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Abstract

Computer-Aided Design (CAD) plays a crucial role
in industrial manufacturing by providing geome-
try information and the construction workflow for
manufactured objects. The construction informa-
tion enables effective re-editing of parametric CAD
models. While boundary representation (B-Rep)
is the standard format for representing geometry
structures, JSON format is an alternative due to
the lack of uniform criteria for storing the con-
struction workflow. Regrettably, most CAD mod-
els available on the Internet only offer geome-
try information, omitting the construction proce-
dure and hampering creation efficiency. This pa-
per proposes a learning approach CADParser to in-
fer the underlying modeling sequences given a B-
Rep CAD model. It achieves this by treating the
CAD geometry structure as a graph and the con-
struction workflow as a sequence. Since the exist-
ing CAD dataset only contains two operations (i.e.,
Sketch and Extrusion), limiting the diversity of the
CAD model creation, we also introduce a large-
scale dataset incorporating a more comprehensive
range of operations such as Revolution, Fillet, and
Chamfer. Each model includes both the geometry
structure and the construction sequences. Exten-
sive experiments demonstrate that our method can
compete with the existing state-of-the-art methods
quantitatively and qualitatively. Data is available at
https://drive.google.com/CADParserData

1 Introduction
Parametric Computer-Aided Design (CAD) is the predomi-
nant method for creating 3D models of manufactured objects,
including automobile parts, electronic devices, and furniture.
These CAD files capture the geometry and crucial construc-
tion sequence information. This information is vital for pre-
serving design intent, enabling edits, and facilitating down-
stream tasks such as simulation and manufacturing. Unfor-
tunately, this valuable information is often lost during data
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Figure 1: B-Rep CAD models contain the geometry information.
Inferring the underlying construction workflow (b) given a B-Rep
model (a) can readily re-edit the input model parametrically to gen-
erate model CAD models (c).

translation or due to errors, requiring a laborious reverse-
engineering process from raw geometry or even 3D scan data.

One common characteristic among these works is their uti-
lization of constructive solid geometry (CSG) as a modeling
language. In CSG, shapes are created by combining primitive
solids such as spheres, cylinders, and boxes using Boolean
operations like union, intersection, and difference. The lim-
ited library of parametric primitive shapes in CSG makes it an
attractive choice for CAD program inference since it narrows
down the search space of potential programs.

Unfortunately, parametric primitive CSG is not the mod-
eling language commonly used in modern CAD workflows.
Instead, CAD practitioners employ feature-based modeling
to create a solid object by incrementally adding features like
holes, slots, or bosses. This iterative process often involves
operations on surfaces, as they are more intuitive for users.
The resulting object’s geometry is stored as a boundary repre-
sentation (B-Rep). Unlike parametric primitive CSG, feature-
based modeling with B-Reps enables Boolean operations be-
tween solids, making it more versatile. However, this in-
creased expressiveness poses a challenge for program infer-
ence, as the space of feature-based modeling programs is sig-
nificantly larger.
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While reconstructing CAD operations from raw geometry
has been explored in previous research, recent advancements
in neural networks for 3D shape generation have sparked re-
newed interest in CAD reconstruction. However, learning-
based approaches to CAD reconstruction have faced a chal-
lenge due to lacking a human-designed dataset containing
3D CAD construction sequences. As a result, these ap-
proaches have heavily relied on synthetic data for training
and testing. The absence of real-world data has constrained
the progress in CAD reconstruction, particularly concerning
common modeling operations like sketching and extrusion.

To address this challenge, we have introduced a CAD
dataset encompassing a wide range of features, aiming to
facilitate learning-based approaches in CAD reconstruction.
Furthermore, we have developed a deep parser network to in-
fer the CAD sequence for B-Rep models. This paper makes
the following contributions:

• We present a new CAD dataset containing ˜40000 mod-
els with various features(e.g., Revolve, Fillet, Chamfer)
and construction sequence information.

• We propose a novel deep parser network CADParser
to infer the CAD construction sequence from a B-Rep
model.

• We demonstrate our method outperforms other related
works quantitatively and qualitatively.

2 Related Work
2.1 CAD Dataset
Existing large-scale CAD datasets have primarily focused on
mesh geometry, point clouds, and voxel grids [Chang et al.,
2015; Wu et al., 2015; Kim et al., 2020; Mo et al., 2019],
contributing to significant advancements in 3D tasks such as
segmentation [Hanocka et al., 2019], classification [Qi et al.,
2017], and reconstruction [Mescheder et al., 2019]. However,
the standard format for CAD models is Boundary representa-
tion (B-Rep), which describes models based on their para-
metric geometry and topology. B-Rep models enable users to
interact directly with faces, edges, and vertices, allowing for
seamless alignment and modification of 3D shapes. B-Rep
models can be shared across different software platforms as a
widely accepted protocol. Nevertheless, B-Rep models lack
information about their creation and design processes, which
hampers higher-level control over 3D shapes. When a CAD
model is accompanied by its construction procedure, design-
ers can easily modify the entire shape through parametric op-
erations rather than focusing solely on local adjustments to
vertices and faces as in mesh models. Only recently, a few
datasets have provided CAD models and their construction
history. Based on their respective focuses, these datasets can
be broadly categorized into Sketch and 3D CAD.

In the context of CAD modeling, a sketch refers to a 2D
skeleton as the basis for creating 3D shapes. It includes both
the 2D geometry primitives and the constraints among them.
The SketchGraphs dataset [Seff et al., 2020], the first publicly
available benchmark for CAD sketches, comprises 15 million
engineering sketches extracted from the Onshape CAD soft-
ware [Ons, ]. This dataset has been instrumental in advancing

sketch generation models [Para et al., 2021; Seff et al., 2020;
Willis et al., 2021a]. However, the SketchGraphs dataset suf-
fers from significant data duplication. To address this limita-
tion, Ganin et al. [Ganin et al., 2021] have collected a large-
scale dataset from the Onshape platform and implemented fil-
tering procedures to mitigate the drawbacks of the Sketch-
Graphs dataset. To the best of our knowledge, these two
datasets are currently the only CAD sketch datasets that fo-
cus on showcasing how sketches were designed, including the
associated constraints.

Despite sketch datasets, there are also 3D CAD datasets
that offer the 3D geometry models in B-Rep format and the
corresponding construction process. One such dataset is the
ABC dataset [Koch et al., 2019], which collects approxi-
mately 1 million CAD designs from the Onshape platform.
Unlike sketch datasets, the ABC dataset focuses on 3D shapes
rather than 2D sketches. However, the initial version of the
ABC dataset only includes parametric representations of 3D
CAD models, lacking sufficient information to reveal how
the models were created. In response to this limitation, Wu
et al. [Wu et al., 2021] has created their dataset based on
the ABC dataset, consisting of ˜180,000 models. Leverag-
ing the link to the original CAD design provided by the ABC
dataset, DeepCAD utilizes Onshape’s domain-specific lan-
guage (DSL) to parse the construction operations and param-
eters, converting them into JSON format [Pezoa et al., 2016].
Another dataset, the Fusion360 Gallery dataset [Willis et al.,
2021b], offers approximately 8,000 CAD designs created by
human designers using sketching and extrusion operations.
However, like DeepCAD, the Fusion360 Gallery dataset also
primarily focuses on sketch profiles and extrusion operations,
limiting the diversity of CAD model creation. Furthermore,
many CAD models in these two datasets are typically de-
signed by learners rather than professional designers, result-
ing in greater randomness in reasoning about concurrent 3D
shapes compared to basic engineering components. To this
end, we have developed our own CAD dataset, specifically
targeting authentic engineering designs. Our dataset encom-
passes a wide range of modeling features to support further
CAD reconstruction and analysis research.

2.2 CAD Reconstruction
The primary task of CAD reconstruction is to recover the
underlying CAD programs that describe how a model is
constructed from scratch, given its representation in B-Rep,
mesh, or point cloud format. These sequences are crucial for
preserving the editability of CAD models, allowing for sub-
sequent modifications such as model simplification for sim-
ulation or adjustments of manufacturing tolerances. Previ-
ous works on CAD reconstruction can be broadly categorized
into Constructive Solid Geometry (CSG)-based methods and
sequence-based methods.

CSG-based methods aim to parse the input model into a
binary tree structure, where each leaf represents a primitive
object (such as a cube, cylinder, or sphere), and each inter-
nal node represents a boolean operation (such as intersection,
union, or difference) [Laidlaw et al., 1986]. CSGNet [Sharma
et al., 2018] and UCSGNet [Kania et al., 2020] employ neu-
ral networks to parse 3D voxel input and generate a CSG tree.
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However, CSGNet relies on synthetic data for training, which
may not be well-suited for real-world 3D CAD datasets. On
the other hand, UCSGNet presents a self-supervised approach
to address the challenge of limited CAD data availability. Al-
ternatively, Wu et al. [Wu et al., 2018] and InverseCSG [Du
et al., 2018] take a different approach by extracting primitives
and constructing a CSG tree bottom-to-up through energy
minimization based on voxel or point labels. These methods
do not rely on neural networks for the construction process.
It’s worth noting that all the mentioned CSG-based methods
operate on voxel or mesh representations. However, com-
pared to B-Rep, both voxel and mesh representations have
lower levels of detail (LOD). In our approach, we feed the
B-Rep model directly into the network to extract high-level
features of the CAD model. It should be noted that CSG
methods face challenges in building complex surfaces, such
as Non-uniform rational B-splines (NURBS), which are com-
monly used in manufacturing CAD models.

Another aspect of CAD reconstruction involves recovering
a parametric sequence that describes how 2D skeletons are
designed and transformed into 3D solids. This approach, re-
ferred to as sequence-based methods, has been addressed by
several existing works, namely Sketch2CAD [Li et al., 2020],
Fusion360 [Willis et al., 2021b], and ZoneGraph [Xu et al.,
2021]. Sketch2CAD focuses on inferring the sequence pro-
gram by recognizing and segmenting CAD operations from
sketches. However, it does not take B-Rep input directly, and
during testing, it requires a sketch image to guide the predic-
tion, which is not readily available in real-world scenarios.
Fusion360 aims to parse B-Rep input using the Autodesk Fu-
sion 360 desktop CAD application. It predicts the next op-
eration at each step by comparing the target shape with the
current state. ZoneGraph employs a graph of zones to rep-
resent the B-Rep input, reducing the search space of CAD
programs by converting the infinite space with continuous pa-
rameters into a finite space with a set of operation sequences.
Fusion360 and ZoneGraph take B-Rep input and predict the
underlying sequence to construct the input model. However,
to simplify the prediction task, these methods start with face
extrusion, assuming the faces are already prepared. This ap-
proach overlooks the surface creation process and makes it
challenging to explicitly import the prediction results into
CAD software for downstream edits. Furthermore, these two
methods focus only on sketch and extrusion operations for
simplicity, which limits the diversity of features within actual
CAD models. This work presents a learning approach in-
spired by DeepCAD [Wu et al., 2021] to predict direct para-
metric sequences suitable for CAD software. Additionally,
we aim to incorporate more rich features of CAD models into
our methodology.

2.3 Transformer Based Models
Technically, our work builds upon the Transformer net-
workk [Vaswani et al., 2017], demonstrating significant suc-
cess in various 3D shape generation tasks. For example,
SceneFormer [Wang et al., 2021] utilizes multiple Transform-
ers for generating indoor scenes, while PolyGen [Nash et al.,
2020] employs Transformers to create vertices and faces of
3D meshes. DeepCAD utilizes Transformers to develop stan-

dard B-Rep CAD models. Among these works, DeepCAD is
particularly relevant to our research. However, unlike these
models, our main objective is to parse CAD models in the
context of engineering B-Rep input, which enables down-
stream edits and lightens designers’ workload rather than
generating entirely new shapes. Essentially, our focus lies
in reverse engineering shapes rather than developing them.

3 Method Overview
Our approach takes as input a manufactured CAD model in
the format of boundary representation and predicts its con-
struction workflow. To support our learning approach, we
also introduce a manufactured CAD dataset.

3.1 CAD Dataset
To address the limited diversity of CAD models in exist-
ing datasets, we have created a comprehensive collection
of CAD manufacturing models comprising approximately
40,000 models. The construction of our dataset involved the
following steps, and we plan to make it publicly available
shortly.

Collection of CAD Dataset
We first collect a gallery of manufacturing CAD models on-
line, and all these models are designed via the CAD software
SolidWorks. Differing from the Fusion360 Gallery [Willis
et al., 2021b] and DeepCAD dataset [Wu et al., 2021], the
models of which are usually designed for human learning
or just for fun, our gallery data are all manufacturing com-
ponents, including both the National standard parts and the
standard enterprise parts. Each model contains a geometry
structure and the corresponding design history. Similar to the
Fusion360 Gallery [Willis et al., 2021b], we parse the de-
sign history into a representation that is friendly to our learn-
ing network. To accomplish this parse process, We build a
script employing native SolidWorks APIs. To parse the native
model, we analyze the model feature statistically and filter
the operations which is less than 90% in the count. So, in our
dataset, we parse five modeling operations: sketch, extrusion,
revolution, fillet, and chamfer. In total, we collect ˜10000 cad
models as the template of our dataset. The specific operations
and parameters are listed in Table 3.

CAD Dataset Augmentation
Since our CAD model templates only contain ˜10000 objects,
which is insufficient for our learning approach, we need to
increase the number of models as much as possible. How-
ever, because the CAD model is strictly constrained, random
generation of the CAD model is unavailable. To address this
challenge, we provide a novel data augmentation method to
enrich our dataset. Specifically, we transform the design his-
tory to the model sequence so that the modeling process can
be considered a series of steps. In particular, sketch and extru-
sion or sketch and revolution are supposed to be one step. We
modify the last step iteratively from back to front, considering
that subsequent steps depend on previous ones. The modifi-
cations mainly involve cutting the last step and adjusting the
parameters of the last modeling operation. Additionally, we
validate the shape of each model using the PythonOCC API
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Op S RP E Ec R Rc F Cf

Ratio 40% 11% 11% 10% 8% 5% 5% 2%

Table 1: CAD operation analysis on our Dataset

Sequence length 0-5 5-10 10-15 15-20 20+

Ratio 64% 23% 5% 3% 5%

Table 2: CAD sequence length analysis on our Dataset

to ensure that only valid CAD models are included. Through
this augmentation method, we have expanded our dataset to
approximately 40,000 models.

We also performed a statistical analysis on our dataset to
examine the distribution of CAD operation types and the
lengths of CAD modeling sequences. Table 1 presents the ra-
tios of CAD operations in our collected data, where ’S’ means
the 2d sketch, ’RP’ indicates the reference plane on which the
drawing locates, and other operations can refer to Table 3.

Table 2 displays the results of our statistical analysis on the
lengths of CAD modeling sequences in our dataset. It is im-
portant to note that when calculating the sequence length, we
treat the sketch feature as a single unit, although it comprises
multiple line and segment operations.

3.2 CAD Representation
In order to learn deep neural networks capable of encoding
and predicting CAD models, we first need a well-defined
data structure for the boundary representation and construc-
tion workflow. Since boundary representation describes the
CAD model as a solid volume enclosed by trimmed faces,
where a parametric face is also a region connected by model
edges, this strict adjacency relationship encourages us to con-
sider it a graph. And construction workflow can be seen as
an ordered set of various feature-based operations in the cur-
rent CAD design software. So, we model it as the feature
command sequences reasonably.

Graph Construction
Inspired by the B-RepNet [Lambourne et al., 2021] and Uv-
net [Jayaraman et al., 2021], a graph G = (V , E) is con-
structed for one input B-Rep CAD model, where vertex vi ∈
V includes the faces, edges and coedges and E describes the
adjacency relationship of them. For face features, we stack
the surface geometry feature and uv grids feature introduced
from [Lambourne et al., 2021] and [Jayaraman et al., 2021].
Concretely, for edge feature and coedges features, we only
use that geometry information referring to [Lambourne et al.,
2021]. In this way, the vertex features are generated. Accord-
ing to the relationship that faces → edge → half edge, we
construct the adjacency matrix.

Sequence Construction
We model the construction workflow of a CAD model as the
feature-based command sequences because a solid object is
created by iteratively adding features such as sketch, extru-
sion, or revolution. This analogy motivates us to leverage
the natural language processing approaches like Transformer

Commands Parameters Description

<SOS> ∅
L(Line) x, y line end point

A(Arc)
x, y arc end point
α sweep angle
f clockwise flag

C(Circle)
x, y circle center point
r circle radius

E(Extrusion)

tx, ty, tz sketch plane transformation
θ, γ, δ sketch plane rotation

s scale of the sketch
e1, e2 extrude distance for both direction

Ec(Extrusion Cut) = E

Ax(Revolution Axis)
tx, ty, tz sketch plane transformation
θ, γ, δ sketch plane rotation

R(Revolution)

tx, ty, tz sketch plane transformation
θ, γ, δ sketch plane rotation

s scale of the sketch
α revolution angle

Rc(Revolution Cut) = R
F(Fillet) px, py, pz 3D point in the filleted edge
Cf(Chamfer) = F 3D point in the chamfered edge
<PAD> ∅
<EOS> ∅

Table 3: CAD commands with their type and parameters.

networks[Vaswani et al., 2017] to achieve our goal. But dif-
ferent from the natural language vocabulary consisting of in-
dividual words, each CAD feature command has a different
number of parameters, and a different parameter type con-
tains continuous or discrete values. To make the CAD com-
mands suitable for the NLP approaches, we define the con-
struction workflow S = (C1, C2, ..., CNC

) where Ci is an
individual feature command in the creation step. The com-
mand Ci = (ti,pi) is defined itself by its command type ti
and corresponding parameters pi. The specification of the
CAD command is listed in Table 3.

To tackle the trouble of different numbers of parameters
in various CAD commands, we fix the length of a command
by stacking the whole of the parameters from all the CAD
commands into one vector. In this way, we formulate the
command Ci ∈ R19×1, and unused parameters for each com-
mand are set to -1. To ensure efficient parallel processing, we
use fixed-length NC commands in each workflow sequence.
In this paper, NC is set to 32 according to the statistic of our
dataset. To address the problem of the mixture of both con-
tinuous and discrete parameter values in a command, we refer
to DeepCAD[Wu et al., 2021]. After normalizing a solid in-
put into a 2× 2× 2 cube, each continuous parameter value is
quantized into 256 levels. So far, we have transferred the raw
CAD commands into a network-friendly representation.

3.3 Network Architecture
We present our deep architecture comprising a graph encoder
for boundary representation and a sequence decoder for CAD
commands as shown in Figure 2. Our objective is to forecast
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Figure 2: Overview of our network architecture. The input CAD model represented in the B-Rep format is first used to construct the CAD
graph. Then, the face features, edge features, co-edge features, and the adjacent matrix are extracted from the graph. These features are
passed through the convolution unit to result in the latent vector zl. zg is calculated as the average pooling of zl. Then, zg and input tokens
Ci are combined and fed into the Decoder layer composed of N Transformer Blocks stacks with the cross attention zl to predict the command
type ti along with the command parameters pi.

the command sequences revealing the construction process of
the given B-Rep model.

Embedding
To enable the Transformer[Vaswani et al., 2017] based de-
coder, we first need to project the discrete CAD commands
into highly continuous embedding space of dimension dE .
With the nature of each CAD command Ci having individ-
ual command type ti and corresponding parameters pi, we
split the command into two parts and project them into differ-
ent dimensions respectively. In particular, we formulate the
CAD command Ci as e(Ci) = eicmd + eiparam + eiind ∈ RdE .

For command type embedding, we define eicmd = W i
cmdδ

i
c,

where W i
cmd ∈ RdE×12 is a learnable matrix, and δic is a

12-dimensional one-hot vector indicating the command type
among the 12 CAD command types.

For command parameters, since we have discretized con-
tinuous values and introduced an unused value -1 for the cur-
rent command, we lead to an embedding dimension 28+1 =
257. Thus each command parameter is first projected into the
embedding space separately with a matrix WX ∈ RdE×257,
then we combine the separate parameter embedding and
project it into a dE-dimensional vector with a linear layer
Wparam ∈ RdE×19, namely,

eiparam = W i
paramf(WXδ

i
p) (1)

where f(·) denotes that flatten the combined parameter em-
bedding into one vector.

Finally, we add an index embedding to indict the index of
the CAD command given a sequence with a learnable matrix
Wind ∈ RdE×Nc , so eiind = W i

indδ
i.

Encoder
To encode the B-Rep model input, we use the backbone pro-
posed by [Lambourne et al., 2021] as our graph encoder.

Through the special adjacency relationship named Topologi-
cal walks, we can perform the convolution operations for the
graph and obtain the local latent vector zlf , zle, zlc of faces,
edges, and co-edges, respectively. Then, the global feature
vector zgf , zge, zgc of those is computed, followed by an av-
erage pooling operation. In this way, we can describe each
CAD model with global and local features.

Feature Fusion
To leverage the global and local features of the input model,
we design a fusion module that passes through the local fea-
ture average pooling to get a global feature and concatenates
the input embeddings and global features. The stacked vector
is then passed through two blocks composed of a linear layer
and a relu layer. The output is fed into the decoder to predict
the CAD commands.

Decoder
Considering the effectiveness and excellent performance of
Transformer architecture[Vaswani et al., 2017], we leverage
the Transformer blocks as our decoder backbone. Specifi-
cally, we use 4 Transformer layers as our decoder, with 6
attention blocks in each layer. Our decoder takes as input
the unmasked sequence embedding while also performing the
cross-attention operation within the Transformer layer with
the latent vector from the encoder. And we predict the com-
mand type ti and command parameters pi separately by feed-
ing the output vector into two different linear layers. With the
discrete nature of both ti and pi, we decompose the joint dis-
tribution over the sequence of commands as the product of a
series of conditional commands distributions:

p(S; θ) =

Nc∏
i=1

p(ti,pi|t<i,p<i, z; θ) (2)
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We model this distribution using an autoregressive fashion
that outputs at each step the command and parameters of a
predictive distribution for the next sequence command. The
model is trained to maximize the log probability of the ob-
served data with respect to the model parameters θ.

3.4 Training Details
We use the AdamW[Loshchilov and Hutter, 2017] optimizer
with an initial learning rate 10−3, reduced by a factor of 0.9
every 30 epochs and a linear warmup period of 10 initial
epochs. We use a dropout rate of 0.1 in all transformer lay-
ers and a gradient clipping of 1.0. We train our networks for
100 epochs with a total batch size of 96 on one 1080Ti GPU,
which takes about one day.

4 Experiments
In this section, we evaluate our CADParser on the manufac-
tured dataset. We split our collected models into training and
test set, where the test set counts 1000. And we use our train-
ing set to train our CADParser approach.

4.1 Evaluate Metric and Comparison Methods
Although the output of our method is command sequences,
the B-Rep model can be computed based on the CAD engine.
So We use intersection over union (IoU) to evaluate network
performance since there is more than one answer for the same
input model in some cases. To calculate the IOU between two
B-Rep models, we accomplish it using OpenCascade. Since
the sequence-based prediction is under strict constraints, it
sometimes fails when working. Thus, we introduce the Re-
call metric to express the failure ratio in the parsing process;
clearly, we also consider it a failure case when the IOU is less
than 0.5. We also use the parse time as our evaluation metric
to validate the efficiency of comparison methods.

There are only a few works to operate directly on the
B-Rep models, so we compare with two existing state-of-
the-art methods: Fusion360 Gym[Willis et al., 2021b]and
ZoneGraph[Xu et al., 2021]. For Fusion360 Gym, since it is
based on the Fusion360 software, the algorithm is integrated
as a service. We here apply the agent strategy in predic-
tion and utilize the model weights released by the Fusion360
Gym. For ZoneGraph, we train it from scratch as there is no
model published. Because training ZoneGraph requires the
extrusion tools we lack, we train the ZoneGraph using the
Fusin360 reconstruction subset for 10 epochs. When infer-
ring the sequences, we set the option of ZoneGraph with max
time to 300 and max step to 15.

Table 4 shows the results of three evaluation metrics. We
can see that both fusion360Gym and Zonegraph can achieve
more than 90% on the IOU. But the difference between them
is Fusion360Gym can work well on the Recall with 82% per-
formance, but Zonegraph can only obtain about 40%, far less
than the Fusion360Gym. Our model CADParser achieves
81% on the IOU performance, but for Recall, our model
works better than Zonegraph, which approaches 64%, but still
less than the Fusion360Gym. However, for the efficiency of
the methods, our method is superior to other methods, which
is an order of magnitude lower than others.

Methods IOU Recall Runtime(s)
Fusion360 Gym 0.91 0.82 20
ZoneGraph 0.95 0.42 38.5
Ours 0.81 0.64 3.9

Table 4: The quantitative results among the comparison methods.
The best result are bold.

The reason for the gap on IOU, we think that our model
quantizes the command while Fusion360Gym[Willis et al.,
2021b] and ZoneGraph[Xu et al., 2021] deal the problem
with that called face extrusion, which doesn’t predict the
command sequence but instead selects a group of parallel
faces to predict the underlying extrude operation. Based on
its intrinsic property, face extrusion is very suitable for iden-
tifying extrusion operations. But it also has no expansibility,
which can’t recognize other features. Another reason is that
the IoU in three-dimensional space can introduce weight im-
balance among CAD features as the IoU metric primarily fo-
cuses on the global geometric structure. However, this metric
may overlook the importance of other instructions, leading to
the neglect of local features.

Figure 3 shows the qualitative comparison, we can see that
our CADParser can achieve state-of-the-art performance. Es-
pecially for some input models with other types of faces(not
plain), Fusion360Gym and ZoneGraph will fail for this part,
but our model can reconstruct the corresponding geometry
part like the result of the first row.

4.2 Ablation Study
We conduct several ablation studies to qualify the influences
of different modules in our model. We mainly perform the
ablation study from three perspectives: the encoder features,
the decoder backbone, and data augmentation. Here we use
IOU and Recall to discover how well the command sequences
inferred from the input B-Rep model.

We first evaluate the influence of the encoder feature on the
performance of CADParser. To identify which feature is es-
sential for our sequence decoder, we remove the fusion mod-
ule to predict with only local or global features. As shown in
Table 5. We see that removing either global features or lo-
cal features will cause the reduction of mean IOU and Recall.
Without local features, the mean IOU reduces by about 1%
while it decreases by about 2% without global features. How-
ever, for Recall, removing local features is more degraded
than removing global features.

Methods IOU Recall
Encoder + LSTM 0.73 0.40
CADParser + Local 0.79 0.62
CADParser + Global 0.80 0.61
CADParser + Local + Global w/o Aug 0.78 0.45
CADParser + Local + Global + Aug 0.81 0.64

Table 5: Ablation study results on mean IOU and Recall. The best
results are bold.
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Ground Truth Fusion360Gym ZoneGraph Ours

Figure 3: Results comparison of reconstruction, the empty means the failure of the corresponding method.

Since the success of the Transformer networks is highly
dependent on a large amount of data, but our training set only
contains less than 40000 models, we replace the transformer
decoder with an LSTM decoder to identify if the transformer
decoder still works well in this case. As Table 5 shows, the
Transformer decoder surpasses the LSTM decoder 11% on
mean IOU and 60% on Recall. So, even if the training set is
not so large, the transformer decoder can still work well and
present excellent performance.

We also check the influence of data augmentation on final
results. Table 5 shows that removing the data augmentation
process causes a 4% decrease in mean IOU. But we can dis-
cover a 30% decrease in Recall without data augmentation,
which indicates that the necessary augmentation.

5 Discussion and Limitation
Our CADParser aims to directly parse the B-Rep model into
the construction sequence compatible with the current CAD
softwares. Compared to face extrusion, our method can deal
with more features, and it is extensible. In contrast, our mod-
els lose the accuracy in the geometry information.

Another disadvantage of the CAD command sequence is
that the CAD design is under such strict constraints that our
results sometimes fail to reconstruct the geometry model. So,
we think in future work, the CAD design constraints can be
considered in our model to output more correct and reason-
able results, avoiding the enormous error in parsing.

Meanwhile, relying solely on the IoU metric may not
comprehensively assess sequence-based reconstruction. So

a more reliable metric is expected in future work, considering
global and local features.

6 Conclusion

We have presented a learning approach CADParser, a neural
network architecture that can directly parse the B-Rep models
into command sequences. Unlike previous methods, CAD-
Parser aims to operate directly on the manufactured object
to explore practical applications. To support the CADParser,
we also introduce a CAD dataset containing ˜40000 manu-
factured objects. Compared to the previous CAD datasets,
our dataset extends the diversity of CAD commands. For
the performance of our CADParser, we focus on our specific
CAD dataset, and our method can approach the state-of-the-
art result. Another highlight of our method is can directly
output the explicit command sequence, which is compatible
with current CAD design software. In future work, we can in-
tegrate the algorithm into the software and parse more kinds
of models.
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