
Therefore, the performance of our method instead degrades
due to the noisy HOI-aware knowledge.

Qualitative Results
Figure 4 shows the action segmentation results of two videos
on the Breakfast dataset. For the coffee-making video on
the top, existing methods make the wrong predictions due
to the high similarity of different pouring actions. In con-
trast, our method encodes strong semantic information in the
HOI-aware knowledge, thus correctly classifying all the ac-
tions contained in the video. In the bottom juice-making case,
when all the methods successfully capture the actions through
the video, our method also shows higher accuracy in detect-
ing the boundaries among different actions.

We also visualize how HOI detection helps to eliminate
ambiguity in predicting action probability. For the cereals-
making video in Figure 5, our HOI detector precisely cap-
tures the interactions with a cereal bag and a milk box at dif-

HOI-dependent HOI-independent multi-head MoF

✓ ✓ 47.5
✓ ✓ 50.3
✓ ✓ 49.4
✓ ✓ ✓ 51.2

Table 4: Effect of each component in our method. We report the
mean over frame accuracy (MoF) for action segmentation on the
Breakfast dataset.

knowledge dimension MoF MoF-BG IoU IoD

32 45.5 42.8 33.1 42.9
64 48.7 46.0 34.8 45.2
128 51.2 48.3 36.3 46.4
256 46.9 44.0 33.7 44.0

Table 5: Effect of the HOI-dependent and HOI-independent knowl-
edge dimension in our method. We report the mean over frame ac-
curacy (MoF) for action segmentation on the Breakfast dataset.

ferent timestamps. Without applying HOI-aware knowledge,
the existing method suffers from low confidence when dis-
tinguishing “pour cereals”, “pour water” and “pour milk” in
the first frame and makes the wrong prediction in the sec-
ond. In contrast, our method both makes the correct pre-
dictions and widens the probability gaps among similar ac-
tions. In the last two frames, our method also greatly im-
proves the “pour milk” confidence, demonstrating that HOI-
aware knowledge provides strong instruction for a better ac-
tion probability estimation.

4.3 Ablation Studies
We examine different components of our method and report
the results in Table 4. The full model with the best perfor-
mance is provided at the bottom for comparison. Introducing
HOI-dependent knowledge leads to the most significant im-
provement of MoF by 3.7% and HOI-independent knowledge
contributes to 0.9% MoF improvement, which demonstrates
that both sources of knowledge are necessary for the HOI-
aware understanding. In addition, applying the multi-head
mechanism further achieves +1.8% MoF.

Table 5 shows how different dimensions of HOI-
dependent/independent knowledge affect the action segmen-
tation. As expected, either too small or large size would cause
the performance to drop. The highest accuracy is achieved
with 128 dimensions.

5 Conclusion
In this paper, we have proposed AdaAct, an HOI-aware adap-
tive network for video action segmentation under transcript
supervision. Our method exploits essential contextual in-
formation from temporally global but spatially local human-
object interactions, and dynamically adapts its network pa-
rameters according to the videos on the fly. AdaAct achieves
state-of-the-art results on two instructional video datasets for
both action segmentation and alignment tasks, and especially
shows strong capability in distinguishing similar actions.
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