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Abstract

Dichotomous image segmentation (DIS) has a wide
range of real-world applications and gained in-
creasing research attention in recent years. In this
paper, we propose to tackle DIS with informative
frequency priors. Our model, called FP-DIS, stems
from the fact that prior knowledge in the frequency
domain can provide valuable cues to identify fine-
grained object boundaries. Specifically, we propose
a frequency prior generator to jointly utilize a fixed
filter and learnable filters to extract informative fre-
quency priors. Before embedding the frequency
priors into the network, we first harmonize the
multi-scale side-out features to reduce their hetero-
geneity. This is achieved by our feature harmoniza-
tion module, which is based on a gating mechanism
to harmonize the grouped features. Finally, we pro-
pose a frequency prior embedding module to em-
bed the frequency priors into multi-scale features
through an adaptive modulation strategy. Exten-
sive experiments on the benchmark dataset, DIS5K,
demonstrate that our FP-DIS outperforms state-of-
the-art methods by a large margin in terms of key
evaluation metrics.

1 Introduction
Dichotomous image segmentation (DIS) [Qin et al., 2022]
aims to segment fine-grained objects from various natural
scenes. As an emerging image segmentation task, DIS has
great potential in a large number of applications, such as im-
age editing [Kawar et al., 2023], 3D reconstruction [Geiger
et al., 2011], remote sensing [Zhang et al., 2022a], medical
image analysis [Dong et al., 2023b; Ji et al., 2022], virtual re-
ality [Singh et al., 2020], and so on. Different from existing
segmentation tasks, DIS focuses on challenging fine-grained
object segmentation. Therefore, conventional segmentation
models show unsatisfactory performance in DIS, raising sig-
nificant demands for designing models dedicated to DIS.
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Figure 1: An overview of frequency prior embedding. Our FP-DIS
embeds frequency priors into image features to obtain refined fea-
tures for improving the accuracy of DIS. “DCT” is short for discrete
cosine transformation.

Image segmentation is a long-standing topic in computer
vision and has made significant progress with the develop-
ment of deep learning techniques [Qin et al., 2020]. Deep
learning has also been employed for DIS. A typical method
is IS-Net [Qin et al., 2020], which employs an intermediate
supervision strategy to improve network training for DIS. De-
spite the progress of existing works, many factors restrict the
accuracy of DIS. Existing works usually rely on features ex-
tracted from images without the consideration of valuable fre-
quency priors. In practice, a number of works have demon-
strated that prior knowledge from the frequency domain can
effectively improve the performance of various computer vi-
sion tasks. For instance, [Qian et al., 2020] proposed a novel
face forgery detection network, called F3Net, which utilizes
frequency information to perceive forgery cues. [Zhong et
al., 2022] designed a frequency enhancement module to in-
troduce the frequency domain as an additional clue to make
up for the lack of a single RGB domain to better detect cam-
ouflaged objects. These studies demonstrate that knowledge
in the frequency domain can assist in the identification of fine-
grained object boundaries, which play a vital role in DIS.
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However, incorporating frequency priors into DIS faces a
number of challenges, including (i) how to extract informa-
tive frequency priors from images, (ii) how to embed the fre-
quency priors into multi-scale side-out features of the back-
bone, and (iii) how to address the heterogeneity of multi-scale
features before frequency priors embedding.

To this end, we propose to improve DIS with frequency
priors and design a novel deep learning model, called FP-
DIS, to address the aforementioned challenges. Specifically,
we propose a frequency prior generator to extract informa-
tive frequency priors with both fixed and learnable filters.
The resulting frequency priors are then embedded into har-
monized multi-scale features for accurate DIS, as shown in
Figure 1. Here, we propose a feature harmonization module
(FHM) to harmonize the multi-scale side-out features from a
backbone based on our pyramid feature extractor. Our FHM
harmonizes the grouped features to reduce the heterogene-
ity of multi-scale features. To embed these frequency priors
efficiently, we propose a frequency prior embedding module
(FPEM), where two feature embedding components are in-
tegrated in a cascaded manner. Our FP-DIS makes full use
of frequency priors to improve DIS and addresses the chal-
lenges associated with frequency priors extraction and em-
bedding with specially-designed modules. Extensive experi-
ments on the benchmark dataset, DIS5K [Qin et al., 2022],
show that our FP-DIS achieves promising performance in
comparison with cutting-edge methods with superior fine-
grained segmentation capabilities. To put this in perspective,
our FP-DIS outperforms the state-of-the-art model, IS-Net,
by a large margin in terms of maximal F-measure on different
sub-datasets, i.e., 4.4% on DIS-TE1, 2.8% on DIS-TE2, 3.8%
on DIS-TE3, 1.9% on DIS-TE4, and 3.2% on DIS-VD. Our
code is available at https://github.com/dongbo811/FP-DIS.

2 Related Work
2.1 Image Segmentation
Recent works have made great progress on image segmenta-
tion tasks [Pang et al., 2022]. However, compared with the
general segmentation models and the specific scene models,
the core difficulty of the DIS task lies in the mining of object
details. For general segmentation task models, the architec-
ture design tends to be robust to each class in various scenes.
Due to the relatively rough labeling of the dataset, it cannot
be directly applied to the DIS task. There are also mod-
els designed for specific tasks, such as visually salient ob-
ject detection [Dong et al., 2021], camouflaged object detec-
tion [Fan et al., 2021a], marine animal segmentation [Li et al.,
2021b], and medical image segmentation [Fan et al., 2020;
Liu et al., 2021; Lin et al., 2022]. However, these methods
are unsuitable for the DIS task. Specifically, since objects
in salient detection tasks always have prominent contours
and distinct colors, current methods mainly use boundary en-
hancement [Qin et al., 2019], semantic enhancement [Wu et
al., 2019] or design attention mechanism [Woo et al., 2018] to
improve segmentation performance. Camouflaged object de-
tection aims to segment camouflaged objects from complex
natural scenes. The difficulty is that the object to be seg-
mented is indistinguishable from the background with very

similar features such as color, outline, texture, etc. In re-
cent studies, some construct multi-task learning frameworks
[Zhai et al., 2021], some propose uncertainty reasoning meth-
ods [Li et al., 2021a] or multi-scale feature fusion [Chen et
al., 2022] for enhancing camouflaged object detection perfor-
mance. According to IS-Net [Qin et al., 2022], DIS is formu-
lated as a category-agnostic task defined on non-conflicting
annotations for accurately segmenting objects with different
structure complexities, regardless of their characteristics. Fol-
lowing this principle, the DIS5K dataset is constructed, which
uses three commonly used metrics, namely isoperimetric in-
equality quotient, number of object contours, and number of
dominant points, to measure the fine-grained level of objects
in various scenes. However, due to the elusive target objects
with complex detailed structures in DIS, there is a bottle-
neck for feature representation, which limits the segmenta-
tion performance. Unlike current techniques that only focus
on semantic enhancement, we add frequency priors to help
the model capture more detailed information.

2.2 Frequency Priors in Computer Vision
Frequency domain signals have been widely used in com-
puter vision tasks, such as image classification [Stuchi et al.,
2017], super-resolution [Huang et al., 2017], and fake face
detection [Li et al., 2018]. Some current studies use high-
pass filters [Pandey et al., 2016] to extract useful detailed fea-
tures, and some models use discrete Fourier transforms [Du-
rall et al., 2019] to convert images into the frequency do-
main to explore bottom-layer information. To improve the
performance, many models propose to enhance the feature
representation [Pang et al., 2022]. Some methods artificially
synthesize features to further enrich the contained informa-
tion [De Carvalho et al., 2013]. Some recent studies pro-
pose extracting important frequency components and filter-
ing frequencies [Dong et al., 2023a], which are beneficial
to enhance semantic information. [Zhang et al., 2022b] pro-
posed to process different video bands separately to promote
similarity within objects. In addition, some methods [Liu et
al., 2023] employ knowledge distillation to reduce the do-
main gap between the frequency domain and the image do-
main. Different from these methods, our model obtains the
frequency priors of the image by DCT transform and inverse
transform, combined with frequency filters. The frequency
priors contain detailed information that is difficult to detect
in the color space of RGB images. Furthermore, there exists
a large gap between image and frequency domain features.
Therefore, we design a frequency prior embedding module to
eliminate the semantic gap between frequency priors and im-
age features by modulating their distribution to obtain a finer
segmentation effect.

3 Method
In this section, we explain details about the proposed FP-DIS.
The overall architecture is shown in Figure 2.

3.1 Overall Architecture
The core sight of FP-DIS is that, with the guidance of the
frequency priors, the multi-scale image features can capture
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Figure 2: Overall architecture of FP-DIS. DCT and iDCT are discrete cosine transform and inverse discrete cosine transform, respectively.
Two adjacent layers of features (Xi, Xi+1) go through the feature harmonization module to obtain harmonized feature (X

′
i, X

′
i+1). The

frequency priors are embedded into the harmonized feature X
′
j and the output Ej of upper layer FPEM. Multi-scale frequency embedding

feature Ej propagates from top to down layer. Finally, the final prediction E0 is upsampled to the original image size.

more details of the input image. Motivated by this, FP-DIS
mainly consists of four parts: a pyramid feature extractor, a
frequency prior generator, a feature harmonization module,
and a frequency prior embedding module. As shown in Fig-
ure 2, we first capture multi-scale features of the input image
with a pyramid feature extractor consisting of a CNN-based
backbone and a transformer-based component. The feature
harmonization module is adopted to harmonize features at
adjacent semantics in different scales. Meanwhile, the input
image is fed into the frequency prior generator to calculate
frequency priors. Finally, the frequency priors are embedded
into the harmonized multi-scale features with the frequency
prior embedding module. The details of each module are de-
scribed in the following subsections.

3.2 Pyramid Feature Extractor
Convolution neural networks are widely adopted for common
vision tasks and get a satisfactory performance. However,
in the DIS task, the size of the input image is always large
and the target objects own abundant details. It is difficult
for shallow networks to learn rich semantics and refine the
features fed with large input since they concentrate more on
local information. To obtain more semantic information on
multi-scale, we use the vision transformer with long-distance
modeling capability to deepen the network in addition to the
convolution layers in the pyramid feature extractor.

Specifically, the pyramid feature extractor first uses
ResNet-50 as the CNN-based backbone to extract multi-
scale features {Xi}4i=1 ∈ R

H

2i
×W

2i
×Ci from the input image

I ∈ RH×W×3, where H and W denote the height and width,
and Ci ∈ {256, 512, 1024, 2048} is the number of channels.
Then the feature X4 is downsampled by a 3 × 3 convolution
layer with a stride of 2, fed into a transformer block [Ren et
al., 2022] to get X5. Finally, we use the same operations on

X5 to obtain X6. Notably, the channel of X5 and X6 are 256.
To facilitate subsequent processing, we convert the channel
of all these features {Xi}6i=1 to 96.

3.3 Frequency Prior Generator
Inspired by [Qian et al., 2020], to generate frequency priors,
the discrete cosine transform (DCT) is first used to transform
the image I into the frequency domain to generate the fre-
quency distribution map M, i.e.,

M = DCT(I). (1)

Next, the fixed filter and the learnable filters extract differ-
ent and valid frequency components. Especially, the fixed
filter divides the frequency components into different bands
(low frequency, medium frequency, high frequency, and all
frequency), while the learnable filters provide more abun-
dant information, and σ = 1−exp(−x)

1+exp(−x) used to normalize x to
the range between −1 and +1. Finally, the frequency priors
XFP are generated using the inverse discrete cosine transform
(iDCT):

XFP = iDCT(M⊗ (Ff + σ(Fl))), (2)

where iDCT(·) denotes inverse discrete cosine transform, ⊗
is Hadamard product, Ff and Fl are the fixed filter and the
learnable filters, respectively.

3.4 Feature Harmonization Module
The multi-scale features generated by the pyramid structure
contain different structural and semantic information, induc-
ing considerable heterogeneity. The shallow layers capture
abundant details, while the deeper layers extract features with
more semantics. The fusion of these multi-scale features
would drive the model to focus on both detailed and abstract
information. Therefore, we design a feature harmonization
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Figure 3: The structure of feature harmonization module. We use
feature grouping to cluster similar semantics and different seman-
tics between different scales. The obtained grouping features were
harmonized separately in inter-group and intra-group.

module to harmonize features at different scales. As shown
in Figure 3, the FHM consists of two major parts, namely the
grouping component and the harmonization component, each
of which is detailed as follows.
Grouping Component. In this component, given features Xi
and Xi+1 from the pyramid feature extractor, we expand the
channel byN times and then split them intoN groups. In this
way, the intra-layer groups from the same input contain simi-
lar features, while the inter-layer groups from different inputs
contain features with a large variation. Finally, we obtain 2N
groups of features. Each grouped feature is further split into
three sub-groups along the channel dimension.
Harmonization Component. After the grouping of the given
inputs Xi and Xi+1, the semantics within each group of layers
are tight, and the semantic difference between each group of
different scales is obvious. Therefore, we need to achieve fea-
ture harmonization, and the core of the harmonization mech-
anism is to use a gate unit for filtering. There are two harmo-
nization mechanisms namely the inter-group harmonization
and intra-group harmonization. For inter-group harmoniza-
tion, as shown in Figure 3, it (green block) collects a splitter
of all groups. So it has 2N inputs with different scales. For
intra-group harmonization, it collects splitters with the same
scale as shown in Figure 3 (blue block). So, for each scale, it
has two harmonization components.

Using inter-group harmonization as an example, we denote
the grouped features as {Gn}Nn=1, set N = 4. As shown in
the far right of Figure 3, we first obtain the aggregated feature
by adding all input features. Note that, for inter-group harmo-
nization, we interpolate the splitters from Xi to the same scale
as Xi+1 since these inputs are with different scales. These
splitters are then fed into a gate unit, which computes the
modulation weight matrix A. Mathematically, the gate unit
is defined as follows:

A = Softmax(MLP(ReLU(MLP(Avg(
N∑

n=1

Gn))))), (3)

where Avg(·) is an adaptive average pooling operation act-
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Figure 4: The structure of feature embedding component. We add
Xu and Xd, feed the output to K groups of dynamic filters. Then, we
adopt adaptive modulation to get final output feature Xo.

ing on the spatial dimensions of features, MLP(·) stands for
a multilayer perception, ReLU(·) denotes a ReLU activation
function, and Softmax(·) represents the softmax function.

The modulation weights are multiplied with the original
features to obtain a harmonized feature map, i.e.,

H =
N∑

n=1

Gn ⊗ A. (4)

Finally, the output of inter-group harmonization is inter-
polated into the same size of each branch. We concate-
nate the harmonized features from the same branch, pass
them through a convolution layer for smoothness, and add
them with the input features to obtain the output features
(X

′

i,X
′

i+1) of the feature harmonization module.

3.5 Frequency Prior Embedding Module
Incorporating frequency priors into image features makes the
output contain more detailed information. However, direct
fusion leads to inferior performance due to the semantic gap
between the frequency and image domains. To address this
problem, in the frequency prior embedding module (FPEM),
we design the feature embedding component which consists
of K groups of dynamic filters followed by an adaptive mod-
ulation. To make full use of the frequency priors, we adopt
the cascaded feature propagation mechanism.
Feature Embedding Component. For clarity, we denote the
inputs of the feature embedding component as paired features
(Xu,Xd) at upper and lower branches, and the output as fea-
ture Xo. As shown in Figure 4, the features at two branches
are added up to obtain the aggregated feature first. Then, the
aggregated feature is passed through K branches of dynamic
filters to learn different information from different represen-
tation domains. Each branch consists of a convolution opera-
tion to reduce the channel dimension to a quarter of the orig-
inal for information compression, a BatchNorm layer and a
ReLU layer to select the important part and another convolu-
tion layer and BatchNorm layer to restore the channel dimen-
sion. The output Xdf(k) of each branch is calculated with:

Xdf(k) = DynFilterk(Xu +Xd), (5)
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where DynFilterk(·) denotes the kth dynamic filter.
{Xdf(k)}Kk=1 is then fed into the adaptive modulation unit
to compute the attention coefficient matrix Aam:

Aam = ωSigmoid(
K∑

k=1

Xdf(k)), (6)

where Sigmoid(·) denotes the sigmoid operation, and ω is 2.
Finally, the output feature Xo is defined as follows:

Xo = Xu ⊗ Reverse(Aam) +Xd ⊗ Aam, (7)

where Reverse(·) is a reverse operation [Chen et al., 2018b] .
Cascaded Feature Propagation. Benefiting from the advan-
tages of the frequency prior feature, we first embed frequency
priors into the reconciled features. Since the feature informa-
tion embedded in the frequency priors has a strong represen-
tation ability, in order to further make full use of this informa-
tion, we adopt a cascade method to propagate the information
from the low-resolution deep semantics to the shallow high-
resolution feature space. Therefore, in the FPEM, there are
two cascaded frequency embedding components. The first
frequency embedding component uses the frequency priors
embedded into the coordinated feature as input to obtain the
frequency-embedded coordinated feature. Then the second
frequency embedding component takes the output of the first
frequency embedding component and the output of the upper
layer FPEM as input to realize the transfer from deep seman-
tics to shallow semantics. Considering that the deepest fea-
tures are missing the output of the previous level, the E6 is
obtained from X6 by using a transformer block to enrich the
global semantics.

3.6 Loss Function
Ground truth supervises the predictions of six FPEMs and E6

with the same loss function L, which consists of a weighted
Intersection over Union (IoU) loss LωIoU [Wei et al., 2020]
and a weighted Binary Cross Entropy (BCE) loss LωBCE [Wei
et al., 2020] defined as follows:

L(P,G) = LωIoU(P,G) + LωBCE(P,G), (8)

where P and G denote the prediction and the ground truth.

4 Experiments
4.1 Experimental Settings
Dataset. We performed extensive experiments on a large-
scale benchmark dataset, DIS5K [Qin et al., 2022], which
contains a total of 5,470 images from 225 categories. The
entire dataset is divided into three subsets: DIS-TR, DIS-VD
and DIS-TE. DIS-TR and DIS-VD contain 3,000 training im-
ages and 470 validation images, respectively. DIS-TE is fur-
ther split into four subsets (DIS-TE1, 2, 3, 4) with ascend-
ing shape complexities, each containing 500 images. The
DIS5K dataset covers diverse objects with different geomet-
ric structures and appearances. Meanwhile, it provides im-
ages with higher resolution, more complex structural details,
and higher annotation accuracy than existing object segmen-
tation datasets. Therefore, segmentation on DIS5K is chal-
lenging and demands models with solid capabilities in iden-
tifying structural details.

Implementation Details. The model is implemented with
the Pytorch framework on an A100 GPU. In the training
stage, the ResNet-50 [He et al., 2016] is pre-trained on
ImageNet-1K [Deng et al., 2009], the rest of the modules are
initialized randomly. And we use the Adam optimizer with an
initial learning rate of 1e-4, decaying by 10 every 50 epochs.
The number of training epochs is set to 200. The resampled
images with a size of 1024 × 1024 are fed into the proposed
FP-DIS to get segmentation results in an end-to-end manner.
No post-processing is needed throughout the inference pro-
cess.
Evaluation Metrics. To make a comprehensive and fair com-
parison, we adopt five widely-used metrics to evaluate the
performance, including maximal F-measure Fmβ [Achanta et
al., 2009], weighted F-measure Fwβ [Margolin et al., 2014],
Mean Absolute Error M , Structure Measure Sα [Fan et al.,
2017] and Mean Enhanced Alignment Measure Emφ [Fan et
al., 2018]. Fmβ and Fwβ consider both precision and recall
in the binary classification of all the pixels. M is a mea-
sure of element-wise difference between the prediction and
the paired ground truth mask. Sα is an effective indicator
for evaluating structural similarity at region and object level.
Emφ is widely used for evaluating pixel-level and image-level
matching between the prediction and ground truth.

4.2 Comparison with State-of-the-arts
Quantitative Evaluation. Tables 1 and 2 show the com-
parison results of FP-DIS and 10 other methods, including
UNet [Ronneberger et al., 2015], BASNet [Qin et al., 2019],
GCPANet [Chen et al., 2020], U2Net [Qin et al., 2020],
SINetV2 [Fan et al., 2021a], PSPNet [Zhao et al., 2017],
DLV3+ [Chen et al., 2018a], HRNet [Wang et al., 2020],
STDC [Fan et al., 2021b], and IS-Net [Qin et al., 2022]. The
experiment results demonstrate that our model significantly
outperforms other models across all five evaluation metrics.
Specifically, taking all four test subsets into consideration
(as shown in Table 2, using dataset DIS-TE(1-4)), the pro-
posed method obtains remarkable advancements even com-
pared with the second-best model, improving 3.2%, 4.4%,
1.3%, 2.8% and 3.7% of the Fmβ , Fwβ , M , Sα and Emφ , re-
spectively. These comparison results demonstrate the effec-
tiveness of our model.
Qualitative evaluation. Figure 5 shows the visual results
of ours and typical methods. Compared with other meth-
ods, our model can capture more fine details from complex
backgrounds, and accurately segment objects with complex
structures. Furthermore, it can be seen from Figure 6 that the
feature embedding frequency priors are more delicate, which
can significantly improve the segmentation performance.

4.3 Ablation Study
In this section, we perform comprehensive ablation experi-
ments on DIS-TE1. First, we investigate the frequency priors
generated using different filters. Then we make a compar-
ison of models with the feature harmonization module and
frequency prior embedding module, respectively.
Frequency Prior Generator. The frequency prior generator
contains discrete cosine transform and inverse discrete cosine
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Dataset DIS-TE1 DIS-TE2 DIS-TE3
Metric Fmβ ↑ F

w
β ↑ M ↓ Sα ↑ E

m
φ ↑ F

m
β ↑ F

w
β ↑ M ↓ Sα ↑ E

m
φ ↑ F

m
β ↑ F

w
β ↑ M ↓ Sα ↑ E

m
φ ↑

UNet 0.625 0.514 0.106 0.716 0.750 0.703 0.597 0.107 0.755 0.796 0.748 0.644 0.098 0.780 0.827
BASNet 0.688 0.595 0.084 0.754 0.801 0.755 0.668 0.084 0.786 0.836 0.785 0.696 0.083 0.798 0.856

GCPANet 0.598 0.495 0.103 0.705 0.750 0.673 0.570 0.109 0.735 0.786 0.699 0.590 0.109 0.748 0.801
U2Net 0.694 0.601 0.083 0.760 0.801 0.756 0.668 0.085 0.788 0.833 0.798 0.707 0.079 0.809 0.858

SINetV2 0.644 0.558 0.094 0.727 0.791 0.700 0.618 0.099 0.753 0.823 0.730 0.641 0.096 0.766 0.849
PSPNet 0.645 0.557 0.089 0.725 0.791 0.724 0.636 0.092 0.763 0.828 0.747 0.657 0.092 0.774 0.843
DLV3+ 0.601 0.506 0.102 0.694 0.772 0.681 0.587 0.105 0.729 0.813 0.717 0.623 0.102 0.749 0.833
HRNet 0.668 0.579 0.088 0.742 0.797 0.747 0.664 0.087 0.784 0.840 0.784 0.700 0.080 0.805 0.869
STDC 0.648 0.562 0.090 0.723 0.798 0.720 0.636 0.092 0.759 0.834 0.745 0.662 0.090 0.771 0.855
IS-Net 0.740 0.662 0.074 0.787 0.820 0.799 0.728 0.070 0.823 0.858 0.830 0.758 0.064 0.836 0.883

FP-DIS 0.784 0.713 0.060 0.821 0.860 0.827 0.767 0.059 0.845 0.893 0.868 0.811 0.049 0.871 0.922

Table 1: Comparisons of different methods on different subsets of DIS5K, including DIS-TE1, DIS-TE2, and DIS-TE3 in terms of Fmβ , Fwβ ,
M , Sα, and Em

φ . ↑ denotes larger is better, while ↓ represents smaller is better.

Dataset DIS-TE4 DIS-TE(1-4) DIS-VD
Metric Fmβ ↑ F

w
β ↑ M ↓ Sα ↑ E

m
φ ↑ F

m
β ↑ F

w
β ↑ M ↓ Sα ↑ E

m
φ ↑ F

m
β ↑ F

w
β ↑ M ↓ Sα ↑ E

m
φ ↑

UNet 0.759 0.659 0.102 0.784 0.821 0.708 0.603 0.103 0.759 0.798 0.692 0.586 0.113 0.745 0.785
BASNet 0.780 0.693 0.091 0.794 0.848 0.752 0.663 0.086 0.783 0.835 0.731 0.641 0.094 0.768 0.816

GCPANet 0.670 0.559 0.127 0.723 0.767 0.660 0.554 0.112 0.728 0.776 0.648 0.542 0.118 0.718 0.765
U2Net 0.795 0.705 0.087 0.807 0.847 0.761 0.670 0.083 0.791 0.835 0.748 0.656 0.090 0.781 0.823

SINetV2 0.699 0.616 0.113 0.744 0.824 0.693 0.608 0.101 0.747 0.822 0.665 0.584 0.110 0.727 0.798
PSPNet 0.725 0.630 0.107 0.758 0.815 0.710 0.620 0.095 0.755 0.819 0.691 0.603 0.102 0.744 0.802
DLV3+ 0.715 0.621 0.111 0.744 0.820 0.678 0.584 0.105 0.729 0.810 0.660 0.568 0.114 0.716 0.796
HRNet 0.772 0.687 0.092 0.792 0.854 0.743 0.658 0.087 0.781 0.840 0.726 0.641 0.095 0.767 0.824
STDC 0.731 0.652 0.102 0.762 0.841 0.710 0.628 0.094 0.754 0.832 0.696 0.613 0.103 0.740 0.817
IS-Net 0.827 0.753 0.072 0.830 0.870 0.799 0.726 0.070 0.819 0.858 0.791 0.717 0.074 0.813 0.856

FP-DIS 0.846 0.788 0.061 0.852 0.906 0.831 0.770 0.057 0.847 0.895 0.823 0.763 0.062 0.843 0.891

Table 2: Comparisons of different methods on DIS5K datasets, including DIS-TE4, DIS-TE(1-4), and DIS-VD.

51
39
×
34
30

49
12
×
32
64

Image GT Ours IS-Net SINetV2
Figure 5: Visual comparison of the proposed method and cutting-edge methods.

transform using different filters. Therefore, we conduct three
sets of experiments to verify the effectiveness of these filters
with various settings. Actually, in the “w/o FPG” setting, we
replace the FPG module with a convolutional layer, which
means that the input image is processed by a convolutional
layer before being fed into the FPEM module. As shown in
Table 3, there is no significant difference in the performance
using fixed or learnable filters in the FPG module, but the
combination of these two kinds of filters contributed to bet-
ter performance, indicating that the two filters are mutually

beneficial and can effectively improve model’s ability to de-
tect detailed information. We also investigate the impact of
changing the number of dynamic filter groups (1, 2, 3, 4, de-
fault is 2) in the feature embedding component. The results
are shown in Table 4. Figure 6 shows the heatmaps of the
backbone are relatively rough, and the heatmaps generated
by the feature harmonization module and feature prior em-
bedding module have more refined details.

Feature Harmonization Module. The feature harmoniza-
tion module aims to reduce the variability between multi-
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Figure 6: Visualization of the heatmaps at different stages of the
decoder.

Settings Fmβ ↑ Fwβ ↑ M ↓ Sα ↑ Em
φ ↑

w/o FPG 0.765 0.679 0.069 0.805 0.842
Fixed 0.770 0.701 0.063 0.814 0.853

Learnable 0.782 0.712 0.060 0.819 0.858
Fixed+Learnable 0.784 0.713 0.060 0.821 0.860

Table 3: Effectiveness of frequency prior generator on DIS-TE1.
Frequency prior generator adopt different types of filter combina-
tions. w/o FPG: without frequency prior generator module and re-
placed it with a convolutional layer, Fixed: only fixed filter, learn-
able: only learnable filters.

Model Fmβ ↑ Fwβ ↑ M ↓ Sα ↑ Em
φ ↑

filter ×1 0.768 0.686 0.066 0.809 0.848
filter ×3 0.772 0.695 0.063 0.814 0.852
filter ×4 0.768 0.686 0.066 0.809 0.845

Ours 0.784 0.713 0.060 0.821 0.860

Table 4: Ablation study of the number of dynamic filter groups on
DIS-TE1.

scale information and help the model to extract rich infor-
mation from different scale features. From the experiment
results shown in Table 5, we can see that the feature harmo-
nization module contributes significantly to the performance
of the model. Considering that the structure of the feature
harmonization module may have an impact on the model, we
list seven different grouping and separation schemes, and the
experiments confirm that our proposed method performs bet-
ter and has a more rational design. We also conduct experi-
ments on removing the intra-layer and inter-layer harmoniza-
tion components, as well as the gating mechanisms in the fea-
ture harmonization component, to study their contributions.
The results shown in Table 6 demonstrate that these changes
always lead to performance degradation compared to the pro-
posed method, which verifies the benefits of each component.
Comparing the output features from the pyramid feature ex-
tractor and harmonization features in Figure 6, we can see
that the FHM effectively reduces ambiguity, and the harmo-
nization features have higher confidence.
Frequency Prior Embedding Module. To verify the effec-
tiveness of the frequency prior embedding module, we re-
place the FEC in different positions with addition operations.
The results, shown in Table 7, reveal that FPEM is benefi-
cial to improve the segmentation performance. The results of

Settings Fmβ ↑ Fwβ ↑ M ↓ Sα ↑ Em
φ ↑

w/o FHM 0.765 0.689 0.066 0.809 0.847
FHM (2g+3s) 0.779 0.710 0.060 0.819 0.858
FHM (3g+3s) 0.776 0.703 0.062 0.816 0.854
FHM (4g+3s) 0.784 0.713 0.060 0.821 0.860
FHM (5g+3s) 0.776 0.709 0.062 0.818 0.857
FHM (6g+3s) 0.783 0.708 0.062 0.818 0.857
FHM (4g+2s) 0.774 0.699 0.064 0.813 0.853
FHM (4g+4s) 0.778 0.706 0.062 0.816 0.856
FHM (4g+5s) 0.778 0.703 0.062 0.816 0.854

Table 5: Comparisons of feature harmonization module structure
on DIS-TE1. w/o FHM: without FHM. FHM (ig + js), i ∈
{2, 3, 4, 5, 6}, j ∈ {2, 3, 4, 5}: with i groups and j sub-groups.

Model Fmβ ↑ Fwβ ↑ M ↓ Sα ↑ Em
φ ↑

w/o all-HC 0.760 0.676 0.068 0.802 0.838
w/o intral-HC 0.764 0.683 0.068 0.805 0.843
w/o inter-HC 0.760 0.678 0.070 0.802 0.842

w/o gate 0.770 0.687 0.066 0.809 0.848
Ours 0.784 0.713 0.060 0.821 0.860

Table 6: Ablation study of the harmonization components in FHM
on DIS-TE1.

Settings Fmβ ↑ Fwβ ↑ M ↓ Sα ↑ Em
φ ↑

w/o adapt 0.759 0.678 0.069 0.805 0.840
w/o FPEM 0.765 0.687 0.067 0.807 0.850

FEC2 0.781 0.709 0.060 0.818 0.859
FEC1 0.768 0.693 0.065 0.810 0.851

FEC1+FEC2 0.784 0.713 0.060 0.821 0.860

Table 7: Comparisons of frequency prior embedding module on
DIS-TE1. w/o FPEM: Without frequency prior embedding module;
Other is feature embedding component of different stages in FPEM.

w/o FPEM prove that there is indeed a semantic gap between
frequency prior feature and image features. Additionally, we
replace the adaptive modulation with an addition operation
to evaluate its effectiveness (i.e., w/o adapt). The adaptive
modulation strategy can reduce this gap, improving the seg-
mentation accuracy of the model. According to the heatmap
from the frequency prior embedding module in Figure 6, the
detected objects have better refine textures.

5 Conclusions
In this paper, we have proposed a novel DIS model, FP-DIS,
which can generate frequency priors to guide fine-grained
segmentation. We innovatively embed frequency priors into
the image features to achieve accurate DIS. For this purpose,
we adapt the frequency prior feature through dynamic filters
to extract accurate frequency information. Meanwhile, we re-
duce the heterogeneity in multi-scale image features by har-
monizing the features. Finally, we propose a frequency prior
embedding module, which provides efficient frequency priors
embedding for predicting DIS maps. Extensive experiments
demonstrate the advantages of the proposed model over the
existing models. Further ablation experiments sufficiently
verify the effectiveness of the proposed modules.
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