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Abstract
The emergence of Neural Radiance Fields (NeRF)
has promoted the development of synthesized high-
fidelity views of the intricate real world. How-
ever, it is still a very demanding task to repaint
the content in NeRF. In this paper, we propose a
novel framework that can take RGB images as in-
put and alter the 3D content in neural scenes. Our
work leverages existing diffusion models to guide
changes in the designated 3D content. Specifically,
we semantically select the target object and a pre-
trained diffusion model will guide the NeRF model
to generate new 3D objects, which can improve
the editability, diversity, and application range of
NeRF. Experiment results show that our algorithm
is effective for editing 3D objects in NeRF under
different text prompts, including editing appear-
ance, shape, and more. We validate our method
on both real-world datasets and synthetic-world
datasets for these editing tasks. Please visit https:
//repaintnerf.github.io for a better view of our re-
sults.

1 Introduction
High-quality reconstruction of a complex 3D world is a crit-
ical challenge in computer vision [Aharchi and Ait Kbir,
2020]. Neural Radiance Fields (NeRF) [Mildenhall et al.,
2021] is an advanced approach for reconstructing the photo-
realistic view of real 3D scenes. Nevertheless, most NeRF
models implicitly encode the 3D scene by multiple layer per-
ceptions (MLP) [Mildenhall et al., 2021] or spherical har-
monics [Fridovich-Keil et al., 2022], the shape and appear-
ance of the scene can only be seen after rendering, which
means its content cannot be edited as we do in explicit scenar-
ios. In the scenario of automatic driving, an automatic driving
model requires a large amount of realistically simulated data
for training [Li et al., 2019]. NeRF can provide large volumes
of high-fidelity data for self-driving training to alleviate the
gap of Sim2Real [Tancik et al., 2022]. However, there is still
a certain distance for the current NeRF to produce numerous
simulated data among the implicit scene, which greatly lim-
its the scope of the application of NeRF. Therefore, editing
within NeRF is essential in many cases.

In prior research studies [Kobayashi et al., 2022; Yang et
al., 2021; Kundu et al., 2022] that decompose the implicitly
encoded scene for editing the objects in the scene by assign-
ing semantic labels to each point in three-dimensional space.
Then they can edit the content in NeRF by manipulating the
collection of labeled points. For example, by setting the den-
sity of a car on the street to zero, it can be removed from
the scene, or a red car can be set to blue by modifying its
RGB value. However, these operations cannot meet creative
editing needs, such as turning a pickup truck into a sedan,
which requires models with strong generalization capabilities
to change the shape and appearance of objects in space.

Recent works [Ramesh et al., 2022; Rombach et al., 2022]
have shown very promising results in generating image con-
tent through text prompts. Users are now free to edit 2D im-
ages using text prompts and generate new images at a higher
resolution. One of the keys is the thousands of rich images
on the Internet, which enables the model to understand the
content in the image and align with the abstract concepts in
the language. In the three-dimensional domain, the lack of di-
verse 3D data limits the development of such generative mod-
els [Lin et al., 2022].

A recent approach, DreamFusion [Poole et al., 2022] inte-
grates a 2D pre-trained diffusion model [Saharia et al., 2022]
with NeRF to generate 3D objects from text prompts. In more
detail, they use an optimized gradient from the denoising pro-
cess of diffusion model [Ho et al., 2020] to update the NeRF
model in the direction of the text prompt and finally obtain a
3D model that conforms to the description of the text prompt
and ensures view-consistency. However, DreamFusion’s high
memory and time consumption limits its scalability, making
it impractical for generating complex 3D scenes.

To tackle these problems, we propose a new framework for
editing the content in NeRF from text prompts. More specif-
ically, we first mask the area to be edited, under the guid-
ance of the pre-trained text-to-image diffusion model [Poole
et al., 2022], we can modify the specified area from text
prompts. However, manually smearing the mask on the two-
dimensional training images cannot guarantee view consis-
tency, and consumes a lot of time. Thus, we split our frame-
work into two stages. In the first stage, based on the vanilla
NeRF [Mildenhall et al., 2021] encoding color and density,
we additionally extend a semantic feature module to provide
users with semantic target selection. These semantic features
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Figure 1: Overview of RePaint-NeRF. We present an editing method in NeRF. In the first stage, we additionally optimize a feature field along
with the color module and density module to extract the content mask by using text or patch. In another way of speaking, we separate the part
we want to change for a generation. Then, we use the mask and text prompt to generate the new content guided by the pre-trained diffusion
model and CLIP model. After optimization of the generation, we can finally repaint a pre-trained NeRF model with view consistency and
scene integrity.

are extracted from a pre-trained large-scale model, such as
CLIP [Radford et al., 2021]. After the first stage of train-
ing, users can select a patch to get the target object mask
and generate new training data with mask information. In
the second stage, based on DreamFusion [Poole et al., 2022],
we gradually modify the mask area to conform to the shape
and appearance of the text prompts under the guidance of the
diffusion model. Moreover, we find that if the newly gener-
ated object is smaller than the original object, the previously
covered area will be exposed, but since this part of the con-
tent is unknown to the model, this area will become a black
hole. To alleviate this problem, we additionally add a back-
ground prompt to guide the generation of the content of the
black hole. However, we find that only adding a background
prompt is not enough. Inspired by [Mirzaei et al., 2022], we
use CLIP [Radford et al., 2021] to encourage the filling of
this part. We name our method, RePaint-NeRF, which means
that based on a pre-trained NeRF, we can recreate the con-
tent inside it. Our experiments on both real-world and syn-
thetic datasets demonstrate the effectiveness of our method
in changing the content in different scenes under various text
prompts.

In summary, our contributions include:

• We propose a new framework that is capable of editing
3D content in NeRF through text prompts. To the best of
our knowledge, we are the first work to propose editing
NeRF using a diffusion model in complex scenes.

• Our method can greatly expand the scope of the applica-

tion of NeRF model and apply it to most existing NeRF
model architectures.

• Our approach enables practical semantic-masked object
editing, making it possible for guiding editing in contin-
uous NeRF scenes by diffusion models.

2 Related Work

Our method mainly utilizes a pre-trained text-to-image dif-
fusion model [Rombach et al., 2022] for NeRF editing. In
this section, we mainly summarize some recent NeRF editing
research and text-to-content generation works.

2.1 Neural Radiance Fields Editing

Neural Radiance Fields (NeRF) [Mildenhall et al., 2021] uses
a multi-layer perceptual layers network to encode complex
scenes in a coordinate system-based manner and render high-
quality 3D views in an end-to-end manner. A large amount
of variant works [Barron et al., 2021; Müller et al., 2022;
Fridovich-Keil et al., 2022; Pumarola et al., 2021] were re-
leased, setting off a wave of neural rendering. However, most
NeRF variant works are based on implicit neural representa-
tions, which makes NeRF not as easy to edit as traditional
explicit primitives, such as mesh. Some NeRF editing stud-
ies [Wang et al., 2022; Liu et al., 2021; Yuan et al., 2022;
Xu and Harada, 2022; Kobayashi et al., 2022] recently are
proposed to address this challenging issue.
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Object-level NeRF Editing. Some of the NeRF editing
works [Wang et al., 2022; Liu et al., 2021] focus on a sin-
gle class of objects. For example, Editing-NeRF [Liu et al.,
2021] can change the shape or color of some parts of a certain
class of objects, such as a chair or a car. Specifically, Editing-
NeRF trains a neural network on a large number of a single
category of objects, which is designed to learn the shape code
and appearance code of these 3D models. Editing-NeRF can
edit the shape and appearance of an object by adjusting these
two latent codes. However, this method can only be operated
on similar objects and can hardly extend the editing operation
to complex scenes.

Neural Scene Decomposition. Another research direc-
tion [Kobayashi et al., 2022; Kundu et al., 2022; Zhi et al.,
2021] is to decompose the neural scene first and add semantic
labels to each 3D coordinate point by additionally training a
semantic branch so that a certain class of object can be se-
lected to edit during rendering. However, such methods are
limited in that they cannot extend editing to invisible content,
such as turning a rock into an apple. Our work relies on a
pre-trained diffusion model, which endows the power to re-
generate a selected object in a complex scene.

2.2 Text-to-3D Generation
Recently, some methods [Poole et al., 2022; Lin et al., 2022;
Metzer et al., 2022; Jain et al., 2022] have been proposed to
transfer knowledge from pre-trained 2D diffusion models to
3D fields. DreamField [Jain et al., 2022] uses a pre-trained
CLIP [Radford et al., 2021] model to supervise the gap be-
tween the views rendered from different perspectives repre-
sented by NeRF and a text prompt. However, the generated
3D models are still not photo-realistic. The recently proposed
DreamFusion [Poole et al., 2022] and its variants [Lin et al.,
2022; Metzer et al., 2022] use pre-trained diffusion models
to guide the generation of 3D models. The diffusion model
generates gradients through its denoising mechanism [Nichol
and Dhariwal, 2021; Ho et al., 2020] by randomly looking at
the 3D field, the gradient is then passed directly to the NeRF
model for optimization. However, these approaches can not
extend to scene-level generation due to memory limitations.
In our paper, we use the diffusion model for the editing of dif-
ferent objects in the scene, achieving scene-level generation
in a sense.

3 Method
The first part of our method is to mask the places we want
to modify. However, it is too time-consuming to manually
paint masks from different angles in a 3D scene. Thus, to
get a view consistent semantic mask, we additionally train
a semantic feature module to obtain a relative view contin-
uous mask. In detail, we encode the 3D coordinate points
to a high-dimension feature space. Moreover, we also add
depth maps predicted from training images to supervise the
depth of the predicted view, which could effectively reduce
noise and speed up training [Deng et al., 2022]. The sec-
ond part of our framework is about how to generate a new
object by text guidance based on the target mask. We also

need to preserve the other existing content, so we add back-
ground prompts and a CLIP loss to monitor the plausibility
of background content. We extract the pose information of
the training views via COLMAP [Schonberger and Frahm,
2016]. For the supervised depth information, we use an ex-
isting robust model [Ranftl et al., 2022] which could predict
a rough depth of a monocular image. Note that the depth es-
timation model can be replaced by other models that predict
depth relatively accurately. For the supervised semantic fea-
tures, we refer to DFF [Kobayashi et al., 2022], which distills
the feature maps from a pre-trained CLIP model [Li et al.,
2022]. The overview of our framework is shown in Fig. 1.

3.1 Preliminaries
Neural Radiance Fields. NeRF [Mildenhall et al., 2021]
implicitly encodes the color c and density σ of each 3D point
x from different view direction d by utilizing multiple per-
ceptual layers gθ : (x,d) → (c, σ) weighted by θ. Consider-
ing a ray r(t) = o+ td is emitted to sample the points along
the ray in 3D space, where o is the origin of the ray, t is the
distance from the origin o to the sample point x along the ray.
The color of a pixel can be obtained by volume rendering:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt, (1)

where T (t) = exp

(
−
∫ t

tn

σ(r(t))dt

)
, (2)

where T (t) can be regarded as transparency, tn and tf are the
near plane and the far plane of the sampling boundary. NeRF
is obtained by optimizing the following loss function:

Lcolor =
∑
r∈R

∥∥∥C(r)− Ĉ(r)
∥∥∥2 , (3)

where R represents all rays emitted from the pixels of train-
ing images.

DreamFusion. A recent work DreamFusion [Poole et al.,
2022] shows that under the guidance of a 2D diffusion model
ϕ, a 3D implicit object represented by the NeRF gθ can be
generated from scratch according to a text prompt. In their
method, the NeRF model gθ renders an image I at a ran-
dom viewing angle, the pre-trained diffusion model ϕ sample
noise ϵ at time-step t to generate noisy image It = I + ϵ.
The main contribution of DreamFusion [Poole et al., 2022] is
that they proposed a gradient calculation by Score Distillation
Sampling (SDS) loss [Poole et al., 2022] to guide the update
direction of NeRF:

∇θLSDS(ϕ, gθ) = Et,ϵ

[
w(t) (ϵϕ (It; y, t)− ϵ)

∂I

∂θ

]
, (4)

where w(t) is a weighted function correspond to time-step
t, y is a text embedding, ϵϕ is a learned denoising function.
∇θLSDS is used to update the NeRF network gθ instead of
propagating to the diffusion model ϕ.
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3.2 Semantic Mask Extraction
In our approach, the first step in modifying a 3D scene is to
mask the target regions. Manually labeling each point in the
training data or 3D field is very time-consuming. Obtaining
the semantic information of a single two-dimensional image
directly will lose the view consistency. Therefore, to extract
accurate and consistent semantic information, we encode the
feature f of view-independent point x in three-dimensional
space. Note that the feature f is a high-dimensional vector
with semantic information, which is different from explicit
semantic labels in semantic segmentation. Here we follow
DFF [Kobayashi et al., 2022]. We first utilize an existing
pre-trained model, such as CLIP [Radford et al., 2021], to
extract the feature f of each training data. We additionally
trained a feature network s : x → f and finally obtained
the features from different views but keep view consistency
through volume rendering equation:

F (r) =

∫ tf

tn

T (t)σ(r(t))f(r(t), d)dt. (5)

Similar to Eq. 3, we defined the loss function for optimizing
the feature module:

Lfeature =
∑
r∈R

∥∥∥F (r)− F̂ (r)
∥∥∥2 . (6)

However, in some views, there will always be some noise
affecting NeRF’s depth estimation, resulting in imprecise se-
mantic mask segmentation (see Fig. 2). Thus, we add depth
information that is predicted by a pre-trained model [Ranftl
et al., 2022] as a coarse depth supervision to mitigate this
problem. At the same time, this measure also speeds up the
convergence of the feature field:

Ldepth =
∑
r∈R

∥∥∥D(r)− D̂(r)
∥∥∥2 , (7)

where D(r) is the depth predicted by a pre-trained model as
the depth ground truth, and D̂(r) is the depth predicted by
NeRF. Therefore, the final loss function for the first stage of
our method is:

Lfirst-stage = Lcolor + λfeatureLfeature + λdepthLdepth. (8)

We do not obtain the semantic mask by comparing the fea-
tures f of each 3D point x with the target feature. Instead,
we compare the patch features with pixel features after ren-
dering the feature map FI . We prefer to use patch features
instead of text features because we find that a higher thresh-
old can be set to control more accurate segmentation. The
mask is obtained using the following equation:

IH×W×1
mask = 1(Sim(Fpatch, FI) > α), (9)

where Fpatch is the mean feature of a selected patch, Sim is
a similarity function, and α is a threshold.

(a) fortress scene without depth supervision.

(b) fortress scene with depth supervision.

Figure 2: Ablation study of depth supervision.

3.3 Text-to-3D Content Editing
In the second stage, based on DreamFusion [Poole et al.,
2022] and the previously extracted masks, we modify the 3D
content inside it on a pre-trained NeRF. Our goal is to keep the
surrounding content unchanged while editing NeRF content.
Thus, we keep optimizing the unmasked region by minimiz-
ing:

Lunmask =
∑
r∈R

∥∥∥C(r)unmask − Ĉ(r)unmask

∥∥∥2 , (10)

where C(r)unmask = C(r)× 1(Imask < 0.5), (11)

Ĉ(r)unmask = Ĉ(r)× 1(Imask < 0.5). (12)
However, we find that when the diffusion model [Rombach
et al., 2022] is used to guide the masked part to be modi-
fied, the newly generated small target object will expose the
part covered by the previous object, which is largely unseen.
Thus, we add a background prompt (BGT) that could par-
tially solve this issue. For example, we use prompt “a blue
rose in leaves” instead of “a blue rose”, so the BGT here
is “leaves”. (see the first-row example in Fig. 3). Inspired
by [Weder et al., 2022], we also add a CLIP loss function
to guide the masked region for generating a background that
could fill the black hole around the mask edge. The CLIP loss
function is defined as:

Lclip = −Sim (ZI , ZBGT) , (13)
where ZI and ZBGT are the latent feature of rendering im-
age I and background prompt encoded by pre-trained CLIP
model [Li et al., 2022].

The insight of our method is that keep the diffusion model
watch the whole scene by using ∇θLSDS to guide the update
direction of NeRF gθ for optimizing the target region, and
using Lunmask to ensure the unmasked region of the target
keep stable. Besides, the background prompt and CLIP loss
function Lclip is to make the unseen region to be filled.

Now the final loss function of our second stage is defined
as:

Lrepaint = λunmaskLunmask + λclipLclip, (14)
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Figure 3: Qualitative editing results. We test our method on the Blender and LLFF. Our method can change the shape and appearance of
objects in both real-world and synthetic-world datasets with a simple text prompt while maintaining almost high fidelity.

Figure 4: Comparison of different λunmask. The text prompt and
background prompt we use here are “a banana in a plate” and “an
empty plate”.

where the λunmask and λclip is set here for balancing the
change of the target object and other regions.

3.4 Implementation Details
Our implementation is divided into two parts, based on
DFF [Kobayashi et al., 2022] and DreamFusion [Poole et al.,
2022] separately. Each training iteration needs to render a
whole view, this undoubtedly consumes a huge amount of
memory, and the training speed is also crucial to user experi-
ence. Thus, we use Instant-NGP [Müller et al., 2022] as our
NeRF model, which is based on a multi-resolution hash grid
structure to accelerate the training and rendering process. We
test our method on a single NVIDIA RTX 3090 GPU. It is
worth noting that the actual generation time depends on the
appearance and shape of editing before and after. For exam-
ple, if you only change the color of one car, it might only take
5 minutes. But turning a car into a chocolate candy car can
take more than 40 minutes to achieve decent results. Please

refer to our supplementary material for more details.

Mask Extraction. In the first stage, we first extract the se-
mantic masks of the training images. CLIP [Radford et al.,
2021] is a text-image pair-based multimodal model for self-
supervised training, which is trained for aligning text infor-
mation and image information. However, the feature maps
extracted by CLIP are not at the pixel level, so here we use
the LSeg [Li et al., 2022] to extract the feature maps as
our training set. LSeg [Li et al., 2022] is a semantic seg-
mentation model that is trained based on the CLIP weights.
All feature maps are interpolated to the size of image size
H × W × 512. We visualize the high dimensional feature
via PCA, which can reflect the distribution of semantic in-
formation to a certain extent. In addition, for depth informa-
tion, we use MiDAS [Ranftl et al., 2022], a robust monocu-
lar depth estimation model, to extract rough depth informa-
tion. The size of each depth image is H × W × 1, and the
depth information is normalized to a range of 0 to 1. Thanks
to Instant-NGP [Müller et al., 2022] and the depth informa-
tion we added as supervision, we only need to train 2000
steps for each scene to get a clear semantic mask. We use
Adam [Kingma and Ba, 2014] to optimize our NeRF model
in the first stage, with a learning rate 1e-2 and batch size 4096.

3D Object Editing. In the second stage, we only use the
color images and the masks extracted in the first stage as in-
puts. We first train a NeRF by optimizing Eq. 3 as our base
model. In the pre-training phase, we sample a whole image
in each iteration, so that we can observe the memory usage
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(a) Mask + CLIP

(b) Mask + SDS

Figure 5: Comparison of different guidance. We compare the abil-
ity of generations under two different guidance. Here we use text
prompt “a blue rose” in both tests.

and adjust the hyperparameters in time to make compromises
for the pre-trained diffusion model and CLIP model in the
generation phase. For example, in the fortress scene, we set
the bound to 1.4 and the learning rate to 1e-3 to ensure that
the GPU does not exceed the video memory space as much
as possible. For the training of generation, each scene will
require an input of an object text prompt with a background
text prompt. We use Stable Diffusion [Rombach et al., 2022]
to supervise the update direction of the NeRF model and use
the CLIP [Radford et al., 2021] model to compare the sim-
ilarity between the unmasked image (an image that includes
the surrounding content and a masked blacked hole) and the
BGT. We train these two phases using Adan with a learning
rate of 1e-3 decaying to 1e-4 and a batch size of 1. These two
phases are optimized for 3000 steps and 10000 steps respec-
tively, more steps will be added for better visual effect.

4 Experiments
In this section, we focus on evaluating our method on differ-
ent scenes with different prompts, we show qualitative editing
results on Local Light Field Fusion (LLFF) [Mildenhall et al.,
2019] and Blender, followed by comparison experiments and
ablation studies.

4.1 Datasets
We use Local Light Field Fusion (LLFF) [Mildenhall et al.,
2019] and Blender for testing. The LLFF [Mildenhall et al.,
2019] is collected from the real world in the form of shoot-
ing forward-facing, and its capture resolution is 4032×3024.
The Blender comes from the synthetic world by rendering on
3D models, its resolution is 800 × 800. In order to save the
memory of the GPU, we resize the image size to 504 × 378
and the image size of Blender to 400× 400. Our experiments
show that our method is very effective for object editing in
both worlds.

4.2 Semantic Mask Extraction
The role of the first part is mainly to replace the operation of
manual masking and provides view-consistent masks for the

second part. Thus, we mainly focus on how to get a clean
and accurate mask view faster. In the Fig. 2, we take the
fortress scene as an example, and our goal is to extract the
objects of the fortress. The result shows that training for only
2000 steps without depth supervision produces inaccurate and
noisy semantic masks. However, in our proposed model with
depth informative supervision, 2000-step training yields more
accurate and clean semantic masks.

Figure 6: Ablation study of background prompt guidance.
For Mask+SDS, the text prompt is “a lego man head”; For
Mask+SDS+BGT, the text prompt is “a lego man head in leaves”;
For Mask+SDS+CLIP, the text prompt is “a lego man”, and the
prompt for CLIP is “leaves”; For Mask+SDS+BGT+CLIP, the
text prompt is “a lego man head in leaves”, and prompt for CLIP is
“leaves”.

4.3 Text-to-3D Editing
We have conducted a lot of experiments on LLFF [Milden-
hall et al., 2019] and Blender, as shown in Fig. 3, our method
can recreate a photo-realistic target area while ensuring that
the other original scene does not change or changes slightly.
The first column of Fig. 3 is the view rendered by pre-trained
NeRF. The text under the view of the first column is the target
object we desire to change. Columns 2, 3, and 4 represent the
process of gradually modifying the object. The text prompt is
set below those three views, which includes the target prompt
and the BGT. The BGT we send for the CLIP model is to
encourage background generation. Columns 4 and 5 are dif-
ferent views that are rendered by modified NeRF. Columns 6
and 7 contain our other editing results under the same scene,
the text below there is the target generation prompt, and the
background prompts are consistent with the previous ones.
We find that the generation of similar shapes works better and
faster, such as turning a flower into a blue rose in the first row
and a hotdog into a cucumber in the second row. For shapes
that are not too similar, the generated effect will decrease, but
it will gradually approach the content of the prompt, such as
turning a hotdog into a cup of coffee in the first row and a
fortress into an apple in the third row. At the same time, in
our method, the model can perceive the surrounding objects
and generate areas that have not been seen before. For ex-
ample, in the showcase of the fortress to an apple, the edge
of the fortress that previously covered part becomes material
and color similar to the desktop. In the example of orchids to
maple leaves, except for the modified maple leaf, other con-
tent that was orchids before has become the content of the
grass in the background.

Comparison of CLIP guidance and SDS guidance. We
compare the ability of Stable Diffusion [Rombach et al.,
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2022] and CLIP [Radford et al., 2021] to guide object
changes under the same mask. Fig. 5 shows the editing effect
of the two models during the optimization process. The target
text prompt here we set is “a blue rose”, and the red flower
is the source object. We first set Eq. 10 to ensure that the
surrounding content remains unchanged. For Mask+CLIP,
we make sure that the CLIP model [Radford et al., 2021] will
only see the region of the flower and we train the NeRF model
by optimizing the similarity loss function of Eq. 13. We find
that the CLIP model is weak to guide the NeRF model to the
target direction very well. At the beginning of the training,
the CLIP model is trying to make the flower move to a lit-
tle bit blue, while after several epochs, the flower becomes
an unreasonable texture. For Mask+SDS, we set the SDS
loss [Poole et al., 2022] to guide the masked part to become
a blue rose. The result of Mask+SDS in the Fig. 5 shows
that the model generates an excellent texture and shape. The
comparison shows that the Mask+SDS can produce a much
better effect than Mask+CLIP.

Ablation study of background prompt guidance. We per-
form background-cued ablation experiments (see Fig. 6). For
Mask+SDS, we only set an SDS loss [Poole et al., 2022] to
guide the masked region with an object text prompt, here we
set is “a lego man head”. The result shows that the model
generates a shape like green hair on the Lego head, and the
generated shape of the hair is still the shape of the petal. For
Mask+SDS+BGT, here we set the text prompt for the diffu-
sion model as “a lego man head in leaves”, which means we
explicitly tell the diffusion model what is the content around
the Lego man. And the result is that hair of the Lego man is
more reasonable, but the previously covered part on the top of
the hair becomes a black hole. For Mask+SDS+CLIP, we re-
move the background prompt in the text prompt and provide
a background prompt to CLIP, we are inspired by [Mirzaei
et al., 2022] here. We give a view of the unmasked region
to CLIP to fill the black hole. The result of this way is that
the Lego man owns reasonable hair but with the shape of a
petal. For the final Mask+SDS+BGT+CLIP, we set the text
prompt includes the background prompt, which is “a lego
man head in leaves”. And the CLIP will receive a view of
the unmasked image and a background prompt “leaves”. The
final results show that the hair becomes a normal shape, and
the black hole is filled with a kind of green material. We also
could see the result of Mask+SDS+BGT+CLIP in Fig. 3, for
example, some green leaves appeared around the blue rose in
the example of flower to a blue rose.

Effects of Different Mask Weight. In addition, we com-
pare the effect of different λunmask in Eq. 14 (see Fig. 4).
The Stable Diffusion [Poole et al., 2022] model we use in
our method receives full-resolution images without any mask.
Thus, we set a loss function Eq. 10 to strongly control the un-
masked part to avoid unwanted content. We use the hotdog
scene as an example, and the goal is to change the hotdog to
a banana. In the first experiment, we set λunmask = 0, which
means no constraints on the background part (i.e., the plate),
and the result is the diffusion model totally changes the shape
and appearance of the plate. Then we gradually increase the
weight λunmask to control the shape of the plate, the result

shows that λunmask = 100 could retain the original shape
and appearance of the plate well. Thus, in the practice of all
scenes, we usually set λunmask = 100, we also find a weight
too larger will extremely influence the speed of generation,
which means more constraint to the ability of the diffusion
model.

Figure 7: Limitation of restricted view angle. The daisy in the red
frame is composed of two previous orchids; the daisy in the yellow
frame is normal.

5 Limitations
Although our method can modify the content of NeRF
through text prompts, there are still some limitations. The
first and most obvious problem with our method is that the
whole process is time-consuming and space-consuming. For
this reason, we cannot extend to a larger resolution of data
or a larger scene. Several recent works [Lin et al., 2022;
Metzer et al., 2022] have introduced how to solve the time
problems of DreamFusion [Poole et al., 2022], but it still
takes more than 30 minutes to generate a relatively high-
quality 3D model at the object level. In another aspect, we
find that in some cases, especially the new object shape is
hugely different from the old one, the training process will be
very tough for the model (see Fig. 3, the cup from the hotdog
is not completely changed). The last limitation is that angle
constraint will influence the shape of the generation. For ex-
ample, in Fig. 7, the generated daisy on the edge of the view is
actually combined by two orchids, while the generated daisy
in the central location is much more normal.

6 Conclusion
In this paper, we proposed a NeRF editing framework based
on the pre-trained 2D diffusion model guidance. Our method
mainly obtained the edited scene by regenerating the masked
part through the gradient guidance of the diffusion model.
Moreover, we added a background prompt and a CLIP loss
to ease the problem of invisible background. At the same
time, we also added depth information as supervision in the
semantic mask acquisition part of the task for a faster train-
ing speed and better semantic masks. Our method combined
the semantic information of the scene and used a text-driven
method to modify the content of the scene. Compared with
explicitly modifying the 3D scene, our method would make
the NeRF more diverse and promote the development of the
simulation environment based on neural rendering. We be-
lieve that there will be faster and better editing methods in
the future to further improve the editability of NeRF models.
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[Ranftl et al., 2022] René Ranftl, Katrin Lasinger, David
Hafner, Konrad Schindler, and Vladlen Koltun. Towards
robust monocular depth estimation: Mixing datasets for
zero-shot cross-dataset transfer. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 44(3), 2022.

[Rombach et al., 2022] Robin Rombach, Andreas
Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 10684–10695, 2022.

[Saharia et al., 2022] Chitwan Saharia, William Chan,
Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton,
Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu
Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language un-
derstanding. Advances in Neural Information Processing
Systems, 35:36479–36494, 2022.

[Schonberger and Frahm, 2016] Johannes L Schonberger
and Jan-Michael Frahm. Structure-from-motion revisited.
In Proceedings of the IEEE Conference on Computer
vVsion and Pattern Recognition, pages 4104–4113, 2016.

[Tancik et al., 2022] Matthew Tancik, Vincent Casser,
Xinchen Yan, Sabeek Pradhan, Ben Mildenhall, Pratul P
Srinivasan, Jonathan T Barron, and Henrik Kretzschmar.
Block-nerf: Scalable large scene neural view synthesis. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8248–8258, 2022.

[Wang et al., 2022] Can Wang, Menglei Chai, Mingming
He, Dongdong Chen, and Jing Liao. Clip-nerf: Text-and-
image driven manipulation of neural radiance fields. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3835–3844, 2022.

[Weder et al., 2022] Silvan Weder, Guillermo Garcia-
Hernando, Aron Monszpart, Marc Pollefeys, Gabriel
Brostow, Michael Firman, and Sara Vicente. Removing
objects from neural radiance fields. arXiv preprint
arXiv:2212.11966, 2022.

[Xu and Harada, 2022] Tianhan Xu and Tatsuya Harada. De-
forming radiance fields with cages. In European Confer-
ence on Computer Vision, pages 159–175, 2022.

[Yang et al., 2021] Bangbang Yang, Yinda Zhang, Yinghao
Xu, Yijin Li, Han Zhou, Hujun Bao, Guofeng Zhang, and
Zhaopeng Cui. Learning object-compositional neural ra-
diance field for editable scene rendering. In Proceedings

of the IEEE/CVF International Conference on Computer
Vision, pages 13779–13788, 2021.

[Yuan et al., 2022] Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun
Lai, Yuewen Ma, Rongfei Jia, and Lin Gao. Nerf-editing:
geometry editing of neural radiance fields. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 18353–18364, 2022.

[Zhi et al., 2021] Shuaifeng Zhi, Tristan Laidlow, Stefan
Leutenegger, and Andrew J Davison. In-place scene la-
belling and understanding with implicit scene representa-
tion. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 15838–15847, 2021.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1821


	Introduction
	Related Work
	Neural Radiance Fields Editing
	Text-to-3D Generation

	Method
	Preliminaries
	Semantic Mask Extraction
	Text-to-3D Content Editing
	Implementation Details

	Experiments
	Datasets
	Semantic Mask Extraction
	Text-to-3D Editing

	Limitations
	Conclusion

