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Abstract
Current few-shot segmentation (FSS) approaches
have made tremendous achievements based on pro-
totypical learning techniques. However, due to the
scarcity of the support data provided, FSS meth-
ods still suffer from the intra-class and inter-class
gaps. In this paper, we propose a uniform network
to fill both the gaps, termed FGNet. It consists of
the novel design of a Self-Adaptive Module (SAM)
to emphasize the query feature to generate an en-
hanced prototype for self-alignment. Such a pro-
totype caters to each query sample itself since it
contains the underlying intra-instance information,
which gets around the intra-class appearance gap.
Moreover, we design an Inter-class Feature Sepa-
ration Module (IFSM) to separate the feature space
of the target class from other classes, which con-
tributes to bridging the inter-class gap. In addition,
we present several new losses and a method termed
B-SLIC, which help to further enhance the separa-
tion performance of FGNet. Experimental results
show that FGNet reduces both the gaps for FSS by
SAM and IFSM respectively, and achieves state-
of-the-art performances on both PASCAL-5i and
COCO-20i datasets compared with previous top-
performing approaches.

1 Introduction
Brilliant efforts have been made in image semantic seg-
mentation [Long et al., 2015; Szegedy et al., 2017; Badri-
narayanan et al., 2017; Chen et al., 2017; Yu et al., 2020],
achieving excellent performance in several large-scale la-
beled datasets [Silberman et al., 2012; Zhou et al., 2017;
Cordts et al., 2016]. However, current top-performing ap-
proaches rely heavily on extensive pixel-wise annotations,
which is time-consuming and labour-intensive. To handle this
issue, few-shot segmentation (FSS) [Shaban et al., 2017] has
received lots of attention in recent years.

FSS is an extension task of few-shot learning, aiming to
learn the generalization ability from the given classes and
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Figure 1: Intra-class and inter-class gaps of few-shot segmentation.
(a) The information intersection of support data and query data is
not adequate, causing the intra-class gap. (b) The target class may
share the similar feature with the given non-target classes, resulting
in an ambiguity to predict the data near the decision boundary.

adapt it to the arbitrary novel classes with only a handful
of support samples. The mainstream strategy of FSS fol-
lows the pattern of metric learning [Dong and Xing, 2018;
Wang et al., 2019; Liu et al., 2020] based on a global de-
scriptor, named prototype. In particular, the prototype de-
notes a representation vector of a specific category, and the
prototype-based methods generate a representative prototype
for each category from the limited support samples. Then the
prototype is leveraged to activate the query feature for pre-
dicting the mask of the query image.

However, FSS suffers from a dilemma, which lies in two
aspects, i.e., intra-class gap and inter-class gap. On the one
hand, the given support images are limited while the query
images are various, resulting in the intra-class appearance gap
between support data and query data. On the other hand, the
feature space of support data is also sparse and in low cov-
erage, leading to the problem of the inter-class classification
gap. As shown in Figure 1, such an issue results in an ambi-
guity to the distinction between the target class and the non-
target class with the similar representation.

Current FSS approaches mainly focus on refining the pro-
totype quality, enhancing query features [Yang et al., 2020;
Li et al., 2021] or seeking for appropriate matching mech-
anisms [Wang et al., 2020; Siam et al., 2021]. In spite of
their high performances, those methods fail to eliminate the
intra-class appearance gap and inter-class classification gap
essentially. Especially, no matter how the prototype is refined,
the intersection between support images and query images re-
mains inadequate. Moreover, the issue of the inter-class gap
is rarely discussed, which makes the generation of prototypes
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very difficult to distinguish the different classes with similar
representations [Okazawa, 2022]. In this paper, we concen-
trate on tackling the above two problems in one single uni-
form framework.

Due to the scarcity of the support data, the pattern in the
query image may not be contained in the prior knowledge.
Accordingly, we propose a Self-Adaptive Module (SAM) to
reduce the intra-class gap, which is motivated by [Liu and
Qin, 2020; Fan et al., 2022]. We get around the issue and
propose a self-adaptive mechanism to establish an enhanced
prototype for further prediction. Such a prototype contains
the underlying information of the query sample itself, which
caters to each query data by self-alignment, as the intra-
instance similarity is higher than the cross-instance similar-
ity. Moreover, we propose an inter-class loss to increase the
similarity of support prototype and query prototype, aiming
to guide the network to extract the intrinsic feature of each
specific category.

As to the inter-class gap, the instance of the target class
may share a similar feature space with the non-target class,
due to the inadequacy of the support data. Therefore, we
propose an Inter-class Feature Separation Module (IFSM) to
distance the inter-class representations. Specifically, we re-
duce the prototype similarity between different categories to
make the prototype discriminating. Moreover, due to the
setting of FSS, the background area may contain the latent
non-target classes. To distinguish the foreground with the la-
tent instance [Yang et al., 2021] of the non-target class in the
background region, we leverage superpixel-guided clustering
[Li et al., 2021] and propose a background SLIC (B-SLIC)
method to divide the background into several sub-areas. Then
we present a novel loss to enlarge the distance between the
support prototype and the background prototypes of each sub-
area. In this way, the separation performance is improved
to secernate the different categories, especially those with
highly analogous representations.

Combining the above building blocks, we propose a uni-
form network to fill both the intra-class and inter-class gaps,
named FGNet. To evaluate the performance of FGNet, we
conduct extensive experiments and ablation studies. Experi-
mental results show that FGNet surpasses previous SOTAs on
both PASCAL-5i [Everingham et al., 2010] and COCO-20i
[Lin et al., 2014] datasets.

In summary, our main contributions are as follows:

• We propose FGNet, a uniform prototypical learning net-
work to fill both the intra-class and inter-class gaps for
few-shot segmentation.

• We introduce two modules, i.e., SAM and IFSM, to get
around the intra-class appearance discrepancy and sepa-
rate the prototype of different classes, respectively. We
also present several new losses and B-SLIC to further
improve the separation performance of FGNet.

• Extensive experiments show that FGNet surpasses other
prevalent FSS approaches and achieves state-of-the-art
performances on both PASCAL-5i and COCO-20i on
the metric of mean intersection over union (MIoU).

2 Related Work

Semantic segmentation Semantic segmentation is a funda-
mental task in computer vision, which classifies each pixel
into a pre-defined category. The mainstream paradigm is
based on the fully convolutional network (FCN) [Long et al.,
2015], which replaces all the linear layers with the convolu-
tional layers. Recent breakthroughs in semantic segmenta-
tion leverage the encoder-decoder structure for better feature
extraction [Chen et al., 2018], the dilated convolution to en-
large the receptive field [Mehta et al., 2018] and the atten-
tion mechanism to model long-range dependency [Strudel et
al., 2021; Xie et al., 2021a]. However, these approaches rely
heavily on large-scale annotated datasets, resulting in a poor
adaptation ability to the unseen classes with only a handful of
the annotated samples.
Few-shot learning Few-shot learning aims to learn the gener-
alization ability to conduct classification on unseen categories
with only a handful of training samples available. Existing
methods can be roughly divided into two branches, i.e., meta-
learning based approaches [Baik et al., 2021; Xu et al., 2021;
Ding et al., 2021] and metric-learning based approaches [Do-
ersch et al., 2020; Chen et al., 2022]. The main idea of the
former is to improve the capability of fast adaptation to the
novel classes. In the latter approaches, the distance of simi-
larity measurement is employed to seek for the relevance of
the support-query pair. Different from few-shot classification,
few-shot segmentation predicts the mask in the pixel-level,
which is different and more challenging than the classifica-
tion task.
Few-shot segmentation FSS is a challenging task that ex-
tends semantic segmentation to the few-shot scenario. It re-
quires conducting pixel-wise prediction of the unseen cat-
egories with only a small number of annotated samples.
OSLSM [Shaban et al., 2017] first introduced the task of
FSS, which proposes a two-branch network based on meta-
learning strategy. Recently, metric-learning based approaches
[Wang et al., 2019; Liu et al., 2020] are proposed for FSS,
which constrcuts a global descriptor for each specific cat-
egory, named prototype. The later works mainly focus
on improving the quality of prototypes [Li et al., 2021;
Yang et al., 2020; Liu et al., 2022], enhancing the matching
mechanism [Wang et al., 2020; Zhuge and Shen, 2021], lever-
aging background information [Dong et al., 2021; Tang et al.,
2021] and introducing memory networks [Xie et al., 2021b;
Wu et al., 2021].

Despite their success, existing approaches can hardly elim-
inate the intra-class and inter-class gaps. Although the pro-
totype is refined to be comprehensive, the intra-class appear-
ance difference remains inevitable. Such a gap causes an ob-
stacle for predicting the mask of query images whose fea-
tures are not overlapped with the limited support data. More-
over, there is little attention to the inter-class classification
gap, leading to the ambiguous decision boundary to classify
the non-target data with a similar representation to the tar-
get class. Therefore, this gives the motivation of this paper:
can we fill both the gaps of FSS in a uniform framework to
enhance the performance?

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1750



Shared 
CNN

IFSM Linter

M
AP

expand

Concat

Aggregation
Lseg

M
AP

Lintra

support mask

support image

query image M1

pf

M2

 M3

 ps

SAM (pre) + FEM  + Cosine similarity Pixel-wise similarity MAP Masked average pooling

conv

 pq

 Fs

 Fq

 Fe

 pe

predicted mask Fq

Average fusionSAM (post)SAM  = 

Figure 2: Overall architecture of FGNet. The Self-Adaptive Module (SAM) consists of SAM (pre), FEM and SAM (post). SAM and IFSM
are the core modules of FGNet, aiming at reducing the intra-class gap and the inter-class gap, respectively.

3 Method
3.1 Problem Definition
Different from the classic semantic segmentation, FSS aims
at learning the generalization ability to adapt to unseen cat-
egories. Specifically, models are trained on the set of cate-
gories Ctrain and tested on the set of novel categories Ctest,
where Ctrain ∩ Ctest = φ. Both the training set Dtrain =
{IS/Q,MS/Q} and test set Dtest = {IS/Q,MS/Q} are com-
posed of several episodes, where I ∈ RH×W×3 denotes the
RGB image and M ∈ RH×W represents the binary mask.
The subscripts S and Q stand for support and query, respec-
tively. We follow the episodic fashion [Shaban et al., 2017] to
train and test our model. Each episode is composed of k sup-
port samples {(IiS ,M i

S)}ki=1 and a query sample (IQ,MQ),
which share the same category c. With a batch size of B,
the model predicts the query mask M̃Q to approximate the
corresponding ground-truth mask MQ.

3.2 Overview of FGNet
The overall architecture of FGNet is illustrated in Figure 2.
Such a network is composed of two core modules, i.e., a
Self-Adaptive Module (SAM) and an Inter-class Feature Sep-
aration Module (IFSM), focusing on handling the intra-class
variation and separating the target class with the classes that
share similar features, respectively.

The overview data flow of FGNet is as follows. First, the
support image and the query image are fed into a shared
convolutional neural network (CNN) [LeCun et al., 1989]
for feature extraction. Through IFSM, we obtain an inter-
class loss Linter for distancing the representations of differ-
ent classes. As shown in Figure 2, SAM consists of three
parts, i.e., SAM (pre), feature enhancement module (FEM)
and SAM (post). To narrow the intra-class gap, SAM ex-
ploits the query feature and calculates a query prototype for
self-alignment. Subsequently, features and similarity maps

are concatenated and fed into an FPN-like network [Tian et
al., 2020] for feature enhancement. This module aims to rec-
tify the scale inconsistency and refine the feature in a multi-
scale manner. Leveraging the enhanced feature, we gener-
ate an enhanced prototype, which activates the query feature
to predict the mask. Moreover, the enhanced feature passes
through three 1× 1 convolutional blocks, followed by a soft-
max operation to predict another mask. The average fusion
of the two predicted masks forms the final prediction M̃Q.
Therefore, the segmentation loss Lseg is calculated by the
binary cross entropy loss of predicted mask M̃Q and ground-
truthMQ. In addition, we calculate the intra-class loss Lintra

based on these prototypes to improve the descriptor similarity
and compact the feature space of the same class. Accordingly,
the total loss function L is formulated as:

L = α1Linter + α2Lintra + α3Lseg (1)

where α1, α2 and α3 are balanced factors, and we empirically
set α1 = 0.25, α2 = 0.25 and α3 = 0.5, respectively. We
dive into the details of SAM and IFSM below.

3.3 Self-Adaptive Module
Despite great efforts to refine the prototype [Li et al., 2021;
Liu et al., 2020], the huge intra-class variation remains in-
evitable due to the scarcity of support data and the diversity
of query data. Therefore, we design SAM to exploit the query
feature and establish a query prototype to match the query
feature itself. The query prototype is more effective to predict
the query mask, since the intra-instance similarity is much
higher than the traditional cross-instance similarity. Such a
query prototype is homologous to the corresponding query
feature. That is, it is suitable to fill the intra-class gap and re-
solve the issue from the intra-instance perspective. Moreover,
we propose an intra-class loss to improve the similarity of the
support prototype and the query prototype, which guides the
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Figure 3: Overall pipeline of IFSM.

network to extract more intrinsic features of each specific cat-
egory.

Given the query feature Fq and the support prototype ps,
we first calculate the similarity map M1 through pixel-wise
cosine similarity, and then generate a query prototype pq by a
masked average pooling operation, formulated as:

pq =

∑
(x,y) F

(x,y)
q 1[M

(x,y)
1 > µ]∑

(x,y) 1[M
(x,y)
1 > µ]

(2)

where (x, y) denotes the coordinate, µ represents a threshold
to activate M1, and 1 is an indicator function. Each pixel
M

(x,y)
1 ∈ [0, 1] stands for the confidence of the foreground.

The selection of µ is significant for establishing a query pro-
totype for self-alignment. Here we set µ = 0.7 empirically.
As the foreground region is of high similarity and sensitive to
the noise, we need to select high-confidence features to ob-
tain the prototypes, which are further used for self-alignment.
Note that, each activation threshold of the similarity map in
this paper is 0.5 unless explicitly stated.

Subsequently, we establish a fused prototype pf through
the aggregation of ps and pq , computed by:

pf = β1ps + β2pq (3)

where β1 and β2 represent the weights for prototype fusion
and we set β1 = β2 = 0.5 empirically. Then we activate
the query feature by pf . Such a self-matching process gen-
erates a high-quality similarity map M2, as the intra-instance
information is fully exploited for self-adaptation.

Motivated by [Tian et al., 2020], we employ an FPN-like
network (FEM) for feature enhancement. The concatenation
of Fs, Fp, M2 and the expansion of pf forms the input of
FEM. Such a network outputs the enhanced feature Fe with
comprehensive and multi-scale information of the specific
class. Then we activate Fe by pf to compute the similarity
map M3 that is further utilized to generate the enhanced pro-

totype pe, which is formulated by:

pe =

∑
(x,y) F

(x,y)
e 1[M

(x,y)
3 > τ ]∑

(x,y) 1[M
(x,y)
3 > τ ]

(4)

where τ is a threshold of confidence to establish the enhanced
prototype pe, and 1 is an indicator function. Here we set
τ = 0.5 empirically.

Employing the above four prototypes, we define the intra-
class loss function Lintra as:

Lintra = 1−
∑

pi∈SP

∑
pj∈SP

cos(pi, pj)1[pi 6= pj ]

1[pi 6= pj ]
(5)

where cos is the cosine similarity and SP denotes the permu-
tation of the prototype set P = {ps, pq, pf , pe}. We compute
the cosine similarity between prototype pairs to narrow their
discrepancy. This intra-class loss aims to guide the network
to extract more intrinsic features of a specific category, de-
spite the appearance gap between the support image and the
query image.

Following the procedure described in Section 3.1, we ob-
tain the final mask M̃Q. Thus the segmentation loss Lseg is
formulated as:

Lseg = BCE(M̃Q,MQ) (6)
where BCE stands for the binary cross entropy loss of the
predicted query mask M̃Q and its ground-truth MQ.

3.4 Inter-class Feature Separation Module
IFSM is divided into two branches, as shown in Figure 3.
On the one hand, reducing the similarity of prototypes with
different classes helps to improve the separation performance
[Okazawa, 2022] on differnet category. On the other hand,
background regions usually contain latent classes [Yang et
al., 2021], while they are ignored due to the irrelevance of the
target class. Therefore, we take both scenarios into account
to enlarge the representation distance of the target class and
non-target class.
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Given a batch size B, we first calculate the support pro-
totype for each episode and obtain the support prototype set
Ps = {pc1s , pc2s , ..., pcBs }, where the superscript ci represents
the category of the i-th prototype. Accordingly, the cross-
class loss Lcross is formulated by:

Lcross =
B∑
i=1

B∑
j=1

cos(pcis , p
cj
s )1[ci 6= cj ]

1[ci 6= cj ]
(7)

where 1 and cos are defined the same as those in Eqs. (4)
and (5), respectively. The average similarity of the pairwise
prototypes with different classes forms the cross-class loss.
Such a loss is introduced to separate the representation space
of distinct categories, resulting in the improvement of pre-
dicting the ambiguous data near the decision boundary.

Furthermore, we fully exploit the background information,
as the ignored latent-class instance may hide in the back-
ground region due to the special setting of FSS. Compared
with the foreground instance, the information of the back-
ground is extremely complicated. Specifically, the back-
ground area contains not only the noncontinuous stuff, e.g.,
sky, but also other continuous things of the non-target classes.
Hence, we divide the background region into Nsub sub-areas,
motivated by the superpixel method SLIC [Achanta et al.,
2012]. Such a strategy, which is called B-SLIC by us, aims
to cluster the pixels with similar representations to form sev-
eral small sub-regions in the background area. Our B-SLIC
operation takes the pixel-level feature and the coordinate into
account to calculate the distance for clustering, inspired by
[Irving, 2016]. Thus the distance D between two different
pixels is calculated by:

D =
√
(df )2 + (dc/m)2 (8)

where df and dc denote the Euclidean distance of feature
and coordinate spaces of the two pixels. The balanced fac-
tor m is set to be m =

√
Nbg/Nsub [Achanta et al., 2012],

where Nbg represents the total number of background pix-
els. Note that, the setting of Nsub follows the strategy in
[Li et al., 2021]. Accordingly, we obtain Nsub background
regions and establish the background prototype set Pbg =

{P 1
bg, P

2
bg, ..., P

Nsub

bg }. Therefore, the background-class loss
Lbg is formulated by:

Lbg =
1

Nsub

Nsub∑
i=1

cos(ps, p
i
bg) (9)

Finally, according to Eqs. (7) and (9), the total inter-class loss
Linter is calculated by:

Linter = γ1Lcross + γ2Lbg (10)
where γ1 and γ2 are the balanced factors and we set γ1 =
γ2 = 0.5 empirically. Such a loss targets to reduces the rep-
resentation similarity of different categories, which enlarges
the distance between classes and refines the ambiguous deci-
sion boundary.

4 Experiments

Datasets and Metric. To evaluate the performance of FGNet,
we conduct experiments on two widely-used FSS datasets,
i.e., PASCAL-5i [Shaban et al., 2017] and COCO-20i [Lin
et al., 2014]. PASCAL-5i and COCO-20i are derived from
the traditional segmentation datasets Pascal VOC 2012 [Ev-
eringham et al., 2010] and MS COCO [Lin et al., 2014],
with the extra annotations in SDS [Hariharan et al., 2014]
and FWB [Nguyen and Todorovic, 2019], respectively. The
categories are partitioned into four equal splits for cross-
validation. Specifically, three splits are selected for training,
while the rest is for evaluation. During inference, 1k support-
query pairs in PASCAL-5i and 20k support-query pairs in
COCO-20i are randomly selected for evaluation. Besides,
we use MIoU as our primary metric to evaluate FGNet un-
der both 1-shot and 5-shot settings.
Implementation Details. The prevalent backbone ResNet
[He et al., 2016] pretrained on ImageNet [Deng et al., 2009]
is employed as our feature extractor. The features in block2
and block3 are concatenated to produce the feature map. We
use SGD optimizer to train FGNet, with 0.9 momentum and
5e-3 initial learning rate. To separate different classes, we set
a large batch size of 16. All images are cropped to 473 ×
473 resolution and augmented by random horizontal flipping.
Moreover, we remove the last ReLU for better generalization
[Yang et al., 2021].

4.1 Comparison with State-of-the-art

To evaluate the effectiveness of FGNet, we report our main
results on PASCAL-5i and COCO-20i datasets. Employ-
ing the commonly-used backbone ResNet-101, our method
achieves the best mean performances in both 1-shot and 5-
shot scenarios on both datasets, compared with several previ-
ous state-of-the-art approaches.
PASCAL-5i We list our results of PASCAL-5i in Table 1.
Our method is superior to other top-performing approaches
with respect to MIoU under both 1-shot and 5-shot settings.
Specifically, in the 1-shot task, FGNet reaches 68.6% MIoU,
which improves the previous SOTA [Okazawa, 2022] by
1.1% MIoU. In the 5-shot task, our method achieves 73.3%
MIoU, outperforming the previous best performance [Fan et
al., 2022] by 0.8%. Moreover, FGNet obtains high perfor-
mances on split-0 and split-2 in both 1-shot and 5-shot sce-
narios. Note that, the improvements of the 1-shot scenario are
higher than the 5-shot scenario for most models.
COCO-20i We present our results of the challenging COCO-
20i dataset in Table 2. As shown in the table, our method
outperforms the previous methods by a large margin and
achieves separately 48.1% MIoU and 54.1% MIoU under 1-
shot and 5-shot settings. In particular, FGNet exceeds the pre-
vious best performance [Okazawa, 2022] by 1.2% MIoU and
0.8% MIoU in 1-shot and 5-shot scenarios, respectively. In-
terestingly, the improvement of the 1-shot task is also greater
than the 5-shot task for most models. We believe that the sit-
uation is not a coincidence and we will further discuss the
possible reason in Section 4.3.
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1-shot 5-shot
Method split-0 split-1 split-2 split-3 mean split-0 split-1 split-2 split-3 mean
PPNet [Liu et al., 2020] 52.7 62.8 57.4 47.7 55.2 60.3 70.0 69.4 60.7 65.1
PFENet [Tian et al., 2020] 60.5 69.4 54.4 55.9 60.1 62.8 70.4 54.9 57.6 61.4
ASGNet [Li et al., 2021] 59.8 67.4 55.6 54.4 59.3 64.6 71.3 64.2 57.3 64.4
MLC [Yang et al., 2021] 60.8 71.3 61.5 56.9 62.6 65.8 74.9 71.4 63.1 68.8
HSNet [Min et al., 2021] 67.3 72.3 62.0 63.1 66.2 71.8 74.4 67.0 68.3 70.4
SSP [Fan et al., 2022] 63.7 70.1 66.7 55.4 64.0 70.3 76.3 77.8 65.5 72.5
IPRNet [Okazawa, 2022] 67.8 74.6 65.7 62.2 67.5 70.0 75.9 71.8 65.8 70.9
FGNet (Ours) 69.4 73.8 68.3 62.8 68.6 72.8 75.7 79.4 65.3 73.3

Table 1: Performance on PASCAL-5i in MIoU with per-split results under 1-shot and 5-shot settings, using the backbone of ResNet-101.
The best and second-best results are in bold and underlined, respectively.

1-shot 5-shot
Method split-0 split-1 split-2 split-3 mean split-0 split-1 split-2 split-3 mean
PFENet [Tian et al., 2020] 34.3 33.0 32.3 30.1 32.4 38.5 38.6 38.2 34.3 27.4
MLC [Yang et al., 2021] 51.1 38.7 28.5 31.6 37.5 57.8 47.1 37.8 37.6 45.1
HSNet [Min et al., 2021] 37.2 44.1 42.4 41.3 41.2 45.9 53.0 51.8 47.1 49.5
SSP [Fan et al., 2022] 39.1 45.1 42.7 41.2 42.0 47.4 54.5 50.4 49.6 50.2
IPRNet [Okazawa, 2022] 42.9 50.6 46.8 47.4 46.9 50.7 58.3 52.8 51.3 53.3
FGNet (Ours) 44.2 51.9 49.4 47.0 48.1 49.8 58.8 55.6 52.3 54.1

Table 2: Performance on COCO-20i in MIoU with per-split results under 1-shot and 5-shot settings, using the backbone of ResNet-101. The
best and second-best results are in bold and underlined, respectively.

SAM IFSM split-0 split-1 split-2 split-3 mean
59.8 66.5 55.3 57.1 59.7

X 73.1 74.8 64.3 68.5 70.2
X 69.1 67.6 71.1 57.8 66.4

X X 72.8 75.7 79.4 65.3 73.3

Table 3: Ablation results of the 5-shot setting on PASCAL-5i for in-
vestigating the influence of Self-Adaptive Module (SAM) and Inter-
class Feature Separation Module (IFSM) for FGNet.

4.2 Ablation Study
An ablation experiment is conducted to verify the necessity
of SAM and IFSM, which are the core modules of FGNet.
The results are presented in Table 3. The performance of the
vanilla model (using similarity map M1 as the final predic-
tion similar to [Wang et al., 2019]) without SAM and IFSM
is 59.7% MIoU. With the incorporation of SAM, the model
obtains an improvement of 10.5% MIoU. Besides, the intro-
duction of IFSM increases the MIoU by 6.7%. Each module
gains a significant improvement, compared with the vanilla
approach. Furthermore, combined with both SAM and IFSM,
our method achieves 73.3% MIoU, which is 13.6% MIoU
higher than the vanilla network. Therefore, we dive into in-
vestigating how SAM and IFSM narrow the intra-class and
inter-class gaps separately.

4.3 Intra-class Gap Reduction
To make our self-adaptive method more easily understood,
we conduct experiments and analyses to demonstrate how
SAM narrows the intra-class appearance gap.

split-0 split-1 split-2 split-3 mean
w/o Lintra 67.8 74.1 72.0 62.2 69.0
w/ Lintra 73.1 74.8 64.3 68.6 70.2

Table 4: Ablation results of the 5-shot setting on PASCAL-5i for
investigating the influence of using the intra-class loss in SAM.

Self-Adaptive process. The visualization results of the self-
adaptive procedure of SAM are illustrated in Figure 4. First,
we employ the support prototype to activate the query fea-
ture to obtain the activation of the similarity map M1. Notice
that, M1 is unsatisfactory due to the inadequate intersection
of support data and query data. Taking the first row in Fig-
ure 4 for an example, the support image contains only the
pattern of cat head and claws, which brings difficulty in rec-
ognizing cat body in the query image. To fill the intra-class
gap, we calculate the query prototype (by Eq. (2) and Eq.
(3)) and leverage it for self-alignment. Specifically, we gen-
erate a fused prototype by Eq. (4). Such a fused prototype
contains the intra-instance information of the query sample,
which benefits the activation of the query feature itself. With
the activation of the fused prototype, we obtain a relatively
high-quality mask M2. After the enrichment of FEM, the en-
hanced feature contains more comprehensive information of
the discriminating category, contributing to generating the en-
hanced prototype, and this process assists to match with the
query feature for the final prediction.

Thresholds of similarity maps. The thresholds of µ in M1

and τ in M3 are significant for feature selection and proto-
type establishment. We explore the best combination of the
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support image query image M1 M2 prediction ground-truth

Figure 4: Qualitative results of the 1-shot setting in COCO-20i. The sequence of M1, M2 and prediction illustrates the process that SAM
conducts self-adaptation for high-quality mask generation. Note that, M1 and M2 are the activation results of the similarity maps with the
thresholds µ and τ , respectively.
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Figure 5: Results of different combination choices for the similarity
map thresholds µ and τ .

two thresholds and the results are shown in Figure 5. The
combination of µ = 0.7 and τ = 0.5 achieves the best MIoU
performance. We think that the high-confidence feature in
M1 is important to capture the underlying characteristics of
the query sample. Thus µ = 0.7 is suitable to activate the
query feature itself and generate a reasonable query proto-
type. Moreover, an intermediate threshold τ = 0.5 in M3 is
appropriate, as the fused prototype and the enhanced feature
require taking more acceptable representations into account,
contributing to generating a comprehensive prototype for the
final prediction.
Intra-class loss. Besides the self-adaptive process, SAM also
employs an extra intra-class loss Lintra to reduce the intra-
class gap. Such a loss aims to guide the backbone network to
extract more intrinsic features of the discriminating category
rather than the superficial appearance features. As shown in

Lcross Lbg split-0 split-1 split-2 split-3 mean
X 65.7 68.6 70.2 55.3 65.0

X 61.9 65.3 68.7 58.9 63.7
X X 69.1 67.6 71.1 57.8 66.4

Table 5: Ablation results of the 5-shot setting on PASCAL-5i in ex-
ploring the effectiveness of the cross-class loss and the background-
loss in IFSM.

Table 4, the removal of Lintra decreases the performance by
1.2% MIoU. Therefore, we think that minimizing the intra-
class loss is beneficial to the target class. Despite the ap-
parent difference between the support data and query data,
the network digs out the underlying and discriminating rep-
resentations of each category. The intra-class loss results in
the compaction of the intra-class feature space of each spe-
cific category, which eliminates the variation from another
perspective.
Advantages of SAM. We summarize the advantages of SAM
to narrow the intra-class appearance gap in two aspects: 1)
Leveraging the self-adaptive process, we generate a proto-
type that caters to the query sample for self-alignment; 2)
With the intra-class loss Lintra, the backbone tends to ex-
tract underlying representations of each specific class, which
compacts the intra-class prototype space for an accurate pre-
diction. Furthermore, as mentioned earlier, the improvement
of the 1-shot task is higher than the 5-shot task. We think that
the 1-shot task benefits more from the self-adaptation process,
as the prototype under the 1-shot setting is more unreliable.
With the feature enhancement and self-adaptive mechanism,
the 1-shot task owns ample room for improvement compared
with the 5-shot scenario.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1755



split-0 ↑ split-2 ↑
0 aeroplane 9.7 10 dining-table 22.0
1 bicycle 17.3 11 dog 11.3
2 bird 4.1 12 horse 5.4
3 boat 11.6 13 motorbike 15.9
4 bottle 2.4 14 person 23.8

Table 6: MIoU results of the improvement using our method IFSM
compared with the vanilla model on each specific class of split-0 and
split-2 of PASCAL-5i. Note that, ↑ represents (% MIoU) improve-
ment.
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Figure 6: Visualization results of the prototypes for prediction by
t-SNE on the different four splits of PASCAL-5i. The first row and
the second row demonstrate the results of the vanilla model and our
approach, respectively.

4.4 Inter-class Gap Reduction
We carry out experiments and analyses to demonstrate how
IFSM overcomes the inter-class classification gap.
Inter-class loss. We investigate the influence of the cross-
class loss Lcross and the background separation loss Lbg ,
which are the two parts of the inter-class loss Linter. As
shown in Table 5, the removal ofLcross andLbg decreases the
result by 2.7% MIoU and 1.4% MIoU, respectively. There-
fore, bothLcross andLbg are significant to the total inter-class
loss, since Lcross distances the feature spaces between differ-
ent categories and Lbg differentiates the foreground with the
latent instances in the background region, which reduces the
similarity of the foreground prototype with the latent non-
target prototypes and rectifies the decision boundary.

Performance on similar classes. To evaluate the effective-
ness of different classes that are difficult to distinguish, we
conduct sufficient experiments to obtain the improvement of
each category. For a fair comparison, we select 1k support-
query pairs for each category in split-0 and split-2 (the signif-
icantly improved splits) under the 5-shot setting. As shown in
Table 6, the improvement of 10 dining-table and 14 person are
22.0% MIoU and 23.8% MIoU, respectively, which are much
higher than other classes. The features of such categories are
likely to be ambiguous with other classes since they usually
appear in complex scenarios. Specifically, 10 dining-table is
usually covered with cluttered tablewares and 14 person ap-
pears in diverse scenes with various poses and decorations.
Moreover, the performance of 1 bicycle and 13 motorbike are

increased by 17.3% MIoU and 15.9% MIoU, respectively.
The representations of these two classes are similar to each
other, leading to the challenge of accurate prediction without
the consideration of the inter-class relation. Therefore, with
the incorporation of IFSM, the network is guided to extract
intrinsic representation for each specific category, resulting
in distancing the feature space of similar classes that are dif-
ficult to classify.
Advantages of IFSM. IFSM closes the inter-class gap by
separating the prototype spaces of the different categories.
As shown in Figure 6, the prototypes (visualized by t-SNE
[Van der Maaten and Hinton, 2008]) of each category are ad-
jacent and mixed with respect to the vanilla model. How-
ever, the prototype distance is enlarged with IFSM, which re-
duces the ambiguity of classification and rectifies the decision
boundary. On the one hand, with the cross-class loss, the net-
work distances the representations of similar classes. On the
other hand, the background separation loss further reduces
the prototype similarity of the target class with other latent
non-target classes. Therefore, IFSM enlarges the margin of
prototypes of different categories to improve the separation
performance, which fills the inter-class gap.

5 Conclusion
In this paper, we proposed FGNet to fill the intra-class
and inter-class gaps for few-shot segmentation. To narrow
the intra-class gap, we introduced a Self-Adaptive Module
(SAM) to fully exploit the query representations for self-
alignment. Moreover, we proposed an Inter-class Feature
Separation Module (IFSM) to separate the prototype spaces
of different classes, which bridges the inter-class gap. In
addition, we put forward B-SLIC to take the latent classes
in the background region into account, and designed several
new losses to further improve the separation performance of
FGNet. Experimental results show that FGNet effectively
fills both the gaps, and meanwhile achieves SOTA perfor-
mances on multiple datasets.
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