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Abstract
The visual quality of point clouds has been greatly
emphasized since the ever-increasing 3D vision ap-
plications are expected to provide cost-effective
and high-quality experiences for users. Looking
back on the development of point cloud quality
assessment (PCQA), the visual quality is usually
evaluated by utilizing single-modal information,
i.e., either extracted from the 2D projections or 3D
point cloud. The 2D projections contain rich tex-
ture and semantic information but are highly depen-
dent on viewpoints, while the 3D point clouds are
more sensitive to geometry distortions and invari-
ant to viewpoints. Therefore, to leverage the ad-
vantages of both point cloud and projected image
modalities, we propose a novel no-reference Multi-
Modal Point Cloud Quality Assessment (MM-
PCQA) metric. In specific, we split the point
clouds into sub-models to represent local geometry
distortions such as point shift and down-sampling.
Then we render the point clouds into 2D image pro-
jections for texture feature extraction. To achieve
the goals, the sub-models and projected images are
encoded with point-based and image-based neural
networks. Finally, symmetric cross-modal atten-
tion is employed to fuse multi-modal quality-aware
information. Experimental results show that our
approach outperforms all compared state-of-the-art
methods and is far ahead of previous no-reference
PCQA methods, which highlights the effectiveness
of the proposed method. The code is available at
https://github.com/zzc-1998/MM-PCQA.

1 Introduction
Point cloud has been widely adopted in practical applications
such as virtual/augmented reality [Park et al., 2008], auto-
matic driving [Cui et al., 2021], and video post-production
[Mekuria et al., 2016b] due to its ability of representing the
3D world. Consequently, plenty of works have been carried
out to deal with point cloud classification [Grilli et al., 2017;
Ku et al., 2018; Wang and Jia, 2019; Vora et al., 2020;
Xie et al., 2020; Yoo et al., 2020; Chen et al., 2020], detec-
tion [Cui et al., 2021], and segmentation [Cheng et al., 2021;
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Figure 1: Examples of reflected distortions. The point clouds can
explicitly reveal the geometry down-sampling distortion while fail-
ing to recognize texture noise unless the projections are involved,
which raises the need for multi-modal perception.

Liu et al., 2022b]. However, point cloud quality assessment
(PCQA) has gained less attention. PCQA aims to predict
the visual quality level of point clouds, which is vital for
providing useful guidelines for simplification operations and
compression algorithms in applications such as metaverse
and virtual/augmented reality (VR/AR) [Fan et al., 2022a]
to not negatively impact users’ quality of experience (QoE).
Moreover, the point clouds representing vivid objects/humans
are usually more complex in geometric structure and con-
tain large amounts of dense points along with color attributes,
which makes the PCQA problem very challenging.

Generally speaking, PCQA methods can be divided into
full-reference PCQA (FR-PCQA), reduced-reference (RR-
PCQA), and no-reference PCQA (NR-PCQA) methods ac-
cording to the involvement extent of the reference point
clouds. However, the pristine reference point clouds are not
always available in many practical situations, thus NR-PCQA
has a wider range of applications. Hence, we focus on the
NR-PCQA in this paper. Reviewing the development of NR-
PCQA, most metrics are either based on the point cloud fea-
tures extracted by statistical models [Zhang et al., 2021a;
Zhang et al., 2022c] and end-to-end neural networks [Liu
et al., 2022c] or based on the projected image features ob-
tained via hand-crafted manners [Meynet et al., 2020; Yang et
al., 2020b; Alexiou and Ebrahimi, 2020] or 2D convolutional
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neural networks (CNN) [Liu et al., 2021b; Fan et al., 2022b;
Zhang et al., 2022d]. Such methods fail to jointly make use
of the information from 3D point clouds along with 2D pro-
jections, thus resulting in unsatisfactory performance.

Therefore, to boost the performance of PCQA, we pro-
pose a multi-modal learning strategy for NR-PCQA, which
extracts quality-aware features not only from the 3D point
clouds but also from the 2D projections. There are two main
reasons to adopt this strategy. First, point clouds can be per-
ceived in both 2D/3D scenarios. We can view point clouds
from 2D perspective via projecting them on the screen or di-
rectly watch point clouds in 3D format using the VR equip-
ment. Thus multi-modal learning is able to cover more range
of practical situations. Second, different types of distortions
have divergent visual influence on different modalities. As
shown in Fig. 1, the structural damage and geometry down-
sampling are more obvious in the point cloud modality while
the image modality is more sensitive to texture distortions
caused by color quantization and color noise. Moreover, it
is easier to extract quality-aware semantic information from
the image modality. Thus, the proposed multi-modal learn-
ing fashion can make up for the deficiencies and take advan-
tage of both modalities. Further, considering that the local
patterns such as smoothness and roughness are very impor-
tant for quality assessment, we first propose to split the point
cloud into sub-models rather than sampling points for anal-
ysis, which has been previously adopted for extracting the
low-level pattern features of the point cloud [Chetouani et
al., 2021; You and Gao, 2021]. The image projections are ac-
quired by rendering the point clouds from several viewpoints
with a fixed viewing distance to maintain the consistency of
the texture scale. Then a point cloud encoder and an image
encoder are used to encode the point clouds and projected im-
ages into quality-aware embeddings respectively, which are
subsequently strengthened by symmetric cross-modality at-
tention. Finally, the quality-aware embeddings are decoded
into quality values with fully-connected layers. The main
contributions of this paper are summarized as follows:

• We propose a no-reference Multi-Modal Point Cloud
Quality Assessment (MM-PCQA) to interactively use
the information from both the point cloud and image
modalities. To the best of our knowledge, we are
the first to introduce multi-modal learning into the
PCQA field.

• To preserve the local patterns that are vital for visual
quality, we propose to split the point cloud into sub-
models rather than sampling points as the input of the
point cloud encoder. To better incorporate the multi-
modal features, we employ cross-modal attention to
model the mutual relationship between the quality-aware
features extracted from two modalities.

• Extensive experiments show that MM-PCQA achieves
the best performance among the compared state-of-the-
art methods (even including the FR-PCQA methods).
The ablation studies reveal the contributions of different
modalities, the patch-up strategy, and cross-modal at-
tention, demonstrating the effectiveness of the proposed
framework.

2 Related Work
2.1 Quality Assessment for Point Cloud
In the early years of PCQA development, some simple point-
based FR-PCQA methods are proposed by MPEG, such as
p2point [Mekuria et al., 2016a] and p2plane [Tian et al.,
2017]. To further deal with colored point clouds, point-based
PSNR-yuv [Torlig et al., 2018] is carried out. Since the
point-level difference is difficult to reflect complex distor-
tions, many well-designed FR-PCQA metrics are proposed
to employ structural features and have achieved considerable
performance, which includes PCQM [Meynet et al., 2020],
GraphSIM [Yang et al., 2020b], PointSSIM [Alexiou and
Ebrahimi, 2020], etc.

To cover more range of practical applications and inspired
by NR image quality assessment [Zhang and Liu, 2022;
Zhang et al., 2022a; Zhang et al., 2021b], some NR-PCQA
methods have been proposed as well. Chetouani et al.
[Chetouani et al., 2021] extract patch-wise hand-crafted fea-
tures and use classical CNN models for quality regression.
PQA-net [Liu et al., 2021b] utilizes multi-view projection
for feature extraction. Zhang et al. [Zhang et al., 2022c]
use several statistical distributions to estimate quality-aware
parameters from the geometry and color attributes’ distribu-
tions. Fan et al. [Fan et al., 2022b] infer the visual qual-
ity of point clouds via the captured video sequences. Liu et
al. [Liu et al., 2022c] employ an end-to-end sparse CNN for
quality prediction. Yang et al. [Yang et al., 2022] further
transfer the quality information from natural images to help
understand the point cloud rendering images’ quality via do-
main adaptation. The mentioned methods are all based on
single-modal information, thus failing to jointly incorporate
the multi-modal quality information.

2.2 Multi-modal Learning for Point Cloud
Many works [Radford et al., 2021; Cheng et al., 2020] have
proven that multi-modal learning is capable of strengthen-
ing feature representation by actively relating the compo-
sitional information across different modalities such as im-
age, text, and audio. Afterwards, various works utilize both
point clouds and image data to improve the understanding
of 3D vision, which are mostly targeted at 3D detection.
Namely, AVOD [Ku et al., 2018] and MV3D [Chen et al.,
2020] make region proposals by mapping the LiDAR point
clouds to bird’s eye view. Then Qi et al. [Qi et al., 2018]
and Wang et al. [Wang and Jia, 2019] attempt to localize
the points by proposing 2D regions with 2D CNN object
detector and then transforming the corresponding 2D pixels
to 3D space. Pointpainting [Vora et al., 2020] projects the
points into the image segmentation mask and detects 3D ob-
jects via LiDAR-based detector. Similarly, PI-RCNN [Xie et
al., 2020] employs semantic feature maps and makes predic-
tions through point-wise fusion. 3D-CVF [Yoo et al., 2020]
transfers the camera-view features using auto-calibrated pro-
jection and fuses the multi-modal features with gated fusion
networks. More recently, some works [Afham et al., 2022;
Zhang et al., 2022b] try to make use of multi-modal infor-
mation in a self-supervised manner and transfer the learned
representation to the downstream tasks.
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Figure 2: The framework of the proposed method.

(a) Ping-pong bat (b) Anchors (c) Sub-models

(d) House (e) Anchors (f) Sub-models

(g) Flowerpot (h) Anchors (i) Sub-models

Figure 3: Examples of the patch-up process with Nδ = 6. (a), (d),
and (g) represent the source point clouds. (b), (e), and (h) describe
the 6 anchor points after the farthest point sampling. (c), (f), and (i)
exhibit the patch-up results after KNN operation, which generates 6
sub-models. The ping-pong bat point cloud contains fewer points,
therefore nearly all the points can be covered in the 6 sub-models.
However, not all points in the house and flowerpot point clouds can
be include in the 6 sub-models. The gray part shown in (f) and (i)
represents the points that are not covered in the sub-models.

3 Proposed Method
The framework overview is clearly exhibited in Fig. 2. The
point clouds are first segmented into sub-models and put into
the point cloud encoder θP . The projected images are di-
rectly rendered from the colored point clouds and put into the
image encoder θI . Subsequently, the quality-aware encoder
features are optimized with the assistance of symmetric cross-
modality attention. Finally, the features are concatenated and
decoded into the quality values via the quality regression.

3.1 Preliminaries
Suppose we have a colored point cloud P = {g(i), c(i)}

N
i=1,

where g(i) ∈ R1×3 indicates the geometry coordinates, c(i) ∈
R1×3 represents the attached RGB color information, and N

stands for the number of points. The point cloud modality P̂
is obtained by normalizing the original geometry coordinates
and the image modality I is generated by rendering the col-
ored point cloud P into 2D projections. Note that P̂ contains
no color information.

3.2 Point Cloud Feature Extraction
It is natural to transfer mainstream 3D object detectors such
as PointNet++ [Qi et al., 2017] and DGCNN [Wang et al.,
2019] to visual quality representation of point clouds. How-
ever, different from the point clouds used for classification
and segmentation, the high-quality point clouds usually con-
tain large numbers of dense points, which makes it diffi-
cult to extract features directly from the source points unless
utilizing down-sampling. Nevertheless, the common sam-
pling methods are aimed at preserving semantic information
whereas inevitably damaging the geometry patterns that are
crucial for quality assessment. To avoid the geometry error
caused by the down-sampling and preserve the smoothness
and roughness of local patterns, we propose to gather several
local sub-models from the point cloud for geometric structure
feature representation.

Specifically, given a normalized point cloud P̂, we employ
the farthest point sampling (FPS) to obtain Nδ anchor points
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m=1. For each anchor point, we utilize K nearest neigh-
bor (KNN) algorithm to find Ns neighboring points around
the anchor point and form such points into a sub-model:

S = {KNN
k=Ns

(δm)}
Nδ

m=1, (1)

where S is the set of sub-models, KNN(⋅) denotes the KNN
operation and δm indicates the m-th farthest sampling point.
An illustration of the patch-up process is exhibited in Fig. 3.
It can be seen that the local sub-models are capable to pre-
serve the local patterns. Then a point cloud feature encoder
θP (⋅) is employed to map the obtained sub-models to quality-
aware embedding space:

FP = {θP (Sl)}
Nδ

l=1,

F̃P =
1

Nδ

Nδ

∑
l=1

F l
P ,

(2)

where F l
P ∈ R1×CP indicates the quality-aware embedding

for the l-th sub-model Sl, CP represents the number of output
channels of the point cloud encoder θP (⋅), and F̃P ∈ R1×CP

is the pooled results after average fusion.

3.3 Image Feature Extraction
NI image projections are rendered from the distorted colored
point clouds from a defined circular pathway with a fixed
viewing distance to keep the texture consistent as shown in
Fig. 4:

{
X2
+ Y 2

= R2,

Z = 0,
(3)

where the pathway is centered on the point cloud’s geome-
try center, R indicates the fixed viewing distance and the NI

image projections are captured with intervals of 2π
NI

. The pro-
jections are rendered with the assistance of Open3D [Zhou
et al., 2018]. Then we embed the rendered 2D images into
quality-aware space with the 2D image encoder:

FI = {θI(It)}
NI

t=1,

F̃I =
1

NI

NI

∑
t=1

F t
I ,

(4)

where F t
I ∈ R1×CI denotes the quality-aware embedding for

the t-th image projection It, CI represents the number of out-
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Figure 5: Illustration of the symmetric cross-modality attention
module (SCMA). The point cloud embedding F̂P is used to guide
the attention learning of image embedding and the image embedding
F̂I is used to guide the attention learning of point cloud embedding
respectively.

put channels of the 2D image encoder θI(⋅), and F̃I ∈ R1×CI

is the pooled results after average fusion.

3.4 Symmetric Cross-Modality Attention
As shown in Fig 1, the single modality may be incomplete to
cover sufficient information for quality assessment, thus we
propose a symmetric attention transformer block to investi-
gate the interaction between the visual quality features gath-
ered from the point cloud and image modalities. Given the
intra-modal features F̃P ∈ R1×CP and F̃I ∈ R1×CI from the
point clouds and images respectively, we adjust them to the
same dimension with linear projection:

F̂P =WP F̃P , F̂I =WI F̃I , (5)

where F̂P ∈ R1×C′ and F̂I ∈ R1×C′ are adjusted features, WP

and WI are learnable linear mappings, and C ′ is the num-
ber of adjusted channels. To further explore the discriminate
components among the modalities, the multi-head attention
module is utilized:

Γ(Q,K,V ) = (h1 ⊕ h2⋯⊕ hn)W,

hµ = β(QWQ
µ ,KWK

µ , V WV
µ )∣

n
µ=1,

β(Q,K,V ) = softmax(QKT
/
√
d)V,

(6)

where Γ(⋅) indicates the multi-head attention operation, β(⋅)
represents the attention function, hµ is the µ-th head, and
W , WQ, WK , WV are learnable linear mappings. As il-
lustrated in Fig. 5, both point-cloud-based and image-based
quality-aware features participate in the attention learning of
the other modality. The final quality embedding can be con-
catenated by the intra-modal features and the guided multi-
modal features obtained by the symmetric cross-modality at-
tention module:

F̂Q = F̂P ⊕ F̂I ⊕Ψ(F̂P , F̂I), (7)
where⊕(⋅) indicates the concatenation operation, Ψ(⋅) stands
for the symmetric cross-modality attention operation, and
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F̂Q represents the final quality-aware features (Ψ(F̂P , F̂I) ∈

R1×2C′ , F̂Q ∈ R1×4C′).

3.5 Quality Regression & Loss Function
Following common practice, we simply use two-fold fully-
connected layers to regress the quality features F̂Q into pre-
dicted quality scores. For the quality assessment tasks, we
not only focus on the accuracy of the predicted quality values
but also lay importance on the quality rankings. Therefore,
the loss function employed in this paper includes two parts:
Mean Squared Error (MSE) and rank error. The MSE is uti-
lized to keep the predicted values close to the quality labels,
which can be derived as:

LMSE =
1

n

n

∑
η=1

(qη − q
′

η)
2, (8)

where qη is the predicted quality scores, q′η is the quality la-
bels of the point cloud, and n is the size of the mini-batch.
The rank loss can better assist the model to distinguish the
quality difference when the point clouds have close quality
labels. To this end, we use the differentiable rank function
described in [Sun et al., 2022] to approximate the rank loss:

Lij
rank =max(0, ∣qi − qj ∣−e (qi, qj)⋅(q

′

i − q
′

j)) ,

e (qi, qj) = {
1, qi ≥ qj ,
−1, qi < qj ,

(9)

where i and j are the corresponding indexes for two point
clouds in a mini-batch and the rank loss can be derived as:

Lrank =
1

n2

n

∑
i=1

n

∑
j=1

Lij
rank, (10)

Then the loss function can be calculated as the weighted sum
of MSE loss and rank loss:

Loss = λ1LMSE + λ2Lrank (11)

where λ1 and λ2 are used to control the proportion of the
MSE loss and the rank loss.

4 Experiments
4.1 Databases
To test the performance of the proposed method, we em-
ploy the subjective point cloud assessment database (SJTU-
PCQA) [Yang et al., 2020a], the Waterloo point cloud as-
sessment database (WPC) proposed by [Liu et al., 2022a],
and the WPC2.0 database [Liu et al., 2021a] for valida-
tion. The SJTU-PCQA database includes 9 reference point
clouds and each point cloud is corrupted with seven types
of distortions (compression, color noise, geometric shift,
down-sampling, and three distortion combinations) under
six strengths, which generates 378 = 9×7×6 distorted point
clouds in total. The WPC database contains 20 refer-
ence point clouds and augments each point cloud with four
types of distortions (down-sampling, Gaussian white noise,
Geometry-based Point Cloud Compression (G-PCC), and

Video-based Point Cloud Compression (V-PCC)), which gen-
erates 740 = 20×37 distorted point clouds. The WPC2.0
databases provides 16 reference point clouds and degradaes
the point clouds with 25 V-PCC settings, which generates 400
= 16×25 distorted point clouds.

4.2 Implementation Details
The Adam optimizer [Kingma and Ba, 2015] is utilized with
weight decay 1e-4, the initial learning rate is set as 5e-5, and
the batch size is set as 8. The model is trained for 50 epochs
by default. Specifically, We set the point cloud sub-model
size Ns as 2048, set the number of sub-models Nδ = 6, and
set the number of image projections NI = 4. The projected
images with the resolution of 1920×1080×3 are randomly
cropped into image patches at the resolution of 224×224×3
as the inputs (the white background is removed from the pro-
jected images). The PointNet++ [Qi et al., 2017] is utilized as
the point cloud encoder and the ResNet50 [He et al., 2016] is
used as the image encoder, where the ResNet50 is initialized
with the pre-trained model on the ImageNet database [Deng
et al., 2009]. The multi-head attention module employs 8
heads and the feed-forward dimension is set as 2048. The
weights λ1 and λ2 for LMSE and Lrank are both set as 1.

Following the practices in [Fan et al., 2022b], the k-fold
cross validation strategy is employed for the experiment to
accurately estimate the performance of the proposed method.
Since the SJTU-PCQA, WPC, and WPC2.0 contain 9, 20,
16 groups of point clouds respectively, 9-fold, 5-fold, and 4-
fold cross validation is selected for the three database to keep
the train-test ratio around 8:2. The average performance is
recorded as the final results. It’s worth noting that there is
no content overlap between the training and testing sets. We
strictly retrain the available baselines with the same database
split set up to keep the comparison fair. What’s more, for
the FR-PCQA methods that require no training, we simply
validate them on the same testing sets and record the average
performance.

4.3 Competitors and Evaluation Criteria
14 state-of-the-art quality assessment methods are selected
for comparison, which consist of 8 FR-PCQA methods and 6
NR-PCQA methods. The FR-PCQA methods include MSE-
p2point (MSE-p2po) [Mekuria et al., 2016a], Hausdorff-
p2point (HD-p2po) [Mekuria et al., 2016a], MSE-p2plane
(MSE-p2pl) [Tian et al., 2017], Hausdorff-p2plane (HD-
p2pl) [Tian et al., 2017], PSNR-yuv [Torlig et al., 2018],
PCQM [Meynet et al., 2020], GraphSIM [Yang et al., 2020b],
and PointSSIM [Alexiou and Ebrahimi, 2020]. The NR-
PCQA methods include BRISQUE [Mittal et al., 2012a],
NIQE [Mittal et al., 2012b], IL-NIQE [Zhang et al., 2015],
ResSCNN [Liu et al., 2022c], PQA-net [Liu et al., 2021b],
and 3D-NSS [Zhang et al., 2022c]. Note that BRISQUE,
NIQE, IL-NIQE are image-based quality assessment metrics
and are validated on the same projected images. Further-
more, to deal with the scale differences between the predicted
quality scores and the quality labels, a five-parameter logistic
function is applied to map the predicted scores to subjective
ratings, as suggested by [Antkowiak et al., 2000].
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Type Modal Methods SJTU-PCQA WPC WPC2.0
SRCC↑ PLCC↑ KRCC↑ RMSE↓ SRCC↑ PLCC↑ KRCC↑ RMSE↓ SRCC↑ PLCC↑ KRCC↑ RMSE↓

FR

P MSE-p2po 0.7294 0.8123 0.5617 1.3613 0.4558 0.4852 0.3182 19.8943 0.4315 0.4626 0.3082 19.1605
P HD-p2po 0.7157 0.7753 0.5447 1.4475 0.2786 0.3972 0.1943 20.8990 0.3587 0.4561 0.2641 18.8976
P MSE-p2pl 0.6277 0.5940 0.4825 2.2815 0.3281 0.2695 0.2249 22.8226 0.4136 0.4104 0.2965 21.0400
P HD-p2pl 0.6441 0.6874 0.4565 2.1255 0.2827 0.2753 0.1696 21.9893 0.4074 0.4402 0.3174 19.5154
P PSNR-yuv 0.7950 0.8170 0.6196 1.3151 0.4493 0.5304 0.3198 19.3119 0.3732 0.3557 0.2277 20.1465
P PCQM 0.8644 0.8853 0.7086 1.0862 0.7434 0.7499 0.5601 15.1639 0.6825 0.6923 0.4929 15.6314
P GraphSIM 0.8783 0.8449 0.6947 1.0321 0.5831 0.6163 0.4194 17.1939 0.7405 0.7512 0.5533 14.9922
P PointSSIM 0.6867 0.7136 0.4964 1.7001 0.4542 0.4667 0.3278 20.2733 0.4810 0.4705 0.2978 19.3917

NR

I BRISQUE 0.3975 0.4214 0.2966 2.0937 0.2614 0.3155 0.2088 21.1736 0.0820 0.3353 0.0487 21.6679
I NIQE 0.1379 0.2420 0.1009 2.2622 0.1136 0.2225 0.0953 23.1415 0.1865 0.2925 0.1335 22.5146
I IL-NIQE 0.0837 0.1603 0.0594 2.3378 0.0913 0.1422 0.0853 24.0133 0.0911 0.1233 0.0714 23.9987
P ResSCNN 0.8600 0.8100 - - - - - - 0.7500 0.7200 - -
I PQA-net 0.8372 0.8586 0.6304 1.0719 0.7026 0.7122 0.4939 15.0812 0.6191 0.6426 0.4606 16.9756
P 3D-NSS 0.7144 0.7382 0.5174 1.7686 0.6479 0.6514 0.4417 16.5716 0.5077 0.5699 0.3638 17.7219

P+I MM-PCQA 0.9103 0.9226 0.7838 0.7716 0.8414 0.8556 0.6513 12.3506 0.8023 0.8024 0.6202 13.4289

Table 1: Performance comparison with state-of-the-art approaches on the SJTU-PCQA, WPC, and WPC2.0 databases. ‘P’ and ‘I’ stand for
the point cloud and image modalities respectively. Best in red and second in blue.

Modal SJTU-PCQA WPC WPC2.0
SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑

P 0.8460 0.8949 0.5234 0.5552 0.5228 0.4682
I 0.8741 0.8887 0.7845 0.8084 0.7631 0.7482

P+I 0.8786 0.8951 0.8017 0.8137 0.7731 0.7782
P+I+SCMA 0.9103 0.9226 0.8414 0.8556 0.8023 0.8024

Table 2: Contributions of the modalities, where ‘P’ stands for only
using point cloud features, ‘I’ stands for using only image features,
‘P+I’ represents using both modalities’ features through simple con-
catenation, and ‘SCMA’ indicates the symmetric cross-modality at-
tention is used.

Four mainstream evaluation criteria in the quality assess-
ment field are utilized to compare the correlation between
the predicted scores and MOSs, which include Spearman
Rank Correlation Coefficient (SRCC), Kendall’s Rank Corre-
lation Coefficient (KRCC), Pearson Linear Correlation Coef-
ficient (PLCC), Root Mean Squared Error (RMSE). An excel-
lent quality assessment model should obtain values of SRCC,
KRCC, PLCC close to 1 and RMSE to 0.

Performance Discussion
The experimental results are listed in Table 1, from which
we can make several useful inspections: a) Our method MM-
PCQA presents the best performance among all 3 databases
and outperforms the compared NR-PCQA methods by a
large margin. For example, MM-PCQA surpasses the sec-
ond place NR-PCQA method by about 0.05 (0.91 vs. 0.86
(ResSCNN)) on the SJTU-PCQA database, by 0.14 (0.84 vs.
0.70 (PQA-net)) on the WPC database, and by 0.05 (0.80
vs. 0.75 (ResSCNN )) on the WPC2.0 database in terms
of SRCC. This is because MM-PCQA enforces the model
to relate the compositional quality-aware patterns and mo-
bilize under-complementary information between the image
and point cloud modalities to optimize the quality represen-
tation by jointly utilizing intra-modal and cross-modal fea-
tures; b) There are significant performance drops from the
SJTU-PCQA database to the WPC and WPC2.0 databases

since the WPC and WPC2.0 databases contain more complex
distortion settings, which are more challenging for PCQA
models. MM-PCQA achieves a relatively smaller perfor-
mance drop than most compared methods. For example, the
SRCC and PLCC values of MM-PCQA drop by 0.07 and
0.08 respectively from the SJTU-PCQA database to the WPC
database. However, the top-performing PCQA methods ex-
cept 3D-NSS experience a larger performance drop over 0.1
on both SRCC and PLCC values. Therefore, we can con-
clude that MM-PCQA gains more robustness over more com-
plex distortions; c) The image-based handcrafted NR meth-
ods BRISQUE, NIQE, and IL-NIQE obtain the poorest per-
formance. This is because such methods are carried out for
evaluating the natural scene images, which have a huge gap
from the projected images rendered from the point clouds.
In all, the overall experimental performance firmly validates
our motivation that multi-modal learning can help the model
better understand the visual quality of point clouds.

4.4 Contributions of the Modalities
As described above, MM-PCQA jointly employs the features
from the point cloud and image modalities and we hold the
hypothesis that multi-modal learning helps the model to gain
better quality representation than single-modality. Therefore,
in this section, we conduct ablation studies to validate our
hypothesis. The performance results are presented in Table
2. The performance of both single-modal-based model is in-
ferior to the multi-modal-based model, which suggests that
both point cloud and image features make contributions to
the final results. After using SCMA module, the performance
is further boosted, which validates the effectiveness of cross-
modality attention.

4.5 Ablation for the Patch-up Strategy
To prove that the patch-up strategy is more suitable for
PCQA, we present the performance of using farthest point
sampling (FPS) strategy as well. To make the comparison
even, 12,288 = 6×2048 points (the same number of points as

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1764



Model SJTU-PCQA WPC WPC2.0
SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑

P+FPS 0.3385 0.3499 0.1226 0.1584 0.2055 0.2744
P+Patch-up 0.8460 0.8949 0.5234 0.5552 0.5228 0.4682
P+I+FPS 0.8512 0.8901 0.7911 0.8122 0.7612 0.7744

P+I+Patch-up 0.9103 0.9226 0.8414 0.8556 0.8023 0.8024

Table 3: Contributions of the patch-up strategy, where ‘P’ stands for
only using point cloud features, ‘P+I’ represents using both point
cloud and image features, ‘FPS’ indicates using farthest point sam-
pling strategy, and ‘Patch-up’ indicates using patch-up strategy.

Model WPC→SJTU WPC→WPC2.0
SRCC↑ PLCC↑ SRCC↑ PLCC↑

PQA-net 0.5411 0.6102 0.6006 0.6377
3D-NSS 0.1817 0.2344 0.4933 0.5613

MM-PCQA 0.7693 0.7779 0.7607 0.7753

Table 4: Cross-database evaluation, where WPC→SJTU-PCQA in-
dicates the model is trained on the WPC database and validated with
the default testing setup of the SJTU database. Since the WPC and
WPC2.0 share some reference point clouds, we remove the groups
of point clouds from the WPC database whose references exist in
the testing sets of the WPC2.0 database to avoid content overlap.

contained in the default 6 sub-models) are sampled for each
point cloud and the results are shown in Table 3. It can be
seen that the patch-up strategy greatly improves the perfor-
mance when only point cloud features are used. The reason
is that the sampled points are not able to preserve the local
patterns that are vital for quality assessment. Moreover, when
the point cloud contains more points, the sampled points may
not even maintain the main shape of the object unless greatly
increasing the number of sampling points.

4.6 Cross-database Evaluation
The cross-database evaluation is further conducted to test the
generalization ability of the proposed MM-PCQA and the ex-
perimental results are exhibited in Table 4. Since the WPC
database is the largest in scale (740), we mainly train the mod-
els on the WPC database and conduct the validation on the
SJTU-PCQA (378) and WPC2.0 (400) databases. From the
table, we can find that the proposed MM-PCQA better gener-
alizes learned feature representation from the WPC database
and achieves much better performance than the most compet-
itive NR-PCQA methods. Furthermore, the WPC→WPC2.0
MM-PCQA is even superior to all the competitors directly
trained on the WPC2.0 database.

4.7 Number of 2D Projections and 3D sub-models
We try to investigate the contributions of the point cloud and
image branch by varying the number of the 3D sub-models
and input 2D projections. The performance results are exhib-
ited in Table 5. We can see that employing 6 sub-models and
4 projections yields the best performance on major aspects
for the point cloud and image branch respectively. With the
number increasing, the features extracted from sub-models
and projections may get redundant, thus resulting in the per-
formance drop.

Type Num SJTU-PCQA WPC WPC2.0
SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑

sub-
models

2 0.7421 0.7824 0.4627 0.5238 0.3446 0.4011
4 0.7317 0.8214 0.4515 0.4956 0.4270 0.4532
6 0.8460 0.8949 0.5234 0.5552 0.5228 0.4682
8 0.8247 0.8955 0.5024 0.5420 0.4931 0.5232

proj-
ections

2 0.8448 0.8472 0.7417 0.7371 0.7446 0.7587
4 0.8741 0.8887 0.7845 0.8084 0.7631 0.7482
6 0.8601 0.8754 0.7811 0.7976 0.7601 0.7723
8 0.8612 0.8577 0.7542 0.7622 0.7521 0.7517

Table 5: Performance results of the point cloud branch and the image
branch by varying the number of sub-models and projections on the
SJTU-PCQA, WPC and WPC2.0 databases.

P I SJTU-PCQA WPC WPC2.0
SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑

DGC R50 0.8734 0.8999 0.8226 0.7984 0.7822 0.7807
P++ R50 0.9103 0.9226 0.8414 0.8556 0.8023 0.8024
P++ VGG16 0.8651 0.8669 0.7919 0.8026 0.7744 0.7811
P++ MNV2 0.8513 0.8721 0.8014 0.8006 0.7614 0.7780

Table 6: Performance of different backbones, where ‘R50’ repre-
sents the ResNet50 backbone, ‘MNV2’ represents the MobileNetV2
backbone, ‘DGC’ represents the DGCNN backbone, and ‘P++’ rep-
resents the PointNet++ backbone respectively.

4.8 Different Feature Encoders

In this section, we present the performance of different fea-
ture encoders. The popular 2D image backbones VGG16 [Si-
monyan and Zisserman, 2014], MobileNetV2 [Sandler et al.,
2018] and ResNet50 [He et al., 2016] are used for demonstra-
tion while the mainstream point cloud backbones PointNet++
[Qi et al., 2017] and DGCNN [Wang et al., 2019] are also in-
cluded. The results are shown in Table 6. It can be found that
the proposed PointNet++ and ResNet50 combination is supe-
rior to other encoder combinations. Additionally, the perfor-
mance of different backbones are still competitive compared
with other NR-PCQA methods, which further confirms the
effectiveness of the proposed framework.

5 Conclusion

This paper proposes a novel multi-modal learning ap-
proach for no-reference point cloud quality assessment (MM-
PCQA). MM-PCQA aims to acquire quality information
across modalities and optimize the quality representation. In
particular, the point clouds are patched up to preserve the im-
portant local geometric structure patterns. Then the projected
images are employed to reflect the texture distortions. Point-
Net++ and ResNet50 are utilized as the feature encoders.
Symmetric cross-modal attention is further employed to make
full use of the cross-modal information. Experimental results
show that MM-PCQA reaches a new state-of-the-art on the
SJTU-PCQA, WPC and WPC2.0 databases. Extensive abla-
tion studies further demonstrate the potency of the proposed
multi-modal learning framework.
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