
Pyramid Diffusion Models for Low-light Image Enhancement

Dewei Zhou , Zongxin Yang , Yi Yang∗

ReLER, CCAI, Zhejiang University
{zdw1999, yangzongxin, yangyics}@zju.edu.cn

Abstract
Recovering noise-covered details from low-light
images is challenging, and the results given by pre-
vious methods leave room for improvement. Re-
cent diffusion models show realistic and detailed
image generation through a sequence of denois-
ing refinements and motivate us to introduce them
to low-light image enhancement for recovering re-
alistic details. However, we found two problems
when doing this, i.e., 1) diffusion models keep con-
stant resolution in one reverse process, which limits
the speed; 2) diffusion models sometimes result in
global degradation (e.g., RGB shift). To address
the above problems, this paper proposes a Pyramid
Diffusion model (PyDiff) for low-light image en-
hancement. PyDiff uses a novel pyramid diffusion
method to perform sampling in a pyramid resolu-
tion style (i.e., progressively increasing resolution
in one reverse process). Pyramid diffusion makes
PyDiff much faster than vanilla diffusion models
and introduces no performance degradation. Fur-
thermore, PyDiff uses a global corrector to alleviate
the global degradation that may occur in the reverse
process, significantly improving the performance
and making the training of diffusion models eas-
ier with little additional computational consump-
tion. Extensive experiments on popular bench-
marks show that PyDiff achieves superior perfor-
mance and efficiency. Moreover, PyDiff can gen-
eralize well to unseen noise and illumination dis-
tributions. Code and supplementary materials are
available at https://github.com/limuloo/PyDIff.git.

1 Introduction
Low-light images suffer from noise bursts, and recovering
ideal normal-light images from them is a long-studied prob-
lem. Thanks to the development of deep learning, many ef-
fective methods have been proposed. LLNet [Lore et al.,
2017] and SID [Chen et al., 2018] show the power of neu-
ral networks by training them on lots of paired data. Accord-
ing to the Retinex theory [Land, 1977], KIND [Zhang et al.,

∗Yi Yang is the corresponding author.

⁄𝑤 𝑜 𝑔𝑙𝑜𝑏𝑎𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑜𝑟

Input KIND LLFLOW Ours Reference

...

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑝𝑦𝑟𝑎𝑚𝑖𝑑 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
𝑏 𝑉𝑎𝑛𝑖𝑙𝑙𝑎 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙𝑠

𝑐 𝑃𝑦𝐷𝑖𝑓𝑓 𝑜𝑢𝑟𝑠

... ...

𝑎 𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑤𝑖𝑡ℎ 𝑜𝑡ℎ𝑒𝑟 𝑆𝑂𝑇𝐴 𝑚𝑒𝑡ℎ𝑜𝑑𝑠

𝑤/ 𝑔𝑙𝑜𝑏𝑎𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑜𝑟

Figure 1: (a) Compared with other SOTA methods, our PyDiff gen-
erates more realistic details and restores correct colors. For better
viewing, we brighten the Input. (b) Vanilla diffusion models per-
form sampling in a constant resolution style, and they result in global
degradation similar to the RGB shift we analyze in Fig. 5. (c) Our
PyDiff performs sampling in a pyramid resolution style (i.e., pro-
gressively increasing resolution in one reverse process) to achieve
faster speed (i.e., to sample at a lower resolution is faster). With
the help of a global corrector, PyDiff shows stunning results without
global degradation. Please zoom in for the best view.

2019] and RetinexNet [Wei et al., 2018] decompose the illu-
mination and reflectance map through a well-designed loss.
To handle this highly ill-posed problem, LLFLOW [Wang et
al., 2022] introduces normalizing flow models [Kingma and
Dhariwal, 2018] to low-light image enhancement.

Although the above methods have made significant
progress in low-light image enhancement, noise-covered de-
tails restored by them can be further enhanced. As shown
in Fig. 1(a), previous methods often lead to blurred details
and distorted colors. Diffusion models [Ho et al., 2020;
Song et al., 2020b] have recently shown their talents in image
generation, which can generate more realistic details through
a sequence of refinements. Therefore, we introduce diffusion
models to low-light image enhancement for better restoring
noise-covered details, as shown in Fig. 1(a).

When introducing diffusion models to low-light image
enhancement, we found two problems, as demonstrated in
Fig. 1(b). 1) The resolution is constant in one reverse process,
which limits the speed. 2) Diffusion models result in global

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1795

https://github.com/limuloo/PyDIff.git


degradation similar to the RGB shift we analyze in Fig. 5.
To solve these problems, we propose a Pyramid Diffusion

model (PyDiff) for low-light image enhancement. As shown
in Fig. 1(c), PyDiff uses a novel pyramid diffusion method to
sample images in an efficient pyramid resolution style (i.e.,
progressively increasing resolution in one reverse process).
Performing noisier sampling at lower resolution makes the
reverse process faster and provides PyDiff with a larger incep-
tion field, which benefits global information recovery. More-
over, we analyze the cause of global degradation (Fig. 5)
and argue that denoising networks are hard to treat global
degradation as part of the noise and correct it during denois-
ing since the reverse process is biased to eliminate Gaussian
noise. To alleviate the global degradation that denoising net-
works can not notice, PyDiff performs sampling with a global
corrector. With little additional computational consumption,
the global corrector significantly improves the performance
and makes the training of diffusion models easier.

We conduct extensive experiments on two popular bench-
marks (i.e., LOL [Wei et al., 2018] and LOLV2 [Yang et al.,
2021]) to validate the effectiveness and efficiency of PyD-
iff. Experimental results show that PyDiff achieves supe-
rior performance quantitatively and qualitatively under var-
ious scenarios. Compared to the previous state-of-the-art
(SOTA) method LLFLOW, which also requires iterative re-
finements, PyDiff significantly outperforms LLFLOW with a
speed of nearly 2× faster. In particular, when dealing with
unseen noise distributions, PyDiff significantly outperforms
other SOTA competitors, e.g., 10 points (SSIM) higher than
the second place (NE [Jin et al., 2022]). When handling un-
seen illumination distributions, PyDiff also gives competitive
results, demonstrating our generalization ability further.

Our contributions can be summarized below:

• To the best of our knowledge, we are the first to in-
troduce diffusion models to low-light image enhance-
ment and achieve SOTA. Using a novel pyramid diffu-
sion method, PyDiff is nearly twice as fast as the previ-
ous SOTA method LLFLOW.

• We propose a global corrector to alleviate the global
degradation that occurs in the reverse process. This
significantly improves the performance and makes the
training of diffusion models easier with little additional
computational consumption.

• Experiments on popular benchmarks show that PyDiff
achieves new SOTA performance, and PyDiff can gener-
alize well to unseen noise and illumination distributions.

2 Related Work
2.1 Low-Light Image Enhancement
Low-light image enhancement has been studied for a long
time, with numerous deep learning-based approaches pro-
posed. LLNet [Lore et al., 2017] and SID [Chen et al., 2018]
collect lots of low/normal-light image pairs to train the net-
work. For getting illumination and reflectance maps [Land,
1977], RetinexNet [Wei et al., 2018], KIND [Zhang et
al., 2019], and KIND++ [Zhang et al., 2021] carefully de-
sign the loss to train a decomposition network. Enlighten-

𝑋! 𝑋"! 𝑋"!#$ 𝑋"" 𝑋""#$ 𝑋%𝑋"# 𝑋"##$

𝑥%&
𝑥%&

𝑥%&

𝑥%&&

𝑥%&&

𝑔𝑙𝑜𝑏𝑎𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑜𝑟 𝑞 𝑥!"# 𝑥! , 𝑥$

𝑑𝑒𝑛𝑜𝑖𝑠𝑖𝑛𝑔 𝑟𝑒𝑠𝑢𝑙𝑡𝑠
𝒘𝒊𝒕𝒉

𝑔𝑙𝑜𝑏𝑎𝑙 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛

𝑑𝑒𝑛𝑜𝑖𝑠𝑖𝑛𝑔 𝑟𝑒𝑠𝑢𝑙𝑡𝑠
𝒘𝒊𝒕𝒉𝒐𝒖𝒕

𝑔𝑙𝑜𝑏𝑎𝑙 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛

𝑎𝑙𝑙𝑒𝑣𝑖𝑎𝑡𝑒
𝑎𝑙𝑙𝑒𝑣𝑖𝑎𝑡𝑒

...

...

𝑞 𝑥! 𝑥!"#

𝑓𝑎𝑠𝑡 𝑠𝑙𝑜𝑤

𝑥'()

𝑥!

...

...
...

...

...

...

𝑦% 𝑥! , 𝑥&'(

𝑥%

𝑠𝑝𝑒𝑒𝑑

𝑙𝑜𝑤 ℎ𝑖𝑔ℎ𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

Figure 2: Overview of proposed PyDiff. yθ(xt,xlow) is the approx-
imate value of x0 calculated according to the denoising network,
as discussed in Eq. (8). For better viewing, we brighten the xlow.
Please zoom in for the best view.

GAN [Jiang et al., 2021], ZeroDCE [Guo et al., 2020], and
NE [Jin et al., 2022] propose effective unsupervised meth-
ods which do not require paired data. BREAD [Guo and
Hu, 2022] decouples the entanglement of noise and color dis-
tortion. Some works [Fan et al., 2022a; Cui et al., 2022;
Kim et al., 2021] have brought performance improvements
by designing novel and efficient networks. LLFLOW [Wang
et al., 2022] models this ill-posed problem via a normaliz-
ing flow model [Dinh et al., 2016; Kingma and Dhariwal,
2018]. Although the above methods have made significant
progress in low-light image enhancement, noise-covered de-
tails restored by them can be further enhanced. This paper
introduces diffusion models [He et al., 2020] to low-light im-
age enhancement for better recovering the details.

2.2 Diffusion Models

Diffusion Models [Ho et al., 2020; Song et al., 2020b] present
high-quality image synthesis results through a high number of
denoising iterations, and various training-free samplers [Song
et al., 2020a; Nichol and Dhariwal, 2021; Bao et al., 2022;
Lu et al., 2022] have been proposed to achieve comparable
results with fewer iterations. To further achieve conditional
generation, Guided-Diffusion [Dhariwal and Nichol, 2021]
samples with classifier guidance, while our PyDiff concate-
nates noisy images with source images to guide denoising
like some low-level vision methods [Saharia et al., 2022b;
Saharia et al., 2022a; Whang et al., 2022].

To generate high-resolution images more efficiently, some
works [Saharia et al., 2022b; Ho et al., 2022; Fan et al.,
2022b] use multiple diffusion models to achieve cascaded
high-resolution image synthesis, while LDM [Rombach et
al., 2022] makes reverse processes situated within the im-
age encoder’s latent space. In one reverse process, the above
methods perform sampling at a constant resolution style, lim-
iting the speed. In this paper, PyDiff uses a pyramid diffusion
method to achieve faster speed and a global corrector to en-
sure the sample quality for low-light image enhancement.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1796



3 Background: Denoising Diffusion
Probabilistic Models

The Denoising Diffusion Probabilistic Model [Ho et al.,
2020; Song et al., 2020a] is a latent variable model speci-
fied by a T-step Markov chain. It starts with a given data
distribution x0 ∼ q(x0) and repeatedly adds Gaussian noise
according to q(xt|xt−1) as follows:

q (xt|xt−1) := N (xt;
√
αtxt−1, (1− αt) I) , (1)

where αt ∈ (0, 1), and αt ≥ αt+1. Using the notation ᾱt :=∏t
i=1 αi, the marginal distribution q(xt|x0) can be expressed

as follows:
q (xt|x0) := N

(
xt;

√
ᾱtx0, (1− ᾱt) I

)
(2)

When
√
ᾱT is close to 0, the defined forward process will

transform this data distribution into an isotropic Gaussian dis-
tribution.

In practical applications, the reverse process of diffusion
models is used more often, which converts an isotropic
Gaussian distribution to a target data distribution. It is
worth mentioning that q(xt−1|xt) is hard to estimate while
q(xt−1|xt,x0) is tractable. We can derive the posterior dis-
tribution of xt−1 given (xt,x0) with some algebraic manip-
ulation:
q (xt−1|xt,x0) := N

(
xt−1; µ̃t (xt,x0) , β̃tI

)
, (3)

µ̃t (xt,x0) :=

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt (1− ᾱt−1)

1− ᾱt
xt, (4)

β̃t :=
1− ᾱt−1

1− ᾱt
βt, (5)

where βt := 1 − αt. We have no x0 during testing, but we
can calculate its approximate value according to Eq. (2):

yθ(xt) :=
1√
ᾱt

(xt −
√
1− ᾱtϵθ(xt)), (6)

where ϵθ(xt) is the predicted noise derived from the denois-
ing network, and yθ(xt) is an approximation of x0 calculated
according to ϵθ(xt). Furthermore, we update Eq. (3) as fol-
lows:

pθ (xt−1|xt) := N
(
xt−1; µ̃t (xt,yθ(xt)) , β̃tI

)
(7)

When it comes to image-to-image translation, [Saharia et
al., 2022a; Saharia et al., 2022b; Choi et al., 2021] make the
reverse process conditional on an input signal. Specifically,
when we need to translate z to y (e.g., low-light image to
normal-light image), we update Eq. (6) as follow:

yθ(xt, z) :=
1√
ᾱt

(xt −
√
1− ᾱtϵθ(xt, z)) (8)

4 Methods
This section presents PyDiff, an effective and efficient
method for low-light image enhancement. First of all, we de-
scribe the motivation for designing PyDiff. Secondly, we in-
troduce our proposed pyramid diffusion, which significantly
improves the inference speed without any performance degra-
dation. Furthermore, we present our proposed global correc-
tor, which alleviates the global degradation that may occur
in the reverse process of the diffusion models. Finally, we
describe the training and sampling procedures of PyDiff.

𝑏

𝑎

𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑑𝑒𝑛𝑜𝑖𝑠𝑒

𝑅𝐺𝐵 𝑠ℎ𝑖𝑓𝑡 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑑𝑒𝑛𝑜𝑖𝑠𝑒

Figure 3: We impose various degradations (e.g., downsampling or
RGB shift) on normal-light images and get noisy xT/2 according to
Eq. (2). Correspondingly, we begin the reverse process of diffusion
from t = T/2, conditional on low-light images. We want to know
how these degradations affect the second half of the reverse process.
(a) Downsampling does not affect the details of the final result. (b)
RGB shift will not be corrected. Please zoom in for the best view.

𝑎 𝑏

Figure 4: (a) δ(r, t) := |(
√
ᾱtx0 +

√
1− ᾱtϵ) − (

√
ᾱt(x0 ↓r↑r

) +
√
1− ᾱtϵ)| for different(r, t), in which ↓r (↑r) means down-

sampling (upsampling) with a scale factor of r. (b) Amplification
factor

√
1−ᾱt√
ᾱt

for different t. Please zoom in for the best view.

4.1 Motivation
Constant Resolution Is Not Necessary. Previous works
maintain a constant resolution in one reverse process of Dif-
fusion Models. However, Fig. 3(a) indicates that the first half
of the reverse process can be performed at a lower resolution,
which does not affect the details generated at the end.
The Effect of Noisy Sampling. Furthermore, Fig. 3(b)
shows that if global degradation (e.g., RGB shift) occurs in
the first half (i.e., sampling result has more noise) of the re-
verse process, the second half (i.e., sampling result has less
noise) will not be able to correct it. Fig. 3 demonstrates that
noisy sampling (e.g., sampling in the first half of inverse pro-
cesses) in diffusion models usually does not affect the final
details, mainly recovering global information such as bright-
ness and hue. Therefore, PyDiff can perform noisier sampling
at a lower resolution while ensuring the global information
can be recovered correctly.

4.2 Pyramid Diffusion
As shown in Fig. 2, PyDiff uses a novel pyramid diffusion
method to iterate in a pyramid resolution style. Performing
nosier sampling at a lower resolution can make the reverse
process faster and provide the network with a larger receptive
field, which is beneficial for recovering global information.
In this section, we introduce the proposed pyramid diffusion.
Downsampling Schedule. Similar to the noise schedule
{α}Tt=0 in diffusion models, pyramid diffusion defines a

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1797



downsampling schedule {s}Tt=0, which means that the ith
sampling will be performed at the resolution downsampled
with a scale factor si. While at ≥ at+1 to get bigger and
bigger noise, st ≤ st+1 to get lower and lower resolution.
Forward Process. For the forward process, pyramid diffu-
sion updates the Eq. (1) in diffusion models as follows:

q (xt|xt−1) := N
(
xt;

√
αt

(
xt−1 ↓st/st−1

)
, (1− αt) I

)
,

(9)
where ↓r means downsampling with a scale factor of r. The
marginal distribution q(xt|x0) can be expressed as follows:

q (xt|x0) := N
(
xt;

√
ᾱt (x0 ↓st) , (1− ᾱt) I

)
(10)

Reverse Process. In the case of st−1 = st, we can de-
rive xt−1 from xt according to Eq. (7). However, this is no
longer applicable in the case of st−1 < st since differences
in resolution. As shown in Fig. 4(a), (x0 ↓r) ↑r can serve
as x0 at noisy sampling (i.e., Larger r matches noisier sam-
pling), where ↑r means upsampling with a scale factor of r.
Therefore, with well-scheduled {α}Tt=0 and {s}Tt=0, we can
take yθ(xt) ↑st/st−1

as x0 ↓st−1
. According to Eq. (10), we

can further add noise to x0 ↓st−1
for deriving xt−1. Adding

noise through such a method leads to inconsistency between
xt and xt−1. However, this inconsistency has little impact on
noisy sampling, which is primarily concerned with recover-
ing global information. To summarize, the posterior distribu-
tion of pyramid diffusion can be expressed as follows:

pθ(xt−1|xt) =



N (xt−1;
√
ᾱt−1βt

1−ᾱt
yθ(xt) +

√
αt(1−ᾱt−1)

1−ᾱt
xt

, 1−ᾱt−1

1−ᾱt
βtI), if st = st−1

N (xt−1;
√
ᾱt−1(yθ(xt) ↑st/st−1

)

, (1− ᾱt−1)I), if st > st−1

(11)
Position Encoding. Pyramid diffusion requires one net-
work to process images of multiple resolutions. As the main
operator of the denoising network [Ho et al., 2020], convo-
lution kernels cannot perceive the change of resolution. We
consider using position encoding to guide the network. For
an image I with a resolution of H × W , its coordinates are
X,Y ∈ RH×W , where Xi,j = i, and Yi,j = j. After nor-
malizing X and Y, we apply sinusoidal positional encoding
of them to guide the network. Specifically, the position en-
coding is expressed as:

pos(I) = [sin(X), cos(X), sin(Y), cos(Y)] (12)

Convolution kernels have a constant receptive field. When
dealing with images downsampled with a scale factor of r, the
range of position encoding perceived by convolution kernels
will be correspondingly expanded by r times, which may tell
convolution kernels the change of resolution.

4.3 Global Corrector
As shown in Fig. 2, PyDiff uses the global corrector to al-
leviate global degradation in reverse processes. The global
corrector can significantly improve performance with little
additional computational consumption. In this section, we
introduce the proposed global corrector.

-1 +1

1 − α!
α!

δ!

𝑅 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝐺 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝐵 𝐶ℎ𝑎𝑛𝑛𝑒𝑙

... ... ...

... ... ...

（𝒂）𝑟𝑒𝑣𝑒𝑟𝑠𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑔𝑙𝑜𝑏𝑎𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑜𝑟.

（𝒄）𝑟𝑒𝑣𝑒𝑟𝑠𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑤𝑖𝑡ℎ 𝑔𝑙𝑜𝑏𝑎𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑜𝑟.

𝑂𝑏𝑣𝑖𝑜𝑢𝑠 𝑅𝐺𝐵 𝑠ℎ𝑖𝑓𝑡

δ!

𝑒𝑟𝑟𝑜𝑟 𝑚𝑎𝑝
δ!: = ϵ! − ϵ" 𝑥!

（𝒃）

𝐸𝑛𝑙𝑎𝑟𝑔𝑒𝑑 𝑒𝑟𝑟𝑜𝑟

𝑥!

𝑥!

𝑦" 𝑥!

𝑦# 𝑦" 𝑥!

𝑦$ 𝑥 ⁄! & 𝑦$ 𝑥'

𝑚𝑒𝑎𝑛 = +0.0006 𝑚𝑒𝑎𝑛 = -0.0005 𝑚𝑒𝑎𝑛 = -0.0016

𝑚𝑒𝑎𝑛 = +0.1032 𝑚𝑒𝑎𝑛 = -0.0833 𝑚𝑒𝑎𝑛 = -0.2554

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑒𝑟𝑟𝑜𝑟
𝑐𝑙𝑜𝑠𝑒 0

𝑦# 𝑦" 𝑥!/& 𝑦# 𝑦" 𝑥'

Figure 5: ϵθ(xt) is the predicted noise derived from the denoising
network, and yθ(xt) is an approximation of x0 calculated based on
ϵθ(xt). (a) Diffusion models result in significant global degradation,
which appears in yθ(xT ) for the first time and affects subsequent
sampling. (b) The original error δT is nearly 0, but the amplification
factor

√
1−ᾱT√
ᾱT

enlarges the error, which leads to an obvious RGB
shift. (c) With the help of the global corrector, diffusion models
give promising results. yc(x) means using the global corrector to
alleviate the global degradation in x.

Global Degradation. When applying diffusion models to
low-light image enhancement, we found them sometimes re-
sult in significant global degradation, as shown in Fig. 5(a).
This global degradation looks like a shift in the RGB chan-
nels, similar to the RGB shift shown in Fig. 3(b).
Cause of Global Degradation. Looking back on Eq. (6),
we can rewrite it as follows:

yθ(xt) :=
1√
ᾱt

(xt −
√
1− ᾱt(ϵt − δt)) (13)

:= x0 +

√
1− ᾱt√
ᾱt

δt, (14)

where ϵt is the actual noise in xt, and δt is the error between
ϵt and ϵθ(xt). We found that there is a coefficient

√
1−ᾱt√
ᾱt

in front of the error δt. When t is relatively large, this coef-
ficient will also be large, as shown in Fig. 4(b). As demon-
strated in Fig. 5(b), the original error δT is small, but the coef-
ficient

√
1−ᾱT√
ᾱT

enlarges the error and leads to an obvious RGB
shift (e.g., a significant gain in the R channel). As shown in
Fig. 5(a), the denoising network treats the image under global
degradation as usual and only performs its denoising duties,
which can not eliminate the global degradation.
Design of Global Corrector. We add a global corrector to
alleviate the global degradation that denoising networks can
not notice. The design of the global corrector needs to meet
the following requirements: 1) The global corrector should
alleviate global degradation while preserving generated edges
and textures. 2) The global corrector is lightweight and fast.
Inspired by CSRNet [He et al., 2020], we design an efficient
global corrector that performs pixel-independent retouching
based on global conditions. Please refer to the supplementary

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1798



Algorithm 1 Training

1: Input: noise schedule α, downsampling schedule s, cor-
rection threshold γ, denoising network θ, global corrector
c, low/normal-light image pairs q(xlow,y).

2: repeat
3: Sample (xlow,y) ∼ q(xlow,y).
4: Sample t ∼ Uniform(1, ..., T )
5: Sample ϵ ∼ N (0, I)
6: xt =

√
ᾱt(y ↓st) +

√
1− ᾱtϵ

▷ ↓r means downsampling with a scale factor of r.
7: Take gradient descent step on

∇θ ∥ϵ− ϵθ (xt, (xlow ↓st))∥1
8: if

√
1−ᾱt√
ᾱt

> γ then
9: Take gradient descent step on

∇c ∥(y ↓st)− yc (yθ(xt, (xlow ↓st)))∥1
10: end if
11: until converged

Algorithm 2 Sampling

1: Input: noise schedule α, downsampling schedule s, cor-
rection threshold γ, denoising network θ, global corrector
c, low-light image xlow.

2: Sample xT ∼ N (0, I)
3: for t = T, ..., 1 do
4: y′ = yθ(xt,xlow)

5: y′ = yc(y
′) if

√
1−ᾱt√
ᾱt

> γ, else y′ = y′

6: Sample ϵ ∼ N (0, I) if t > 1, else ϵ = 0
7: if st > st−1 then
8: xt−1 =

√
ᾱt−1(y

′ ↑st/st−1
) +

√
1− ᾱt−1ϵ

▷ ↑r means upsampling with a scale factor of r.
9: else

10: xt−1 =
√
ᾱt−1βt

1−ᾱt
y′+

√
αt(1−ᾱt−1)

1−ᾱt
xt+

√
1−ᾱt−1

1−ᾱt
βtϵ

11: end if
12: end for
13: return x0

materials for the specific design of the global corrector. To
sample with a global corrector, we update Eq. (7) as follows:

pθ,c (xt−1|xt) := N
(
xt−1; µ̃t (xt,yc(yθ(xt))) , β̃tI

)
(15)

where yc(x) means using the global corrector to alleviate
the global degradation in x. Fig. 5(c) shows that the global
corrector can alleviate global degradation while maintaining
generated edges and textures.

Correction Threshold. As shown in Fig. 4(b), the ampli-
fication factor

√
1−ᾱt√
ᾱt

will gradually decrease to 0 as t de-
creases. When the amplification factor is small enough, it will
no longer amplify the error of the denoising network. There-
fore, We set a correction threshold γ, and the global corrector
is needed only when the

√
1−ᾱt√
ᾱt

> γ. We set γ = 1.

Methods PSNR ↑ SSIM ↑ LPIPS ↓
Zero-DCE [Guo et al., 2020] 14.86 0.54 0.33
EnlightenGAN [Jiang et al., 2021] 17.48 0.65 0.32
KinD [Zhang et al., 2019] 20.87 0.80 0.17
KinD++ [Zhang et al., 2021] 21.30 0.82 0.16
RCTNet [Kim et al., 2021] 22.67 0.79 −
Bread [Guo and Hu, 2022] 22.96 0.84 0.16
NE [Jin et al., 2022] 21.52 0.76 0.24
IAT [Cui et al., 2022] 23.38 0.81 0.26
HWMNet [Fan et al., 2022a] 24.24 0.85 0.12
LLFLOW [Wang et al., 2022] 24.99 0.92 0.11
PyDiff (ours) 27.09 0.93 0.10

Table 1: Quantitative results on the LOL dataset in terms of PSNR,
SSIM, and LPIPS. ↑ (↓) denotes that larger (smaller) values lead to
better quality.

4.4 Training and Sampling
To better demonstrate the overall framework of our PyDiff,
we omit some details (e.g., position encoding) when describ-
ing the algorithm.
Training. Algorithm 1 shows the specific training proce-
dure of the proposed PyDiff. The global corrector aims to
alleviate the global degradation that the denoising network
cannot notice, and it will not impact the denoising network.
Sampling. Algorithm 2 shows the specific sampling pro-
cedure of the proposed PyDiff. PyDiff can be easily com-
bined with DDIM [Song et al., 2020a] or DDPM+ [Nichol
and Dhariwal, 2021] to achieve further speedup.
Training Loss. As described in algorithm 1, we use the
simple L1 loss to optimize the denoising network and global
corrector without additional optimization objectives.

5 Experiments
5.1 Setup
Dataset. We conduct experiments on LOL [Wei et al.,
2018] and LOLV2 [Yang et al., 2021] datasets. The LOLV2
dataset contains two parts, REAL and SYNC. REAL PART
has noise distributions not present in the LOL dataset, and
SYNC PART has illumination distributions not present in the
LOL dataset. For supervised learning methods involved in
comparison, we use their pre-trained model only trained on
the LOL dataset. Correspondingly, we train PyDiff only on
the LOL dataset too. For unsupervised learning methods,
we use their released pre-trained models no matter how they
train.
Schedules. First of all, we set T = 2000. For the noise
schedule, we decrease αt linearly from α1 = 0.999999 to
αT = 0.99. For the downsampling schedule, our default set-
ting is to set {s}T/2

t=1 = 1 and {s}Tt=T/2 = 2, and we will
experiment with more schedules in ablation studies.
Training. We set the patch size to 192× 288 and the batch
size to 16. We use the Adam optimizer with an initial learning
rate of 1 × 10−4 for 320k iterations and halve the learning
rate at 50k, 75k, 100k, 150k, and 200k. The optimizer does
not use weight decay. We complete training on two NVIDIA
GeForce RTX 3090s.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1799



Input IAT KIND KIND++ BREAD NE HWMNet LLFLOW PyDiff Reference

Figure 6: Qualitative comparison with state-of-the-art methods on the LOL dataset. It can be seen that IAT [Cui et al., 2022] cannot even
restore the correct brightness, and the results generated by KIND++ [Zhang et al., 2021], BREAD [Guo and Hu, 2022], NE [Jin et al., 2022],
and HWMNet [Fan et al., 2022a] have apparent artifacts, while the KIND [Zhang et al., 2019] cannot restore colors well. LLFLOW [Wang
et al., 2022] gives a not-bad result, but its result can be too smooth, and the colors of some items need to be more accurately restored. PyDiff
exhibits the best result, which restores the correct color and preserves the details covered by noise. Please zoom in for the best view.

Input IAT KIND KIND++ BREAD NE HWMNet LLFLOW PyDiff Reference

Figure 7: Qualitative comparison with state-of-the-art methods on the REAL PART of the LOLV2 dataset. Please zoom in for the best view.

Methods PSNR ↑ SSIM ↑ LPIPS ↓
Zero-DCE [Guo et al., 2020] 13.65 0.246 0.98
KinD [Zhang et al., 2019] 20.40 0.652 0.50
KinD++ [Zhang et al., 2021] 20.15 0.678 0.47
NE [Jin et al., 2022] 21.12 0.767 0.46
IAT [Cui et al., 2022] 21.43 0.638 0.60
Bread [Guo and Hu, 2022] 22.54 0.762 0.44
HWMNet [Fan et al., 2022a] 22.40 0.622 0.56
LLFLOW [Wang et al., 2022] 21.60 0.643 0.53
PyDiff (ours) 24.01 0.876 0.23

Table 2: Quantitative results on the LOLV2 REAL PART in terms of
PSNR, SSIM, and LPIPS. All methods involved in the comparison
were not retrained on the corresponding training set. ↑ (↓) denotes
that larger (smaller) values lead to better quality.

Evaluation. Combined with DDIM [Song et al., 2020a],
PyDiff requires only 4 iterations to obtain results compara-
ble to other SOTA methods.
Other Details. The reverse process is conditional on low-
light images xlow, low-light images after histogram equal-
ization hiseq(xlow), and position encoding pos(xlow). We
use the method of concatenating to achieve conditional sam-
pling [Saharia et al., 2022b; Saharia et al., 2022a]. Dur-
ing training, we swap the concatenating order of xlow and
hiseq(xlow) with a probability of 0.5. Please refer to the
supplementary materials for model configuration and de-
tails of the global corrector.

5.2 Comparsion With SOTA Methods
LOL Dataset. We first compare PyDiff with SOTA meth-
ods on the LOL dataset. The quantitative results are shown
in Tab. 1. PyDiff outperforms other methods in all three met-
rics: PSNR, SSIM [Wang et al., 2004], and LPIPS [Zhang

Methods PSNR ↑ SSIM ↑ LPIPS ↓
KIND [Zhang et al., 2019] 18.32 0.822 0.25
KIND++ [Zhang et al., 2021] 19.44 0.830 0.23
IAT [Cui et al., 2022] 19.18 0.813 0.29
Bread [Guo and Hu, 2022] 19.28 0.831 0.24
HWMNet [Fan et al., 2022a] 18.79 0.817 0.24
LLFLOW [Wang et al., 2022] 19.15 0.860 0.22
PyDiff (ours) 19.60 0.878 0.22

Table 3: Quantitative results on the LOLV2 SYNC PART in terms of
PSNR, SSIM, and LPIPS. All methods involved in the comparison
were not retrained on the corresponding training set. ↑ (↓) denotes
that larger (smaller) values lead to better quality.

et al., 2018]. Beating second place by 2.1 points on PSNR
shows that PyDiff can recover more accurate colors. Surpass-
ing second place by 1 point on SSIM shows that PyDiff accu-
rately preserves more high-frequency details. Exceeding sec-
ond place by 1 point on LPIPS shows that PyDiff gives more
eye-pleasing results. Fig. 6 shows qualitative comparisons
with other methods, where PyDiff exhibits the best result.

LOLV2 REAL PART. Since the test set of LOLV2 REAL
PART overlaps with the training set of the LOL dataset, we
combine the training set and test set of LOLV2 REAL PART
and filter out the overlapping parts with the LOL training set
by the ID of the images. For the filtered images, we sort
them by ID and select 100 (i.e., the same size as the orig-
inal test set) images with the smallest ID as the test set of
LOLV2 REAL PART. Many of the selected images were taken
at ISOs not included in the LOL training set, which is a good
test of the model’s ability to deal with unseen noise. Tab. 2
shows the quantitative comparison with other SOTA meth-
ods on LOLV2 REAL PART. As PyDiff can deal with unseen

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1800



Hyperparameters Metrics

schedule pe PSNR↑ SSIM↑ LPIPS↓ FPS↑
LLFLOW - - 20.70 0.763 0.36 1.94

PyDiff

[1, 1, 1, 1] Y ES 22.11 0.878 0.22 2.35
[1, 1, 2, 2] Y ES 22.17 0.881 0.22 3.62
[1, 1, 2, 2] NO 21.96 0.878 0.22 3.62
[1, 1, 2, 4] Y ES 22.02 0.879 0.22 3.81
[1, 2, 2, 2] Y ES 22.15 0.877 0.22 4.97
[1, 2, 4, 8] Y ES 22.12 0.875 0.22 5.86

Table 4: Ablation study on the pyramid diffusion. schedule stands
for downsampling schedule, while pe means position encoding.

noise better, it outperforms second place by 10.9 points on
SSIM and 21 points on LPIPS. As shown in the second row
of Fig. 7, other SOTA methods give results with significant
noise, while PyDiff can remove noise well. At the same time,
the first row of Fig. 7 also shows that PyDiff can better restore
images with different exposure times.

LOLV2 SYNC PART. LOLV2 SYNC PART contains
many illumination distributions that the LOL dataset does not
have, and the scenarios in it are entirely different from the
LOL dataset, which can test models’ generalization. Tab. 3
shows the quantitative comparison between PyDiff and other
SOTA methods on LOLV2 SYNC PART. PyDiff shows com-
petitive results and achieves first place in performance (e.g.,
1.8 points higher than second place on SSIM), which demon-
strates the generalization of PyDiff. Supplementary materials
will show the qualitative comparison with other SOTA meth-
ods on LOLV2 SYNC PART.

5.3 Ablation Study
In this section, we conduct ablation studies on the main com-
ponents of PyDiff to observe their impact on performance.
The score for this section is calculated by combining the
performance on the LOL dataset, LOLV2 REAL PART, and
LOLV2 SYNC PART, which gives a better indication of the
effectiveness of a component. FPS is measured on the LOL
dataset (i.e., the resolution is 400× 600).

Downsampling Schedules. In Tab. 4, schedule [1, 1, 1, 1]
represents vanilla diffusion models, which sample at a con-
stant resolution. Our default setting, schedule [1, 1, 2, 2], per-
forms noisy sampling at a 1/2 resolution. Schedule [1, 1, 2, 2]
is 54% faster while slightly outperforming the schedule
[1, 1, 1, 1]. Furthermore, our investigation revealed that faster
schedules (e.g., [1, 1, 2, 4], [1, 2, 2, 2], and [1, 2, 4, 8]) produce
comparable results to the vanilla schedule [1, 1, 1, 1]. These
findings indicate that noisier sampling can be performed at a
lower resolution, while still maintaining high performance.

Position Encoding. Tab. 4 shows that the position encoding
boosts PSNR and SSIM for PyDiff, which may tell networks
about the change of resolution.

Effectiveness of Global Corrector. Tab. 5 shows that the
global corrector can bring improvements to PyDiff under var-
ious settings. Fig. 2 and Fig. 5(a)(c) show that the global cor-
rector effectively alleviates global degradation. Furthermore,

Hyperparameters Metrics

batch gc PSNR↑ SSIM↑ LPIPS↓ FPS↑
16 Y ES 22.17 0.881 0.22 3.62

(default) NO 21.65 0.875 0.22 3.70

8
Y ES 21.98 0.873 0.22 3.62
NO 20.74 0.861 0.25 3.70

4
Y ES 21.42 0.868 0.25 3.62
NO 18.35 0.843 0.35 3.70

Table 5: Ablation study on the global corrector. batch stands for
batch size, while gc means global corrector.

we can see from Tab. 5 that the global corrector gives little
additional computational consumption to PyDiff.

Robustness to Batch Size. Tab. 5 shows that vanilla diffu-
sion models without global corrector are very dependent on
large batch size, which shows a significant performance drop
when the batch size decreases. As our analysis in section 4.3,
we argue that this is caused by the amplification factor, which
has rigorous requirements for denoising networks. This prob-
lem has been significantly improved by adding a global cor-
rector. As shown in Tab. 5, the global corrector enhances the
performance of diffusion models under bs = 4(8) and outper-
forms the ones without global corrector under bs = 8(16),
which means that the global corrector can make diffusion
models more robust to batch size and easier to train.

Comparison With LLFLOW. LLFLOW [Wang et al.,
2022] used to be first place on the LOL dataset based on
the normalizing flow [Dinh et al., 2016; Kingma and Dhari-
wal, 2018]. Both FLOWs and diffusion models are genera-
tive models that require multiple iterations. Therefore, it will
be interesting to compare the speed of LLFLOW and PyD-
iff. According to Tab. 4, PyDiff significantly enhances per-
formance, achieving an 87% faster speed than LLFLOW.

6 Conclusion

This paper proposes PyDiff, a diffusion model based method
for low-light image enhancement. PyDiff uses a novel pyra-
mid diffusion method, which makes sampling faster than
vanilla diffusion models without any performance degrada-
tion. Furthermore, PyDiff uses a global corrector to alleviate
global degradations that cannot be noticed by the denoising
network and significantly improves performance with little
additional computational consumption. Experimentally, Py-
Diff shows superior effectiveness, efficiency, and generaliza-
tion ability on popular benchmarks. We hope that PyDiff will
serve as a strong baseline for low-light image enhancement
and that the pyramid diffusion method will facilitate the ap-
plication of diffusion models in more low-level vision tasks.

Acknowledgements

This work is supported by the Fundamental Research Funds
for the Central Universities (No. 226-2022-00051).

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1801



References
[Bao et al., 2022] Fan Bao, Chongxuan Li, Jun Zhu, and

Bo Zhang. Analytic-dpm: an analytic estimate of the op-
timal reverse variance in diffusion probabilistic models.
arXiv preprint arXiv:2201.06503, 2022.

[Chen et al., 2018] Chen Chen, Qifeng Chen, Jia Xu, and
Vladlen Koltun. Learning to see in the dark. In Proceed-
ings of the IEEE conference on computer vision and pat-
tern recognition, pages 3291–3300, 2018.

[Choi et al., 2021] Jooyoung Choi, Sungwon Kim,
Yonghyun Jeong, Youngjune Gwon, and Sungroh
Yoon. Ilvr: Conditioning method for denoising diffusion
probabilistic models. In 2021 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages
14347–14356. IEEE, 2021.

[Cui et al., 2022] Ziteng Cui, Kunchang Li, Lin Gu, Sheng-
han Su, Peng Gao, Zhengkai Jiang, Yu Qiao, and Tatsuya
Harada. Illumination adaptive transformer. arXiv preprint
arXiv:2205.14871, 2022.

[Dhariwal and Nichol, 2021] Prafulla Dhariwal and Alexan-
der Nichol. Diffusion models beat gans on image synthe-
sis. Advances in Neural Information Processing Systems,
34:8780–8794, 2021.

[Dinh et al., 2016] Laurent Dinh, Jascha Sohl-Dickstein, and
Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

[Fan et al., 2022a] Chi-Mao Fan, Tsung-Jung Liu, and
Kuan-Hsien Liu. Half wavelet attention on m-net+
for low-light image enhancement. arXiv preprint
arXiv:2203.01296, 2022.

[Fan et al., 2022b] Wan-Cyuan Fan, Yen-Chun Chen, Dong-
Dong Chen, Yu Cheng, Lu Yuan, and Yu-Chiang Frank
Wang. Frido: Feature pyramid diffusion for complex scene
image synthesis. arXiv preprint arXiv:2208.13753, 2022.

[Guo and Hu, 2022] Xiaojie Guo and Qiming Hu. Low-light
image enhancement via breaking down the darkness. In-
ternational Journal of Computer Vision, pages 1–19, 2022.

[Guo et al., 2020] Chunle Guo, Chongyi Li, Jichang Guo,
Chen Change Loy, Junhui Hou, Sam Kwong, and Runmin
Cong. Zero-reference deep curve estimation for low-light
image enhancement. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 1780–1789, 2020.

[He et al., 2020] Jingwen He, Yihao Liu, Yu Qiao, and Chao
Dong. Conditional sequential modulation for efficient
global image retouching. In European Conference on
Computer Vision, pages 679–695. Springer, 2020.

[Ho et al., 2020] Jonathan Ho, Ajay Jain, and Pieter Abbeel.
Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851,
2020.

[Ho et al., 2022] Jonathan Ho, Chitwan Saharia, William
Chan, David J Fleet, Mohammad Norouzi, and Tim Sal-
imans. Cascaded diffusion models for high fidelity image
generation. J. Mach. Learn. Res., 23:47–1, 2022.

[Jiang et al., 2021] Yifan Jiang, Xinyu Gong, Ding Liu,
Yu Cheng, Chen Fang, Xiaohui Shen, Jianchao Yang, Pan
Zhou, and Zhangyang Wang. Enlightengan: Deep light en-
hancement without paired supervision. IEEE Transactions
on Image Processing, 30:2340–2349, 2021.

[Jin et al., 2022] Yeying Jin, Wenhan Yang, and Robby T
Tan. Unsupervised night image enhancement: When layer
decomposition meets light-effects suppression. In Eu-
ropean Conference on Computer Vision, pages 404–421.
Springer, 2022.

[Kim et al., 2021] Hanul Kim, Su-Min Choi, Chang-Su
Kim, and Yeong Jun Koh. Representative color trans-
form for image enhancement. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 4459–4468, 2021.

[Kingma and Dhariwal, 2018] Durk P Kingma and Prafulla
Dhariwal. Glow: Generative flow with invertible 1x1 con-
volutions. Advances in neural information processing sys-
tems, 31, 2018.

[Land, 1977] Edwin H Land. The retinex theory of color vi-
sion. Scientific american, 237(6):108–129, 1977.

[Lore et al., 2017] Kin Gwn Lore, Adedotun Akintayo, and
Soumik Sarkar. Llnet: A deep autoencoder approach to
natural low-light image enhancement. Pattern Recogni-
tion, 61:650–662, 2017.

[Lu et al., 2022] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei
Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in
around 10 steps. arXiv preprint arXiv:2206.00927, 2022.

[Nichol and Dhariwal, 2021] Alexander Quinn Nichol and
Prafulla Dhariwal. Improved denoising diffusion proba-
bilistic models. In International Conference on Machine
Learning, pages 8162–8171. PMLR, 2021.

[Rombach et al., 2022] Robin Rombach, Andreas
Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 10684–10695, 2022.

[Saharia et al., 2022a] Chitwan Saharia, William Chan, Hui-
wen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David
Fleet, and Mohammad Norouzi. Palette: Image-to-image
diffusion models. In ACM SIGGRAPH 2022 Conference
Proceedings, pages 1–10, 2022.

[Saharia et al., 2022b] Chitwan Saharia, Jonathan Ho,
William Chan, Tim Salimans, David J Fleet, and Mo-
hammad Norouzi. Image super-resolution via iterative
refinement. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2022.

[Song et al., 2020a] Jiaming Song, Chenlin Meng, and Ste-
fano Ermon. Denoising diffusion implicit models. In Proc.
of ICLR, 2020.

[Song et al., 2020b] Yang Song, Jascha Sohl-Dickstein,
Diederik P Kingma, Abhishek Kumar, Stefano Ermon,
and Ben Poole. Score-based generative modeling through

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1802



stochastic differential equations. In International Confer-
ence on Learning Representations, 2020.

[Wang et al., 2004] Zhou Wang, Alan C Bovik, Hamid R
Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE Trans-
actions on Image Processing, 13(4):600–612, 2004.

[Wang et al., 2022] Yufei Wang, Renjie Wan, Wenhan Yang,
Haoliang Li, Lap-Pui Chau, and Alex Kot. Low-light im-
age enhancement with normalizing flow. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 36,
pages 2604–2612, 2022.

[Wei et al., 2018] Chen Wei, Wenjing Wang, Wenhan Yang,
and Jiaying Liu. Deep retinex decomposition for low-light
enhancement. arXiv preprint arXiv:1808.04560, 2018.

[Whang et al., 2022] Jay Whang, Mauricio Delbracio, Hos-
sein Talebi, Chitwan Saharia, Alexandros G Dimakis,
and Peyman Milanfar. Deblurring via stochastic refine-
ment. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 16293–
16303, 2022.

[Yang et al., 2021] Wenhan Yang, Wenjing Wang, Haofeng
Huang, Shiqi Wang, and Jiaying Liu. Sparse gradient reg-
ularized deep retinex network for robust low-light image
enhancement. IEEE Transactions on Image Processing,
30:2072–2086, 2021.

[Zhang et al., 2018] Richard Zhang, Phillip Isola, Alexei A
Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 586–595, 2018.

[Zhang et al., 2019] Yonghua Zhang, Jiawan Zhang, and Xi-
aojie Guo. Kindling the darkness: A practical low-light
image enhancer. In Proceedings of the 27th ACM interna-
tional conference on multimedia, pages 1632–1640, 2019.

[Zhang et al., 2021] Yonghua Zhang, Xiaojie Guo, Jiayi Ma,
Wei Liu, and Jiawan Zhang. Beyond brightening low-
light images. International Journal of Computer Vision,
129(4):1013–1037, 2021.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1803


	Introduction
	Related Work
	Low-Light Image Enhancement
	Diffusion Models

	Background: Denoising Diffusion Probabilistic Models
	Methods
	Motivation
	Pyramid Diffusion
	Global Corrector
	Training and Sampling

	Experiments
	Setup
	Comparsion With SOTA Methods
	Ablation Study

	Conclusion

