
A Solution to Co-occurence Bias: Attributes Disentanglement via Mutual
Information Minimization for Pedestrian Attribute Recognition

Yibo Zhou1 , Hai-Miao Hu1,2 , Jinzuo Yu1 , Zhenbo Xu2 , Weiqing Lu1 and Yuran Cao1

1State key laboratory of virtual reality technology and systems, Beihang University
2Hangzhou Innovation Institute, Beihang University

{ybzhou, hu, 17377133, 18241004}@buaa.edu.cn, xuzhenbo@mail.ustc.edu.cn, 574168985@qq.com

Abstract

Recent studies on pedestrian attribute recognition
progress with either explicit or implicit modeling
of the co-occurence among attributes. Consider-
ing that this known a prior is highly variable and
unforeseeable regarding the specific scenarios, we
show that current methods can actually suffer in
generalizing such fitted attributes interdependen-
cies onto scenes or identities off the dataset distri-
bution, resulting in the underlined bias of attributes
co-occurence. To render models robust in realis-
tic scenes, we propose the attributes-disentangled
feature learning to ensure the recognition of an at-
tribute not inferring on the existence of others, and
which is sequentially formulated as a problem of
mutual information minimization. Rooting from
it, practical strategies are devised to efficiently de-
couple attributes, which substantially improve the
baseline and establish state-of-the-art performance
on realistic datasets like PETAzs and RAPzs.

1 Introduction
Pedestrian attribute recognition (PAR), as a key component
of the pedestrian analysis stemming from development of the
ubiquitous video surveillance, targets to determine the soft-
biometrics of local or semantic attributes of a person given
its captured main-body image. To date, researches investi-
gate PAR basically along the analogous routine of discrim-
inative deep multi-label classification. They can be basi-
cally abstracted as emphasizing on better attribute localiza-
tion to mitigate the accuracy drop from inferring on irrele-
vant area [Liu et al., 2018; Jia et al., 2022], or involving ad-
ditional supervision or information, like pose keypoints [Liu
et al., 2018] and pedestrian video clip [Chen et al., 2019;
Ji et al., 2020], to guide PAR under explicit assumptions re-
garding body topological structure or temporal context, etc..

For work striving to enhance the attribute localization,
[Fabbri et al., 2017; Li et al., 2017] split the body image ver-
tically, by a manually defined fixed strategy, into three parts
and feeds each part into an individual network for feature ex-
tracting. As a further step, [Liu et al., 2017] proposed the
HydraPlus-Net, learning to locate attributes of different scale
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Figure 1: Left: Illustration of a prediction failure resulting from
biased attributes interdependency. Right: The Pearson correlation
coefficient (Upper) of training set labels, and the cosine similarity
between anchor features (Lower), for hat and short/long sleeve vs.
other annotated attributes in PA100k. It reveals that the network
precisely captured the data selection bias that Glass & ShortSleeve,
Viewpoint-Back & ShortSleeve and Hat & Female, etc. are not
prone to present simultaneously, and uses such biased correlations
for attributes inference. The weights of the last fully-connected (FC)
layer in a Resnet-50 are applied as attribute anchor features.

with a multi-directional attention modules. Instead of learn-
ing to generate the attention map, [Liu et al., 2018] produces
attribute-specific features by means of the class activation
map (CAM) [Zhou et al., 2016], which is initially designed
to build a generic localizable deep representation. However,
same technique is applied in [Jia et al., 2021b] to demonstrate
that, even without explicitly modeling the attribute-specific
area, network is still able to locate attributes precisely, imply-
ing that the fundamental task for PAR should be instead to
explore better feature learning.

Seeking for better feature learning of information ex-
changes, a thread of literature [Wang et al., 2016; Wang et
al., 2017; Zhu et al., 2017; Fan et al., 2020; Li et al., 2022]
aims to enhance the modeling of interdependencies among
attributes, under the hypothesis that such correlations provide
a contextual constraint complementary to visual attributes
recognition. To this aim, Graph-based methods are often used
to explicitly model the attributes co-occurrence and estimate
the joint label probability. However, the strong variability and
unpredictability exhibited by attributes co-occurrence actu-
ally cast doubts on the robustness of these methods for sce-
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narios out of the datasets, which are typically in practical ap-
plications. Worse, given the observation in Figure.1 that, such
unreliable interdependency can be memorized by network, in
a form of bias, even without explicit modeling of it, current
methods would suffer in generalizing well onto realistic PAR,
as evidenced in [Jia et al., 2021b].

Equipped with such perspective, this paper evolves in a
novel spirit that we resort to infer attributes while entirely
discarding their relations. Actually, it is a mechanism of PAR
that accords with us human, say, we do not infer one’s hat
color by referring to even a single clue from its gender, in-
stead, we look just at the hat for robustness, so should in-
telligent models. To embody this philosophy in stark con-
trast to the fragile mechanism of deep models for PAR,
our attribute-disentangled learning for PAR is formalized as
that the attribute-specific feature learned for predicting one
attribute should not use information pertinent to other at-
tributes, i.e., the mutual information between one attribute
and other attributes’ specific feature should be minimized.

To cope with the non-triviality of a direct mutual informa-
tion minimization, an equivalent optimization-friendly train-
ing objective of it is deduced, which guarantees that the vari-
ation of other attributes’ information results in no shift on the
estimated posterior of a given attribute. Both mathematical
insights and experimental evidence are provided, indicating
that under this setting of the posterior-invariant learning, the
proposed disentangled attribute learning can be attained, and
thus tackle the issue of attribute co-occurrence bias.

Sequentially, we also propose an efficient training strategy
for the posterior-invariant learning, which enables it imple-
mented in a manner of fast convergence. Practically, unlike
most work in this field building on large networks that dete-
riorates the applicability, our method’s plug-and-play nature
makes it cater to various models, with almost no extra com-
putational burden thereon. Albeit lightweight, our method
establishes the-state-of-art performance on various realistic
datasets like the PETAzs and RAPzs [Jia et al., 2021b], with
considerable margins over previous approaches.

Our contribution is summarized as three folds:
• With solid experimental evidences, we establish a novel

perspective for understanding the learned attributes in-
terdependency bias as the current bottleneck of PAR
from achieving robustness. It is not covered by exist-
ing work and can serve as a mindset of future researches
for rethinking PAR.

• We propose one direction of improvement as to infer
the attributes by disregarding their correlations. From
it, a lightweight prescription of information-theoretic
attributes-disentangled feature learning is developed.

• Along with ablation studies, we present analytical exper-
iments on various realistic PAR datasets to demonstrate
our generic proposal’s efficacy and a spectrum of superi-
orities, validating that the proposed method might serve
as a foothold of robust PAR.

2 On the Attributes Co-occurence Bias
Fundamentally, although there exists certain pattern of in-
terdependencies among attributes, such a phenomenon es-
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Figure 2: Left: For the 10 attributes common between PA100k and
PETA, the absolute difference of labels Pearson correlation coeffi-
cients computed on these two datasets. For better viewing, all values
are arranged in an increasing order. Right: On the PETAzs dataset of
zero-shot setting (no overlapped identities of training set in test set),
distribution of the difference between attributes Pearson correlation
coefficients on training set and test set.

sentially roots from conditioned statistical relevance rather
than causality, implying that it can vary from scene to scene,
individual to individual drastically. Thus, such variability and
unpredictability inherent to the attributes co-occurrence make
it hardly a universal known a prior to safely rely on, and could
be immensely biased regarding the statistics of limited sce-
narios, e.g., some datasets exclusively involve indoor or out-
door scenes and constant season or whether condition, race or
culture, etc. [Li et al., 2016; Liu et al., 2017].

Such a claim is supported by the observations in Figure.2
that, the correlations among attributes are likely to fluctuate
between different datasets like PA100k [Liu et al., 2017] and
PETA [Deng et al., 2014], or even mutate on different groups
of identities from the same scenes. For instances, ShortSleeve
and Trouser lean to not co-occure in PA100k, as images in
this dataset are mostly captured during summer time. While
for PETA, ShortSleeve and Trouser appear simultaneously
with a significantly larger ratio, resulting in the interdepen-
dency discrepancy of these two attributes. Also, even for two
groups of pedestrians from a same dataset PETA, about 1/6
attributes correlations exhibit distinct characteristic (absolute
difference between Pearson correlation coefficients ≥ 0.1).

As a result, empirical risk dominates in the way that, exist-
ing work would have difficulty in generalizing the explicitly
or implicitly leveraged attributes co-occurrence to other cir-
cumstances with different pattern of attributes interdependen-
cies. Since an ideal dataset collection of pedestrian images,
which captures global facets of the non-static myriad popu-
lation distribution of attributes co-occurence, to soften such
underlined bias, can be intractable, to enhance a robust PAR,
a disentangled and discriminative feature learning for each
attribute can be indispensable and consequential.

3 Method
Attributes Disentanglement by Mutual Information Min-
imization. Here, we establish the theoretical framework
of our methods. Formally, it is supposed that there is a
distribution X characterized by all of the pedestrian im-
ages. Under certain conditions, some data points {xi}Ni=1
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are sampled from X , with their corresponding annotations
{ai}Ni=1 of some predefined attributes, to form the train set
D = {xi,ai}Ni=1, where ai ∈ {0, 1}C and C is the total
number of attributes. Specifically, if the latent embedding
output from the feature extractor is denoted as f ∈ RK ,
we hope to decompose it as f = f1 + f2 + ... + fC ,
wherefs ∈ RK , s = 1, 2, ..., C , is the attribute-specific fea-
ture learned for predicting the attribute indicating random
variable ys. From the information theory point of view, the
mutual information I(yk;fs) measures the knowledge that
could be told from the random variable fs about the random
variable yk. Thus, to ensure the prediction of each attribute
independent to the existence of others, for every fs, it should
be satisfied that the mutual information I(yk;fs) = 0, for
any k = 1, 2, ..., C, k ̸= s, which can be factorized as

I(yk;fs) = H(yk)−H(yk|fs)

=Efs∼Fs [

∫
P (yk|fs) logP (yk|fs) dyk]

−
∫

P (yk) logP (yk) dyk = 0,

(1)

where Fs is the marginal distribution of fs. Notica-
bly, if P (yk|fs) = P (yk), Eq.1 naturally holds since∫
P (yk) logP (yk) dyk is independent of fs. Obviously, for

any fs drawn form Fs, if it satisfies that P (yk|fs) = Q and
Q is a constant, we have

P (yk) =

∫
P (fs)P (yk|fs) dfs

=

∫
P (fs)Q dfs = Q.

(2)

Eq.2 reveals that, to satisfy P (yk) = P (yk|fs) is equivalent
to ensure that for any fs

a and fs
b sampled from Fs, it holds

that P (yk|fs = fs
a) = P (yk|fs = fs

b). Note that

P (yk|fs = fs
a)− P (yk|fs = fs

b)

=

∫
(P (yk|fs

a +

C∑
l=1,l ̸=s

f l)− P (yk|fs
b +

C∑
l=1,l ̸=s

f l))

· P (f1,f2, ..,fs−1,fs+1, ..,fC)

n∏
l=1,l ̸=s

df l.

With this formulation, if the estimate of P (yk|f) =

P (yk|
∑C

l=1 f
l) is invariant of f ’s component fs, for any

s ̸= k, then we have I(yk;fs) = 0. Thus, a statement can be
declared as follows

Goal: attribute-disentangled learning can be enabled as
long as the probability estimate of P (yk|f) varies only

with the yk’s specific feature fk.

Approach of Posterior-invariant Leanring. In practice,
for the feature of attributes hybrid, extracted from a given in-
put xi, we translate it first to obtain each attribute-specific
components fs

i , s = 1, 2, ..., C , by a FC layer followed

with nonlinearities, and f i is obtained by adding them up
as f i =

∑C
s=1 f

s
i . Sequentially, we randomly build C map-

pings Gs
i (·) : Fs 7→ Fs to transform each fs

i into an ar-
bitrary data point f̃s

i within fs’s domain of distribution Fs,
and generate a new feature vector of f̃ i =

∑C
s=1 f̃

s
i , where

f̃s
i = Gs

i (f
s
i ). We require P (ys = ysi |f̃ i − f̃s

i + fs
i ) =

P (ys = ysi |f i) to meet the goal of the proposed attribute-
disentangled learning that P (ys|f) should be tolerant to the
variation of other attributes’ specific features, and therefore
to ensure no factors for decreasing the uncertainty of ys

are conveyed by fk, ∀k ̸= s. Under the context of super-
vised PAR, P (ys = ysi |f i) is simply the ground truth la-
bel asi coupled with the input xi, and thereby the underlined
attribute-disentangled learning can be enabled by leveraging
the information-theoretic regularizer of

min−
N∑
i=1

C∑
s=1

asi log P̂ (ys = ysi |f̃ i − f̃s
i + fs

i ),

s.t. f̃ i =

C∑
s=1

f̃s
i , and f̃s

i = Gs
i (f

s
i ).

(3)

P̂ is the estimate of P (yk|f) given by a discriminative clas-
sifier, which is a common technique for approximating a pos-
terior, and plugged right onto f with MLP operations in it.
This framework is graphed in Figure.3a.

To specify the form of Gs
i (·), we opt for simplicity by

adopting the convex linear combination between fs
i and

fs
r(i,s), which is the extracted feature from a randomly picked

training sample xr(i,s), as a plausible form among possible
variants that satisfy the closureness of a transform, i.e., the
mapped feature still lies within the domain of Fs. Here,
r(i, s) is simply a function that maps different i&s to a dif-
ferent sample index. It might be noticed that, with the con-
vex combination of two attribute-specific features from train-
ing samples, points off of the training distribution can be
generated. However, [Mikolov et al., 2013] has shown that
this linear interpolation between hidden states is an effective
way of transiting between learned factors to produce new in-
distribution semantics, making the combined features still in-
formative of attributes thus reside within the Fs. Specifically,

Gs
i (f

s
i ) =



(βs∥fs
i∥+ (1− βs)∥fs

r(i,s)∥)
·(αs fs

i
∥fs

i ∥
+ (1− αs)

fs
r(i,s)

∥fs
r(i,s)

∥ ) if as
i = as

r(i,s)

αsfs
i + (1− αs)fs

r(i,s) otherwise.

αs and βs are independently drawn from the uniform dis-
tribution U(0, 1) for each attribute. To fully explore Fi and
produce more of the points with semantics potentially to be
presented in the capricious test environment, for attribute-
specific features with identical label, we do the linear combi-
nations to their norms and direction vectors, respectively. The
rationale is that, since feature norm has been validated to be
an effective measure of data uncertainty [Shalev et al., 2018;
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Figure 3: (a): Overall pipeline of the proposed method for attribute-disentangled feature learning. For Eq.4, the transformed attribute-specific
features are fed into another branch within the red-dashed box. (b): Comparison of direct feature interpolation (Upper) and the proposed
norm-direction separated interpolation (Lower), in term of the domain exploration of feature distribution. Given three attribute-specific
features of same label, by direct feature interpolation only points on the orange line are regarded as possible variations of them. Whilst for
norm-direction separated interpolation, in a reliable manner, the potential variations are expanded into the whole orange-shaded area.

Meng et al., 2021; Zhou, 2022] that is prone to be fluctuated
by bad image quality (often in PAR), the style semantics of at-
tribute (color, size, shape, etc.) might be mostly encoded into
feature’s direction, i.e., it’s normalized unit feature [Wang
et al., 2018]. Hence, such a norm-direction-separated lin-
ear combination can generate features from attributes of one
style but shot under various uncertainties, exploiting more of
the domain of Fs, exemplified in Figure.3b.
Efficient MixUp-based Alternative. Notably, directly op-
timizing over Eq.3 necessitates C inferences though the clas-
sifier for each sample in every update, which can be com-
putationally inefficient when the number of attributes grows
larger. Regardless of the ease for implementing G(·) as linear
combination, such a design enjoys another merit as it actually
supplies us with an approach to integrate the training objec-
tive of Eq.3 into a desirable single-inference-every-instance
manner of

min−
N∑
i=1

C∑
s=1

(αsasi + (1− αs)asr(i,s))

· log P̂ (ys = αsysi + (1− αs)ysr(i,s)|f̃ i),

s.t. f̃ i =

C∑
s=1

f̃s
i , and f̃s

i , α
s, asr(i,s) = Gs

i (f
s
i ).

(4)

Such a simplification from Eq.3 to Eq.4 is inspired by the
well-known data augmentation method MixUp [Zhang et al.,
2017], which shows that the linear combination of images
is actually aligned with exactly the same linear combination
of their ground truth in the label space. Here, we adopt an
analogous idea into Eq.4 to reduce the training cost.

Please note that Eq.4 differs from MixUp in two aspects.
First, during every update, MixUp uses a single α and a sin-
gle sample-to-interpolate for each input, purely for the sake

of data augmentation. Whereas in Eq.4, for each attribute’s
specific feature, we use feature interpolation of different αs,
βs and fs

r(i,s) to guarantee that the transform imposed over it
is totally independent thus differentiated from others. By re-
quiring the variation of a certain attribute’s posterior aligned
exclusively to the variation of its specific feature, we enforce
other attribute‘s specific feature acquires no factors informa-
tive to the given attribute’s posterior, exactly the same way
for realizing attribute-disentangled learning by Eq.3. Second,
instead of pixel space, the linear combination is conducted in
the space of decoupled attribute-specific features. One might
argue that such a strategy can bring non-trivial boost in per-
formance by somewhat working as a data augmentation of
MixUp. We admit this concern. However, we will present
in the experiment section that it is actually not the case here
for achieving SOTA performance as MixUp can not foster
any accuracy increase over the baseline. More importantly,
as will be presented in the experiment section, the equivalent
Eq.3 suffices to deliver similar performance w.r.t Eq.4, which
does not optimize over the interpolated feature by its corre-
spondingly interpolated label.

In a nutshell, attribute-disentangled learning is secured by
our method from two sides. One, given the specific feature
of all attributes, we render the posterior estimate of a certain
attribute exclusively associated to the feature component of
its own, tasking the rest specific features, on which other at-
tributes are inferred, to preserve no clues informative about
this given attribute. Second, serving as an additional virtue
of Eq.4, the biased attribute interdependencies are strongly
dismissed from classifier learning owing to the scheme that
the ground truth employed in Eq.4 is randomly generated for
each attribute, and therefore can be of any possible pattern
in term of attributes co-occurence, making classifier no way
to trace on the attribute correlations embedded in the limited
dataset, and thus generalize better. Efficiently, both sides are
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Method Backbone PA100k RAP RAPzs PETA PETAzs
mA Recall F1 mA Recall F1 mA Recall F1 mA Recall F1 mA Recall F1

Baseline (’21) Resnet-50 80.38 87.01 87.05 80.32 79.89 79.46 72.32 76.62 76.75 84.42 85.08 85.97 71.62 70.33 71.68
MsVAA (’18) Resnet-50 80.41 86.52 86.80 78.86 79.15 79.27 72.04 75.81 75.74 84.35 85.51 86.09 71.53 69.42 71.94
MTMS (’19) Resnet-50 - - - 82.45 80.44 65.33 - - - 86.23 87.22 85.85 - - -

VAC (’20) Resnet-50 79.16 86.26 87.59 80.27 79.77 78.36 73.70 76.97 76.12 83.63 85.45 86.23 71.91 70.64 70.90
*JLAC (’20) Resnet-50 82.31 87.77 87.61 83.69 82.40 80.82 76.38 79.20 76.05 86.96 87.09 87.45 73.60 72.41 72.05

SSC (’21) Resnet-50 81.87 89.10 86.87 82.77 87.49 80.43 - - - 86.52 87.12 86.99 - - -
DAFL (’22) Resnet-50 83.54 89.19 88.90 83.72 83.39 80.29 - - - 87.07 87.03 86.40 - - -

Label2Label (’22) Resnet-50 82.24 88.57 87.08 - - - 73.84 78.15 77.75 - - - 72.13 71.10 71.74
Ours Resnet-50 84.53 89.13 87.01 83.26 83.31 79.88 76.71 80.18 77.93 86.41 86.80 87.03 74.35 72.09 72.39
*Ours Resnet-50 85.12 89.40 87.85 83.88 83.65 80.73 77.49 80.42 78.30 87.18 87.29 87.41 75.13 71.98 72.49

Baseline (’22) ConvNeXt-base 82.2- - 88.5- - - - 76.54 81.47 80.25 86.1- - 88.1- 75.21 74.43 75.62
ALM (’19) BN-inception 80.68 88.84 86.46 81.87 86.48 80.16 74.28 80.73 76.65 84.24 85.60 85.41 73.01 73.69 71.53

MTA-Net (’20) Resnet-152 - - - 77.62 78.44 79.07 - - - 84.62 86.42 86.04 - - -
AR-BiFPN (’20) EfficientNet-B3 81.45 89.46 87.94 82.37 87.23 82.33 - - - 87.69 89.20 88.32 - - -

Ours ConvNeXt-base 88.11 91.51 89.13 85.05 84.11 81.12 80.18 83.51 80.36 88.12 88.76 88.54 78.54 76.34 75.91

Table 1: Benchmark results in RAP, RAPzs, PETA, PETAzs and PA100k. Our method is compared with various notable SOTA methods. To
make a fair comparison, for RAP, PETA and PA100k, we adpot the baseline results of Resnet-50 and ConvNeXt-base respectively from [Jia
et al., 2021b] and [Specker et al., 2022], and the results reported in the original literature for each prior work. For RAPzs and PETAzs, we
refer scores from the datasets work [Jia et al., 2021b] with priority, next to use public code of the preivous work, if any, to reproduce the
results. Since there is no baseline reported for ConvNeXt-base on RAPzs and PETAzs, corresponding results are based on our experiments.
If no result is reported as a certain setting or the public code is not available for convincible testing on RAPzs and PETAzs, it is marked as −.
*results are produced with additional data augmentations. All values are percentages and the highest scores are marked by bold fonts.

achieved in a holistic, end-to-end manner.

4 Experiments
Data and Evaluation Metric. For the benchmark datasets,
PETA [Deng et al., 2014], along with the two largest pub-
lic pedestrian attribute datasets RAP [Li et al., 2016] and
PA100k [Liu et al., 2017], are adopted for evaluation. De-
tailed dataset information and usage are consistent to those
in [Jia et al., 2021b]. We also test our methods on two realis-
tic datasets of RAPzs and PETAzs stated and released in [Jia
et al., 2021b]. As for the evaluation metrics, the label-based
metric mean Accuracy (mA), which takes an average over all
attributes’ classification accuracy on the positive and negative
samples, and two instance-based metrics Recall and F1-score
(F1) are considered. we do not present Precision since it can
be basically inferred when Recall and F1 are told.
Network and Training Details. We adopt Resnet-50 [He
et al., 2016] and ConvNeXt-base [Liu et al., 2022] as back-
bones to study the efficacy and compatibility of our method
under feature extractors of both classical and up-to-date de-
signs. For the training details, Adam solver is applied without
Nesterov momentum. The learning rate starts at 1e-4 and de-
cays by a factor of 10 in a manner of multistep. If not specif-
ically stated, the results in this section are produced by Eq.4
with efficiency. We refer readers to the code of this work in
the supplementary material for further details.
Benchmark Results. Following the benchmark protocol
provided in [Jia et al., 2021b], our method is compared with
recent notable SOTA approaches MsVAA [Sarafianos and
Kakadiaris, 2018], MTMS [Gao et al., 2019], ALM [Tang
et al., 2019], MTA-Net [Ji et al., 2020], AR-BiFPN [Tan
et al., 2020], VAC [Guo et al., 2020], JLAC [Tan et al.,
2020], SSC [Jia et al., 2021a], DAFL [Jia et al., 2022] and
Label2Label [Li et al., 2022]. Since we start at a training

setup that involves less data augmentation methods, the base-
line performances on these datasets could be about 1% mA
inferior to some of the compared methods. To mitigate this
gap, we also present experimental results of applying the data
augmentation settings akin to JLAC (additional random scal-
ing, rotation, translation, cropping, erasing and adding ran-
dom gaussian blurs). The overall results are reported in Ta-
ble.1. It highlights that across all settings, our prescription
achieves performance at least comparable to others. Please
note that our method is highly efficient since for test sam-
ples, the extra operations over the baseline models, are only
one single FC layer applied to produce attribute-specific fea-
tures, in stark contrast to the prior arts paying a premium in
term of computational cost. Therefore, one potential of it is
that, one could just make full use of the model parameters
being largely saved by our lightweight framework, to plug a
better-but-wider backbone, like ConvNeXt for further signif-
icant improvements.

Basically, one might notice that our proposal works on
PA100k better than RAP and PETA. It is not surprising, since,
as pointed out by [Jia et al., 2021b], about 31.5% and 57.7%
of pedestrian identities in the test set of RAP and PETA are
identical to those in their respective training set. Thus, for
PETA and RAP, memorizing pattern of the biased attributes
co-occurence in training set can be conducive for model’s
test-set performance, making existing approaches overesti-
mated on them. For this, we also report in Table.1 the exper-
imental results on the PETAzs and RAPzs, which are respec-
tively formed from PETA and RAP to follow the zero-shot
setting of pedestrian identities, i.e., no overlapped identities
between their training and test sets. Therefore, the results
on PETAzs and RAPzs, along with the results on PA100k,
are much convincible [Jia et al., 2021a], and thus should
be attached of more practical implications, on which our
method outperforms others with considerable margins. Also,
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it should be noticed that the concepts of existing works only
fuel trivial boost on these realistic datasets, implying that pre-
vious development of PAR on PETA and RAP may partly
come from better modeling of the common bias in training
and test sets. Overall, our method excels in both the recogni-
tion performance and practical applicability of realistic PAR.
Ablation Studies. In this sub-section, we investigate the
effectiveness and characteristics of each technical contribu-
tion. To better discern between attributes classifiers, we use
PA100k and ResNet-50 in the following ablation studies.
Posterior-invariant learning vs. MixUp-based efficient
learning. In this paper, we present two pipelines for
attributes-disentangled feature learning, the one is directly
derived from the goal of posterior-invariant learning to min-
imize the mutual information between one certain attribute
and its irrelevant features specific to other attributes, as de-
scribed in Eq.3. While effective as shown in the first row of
Table.2, it requires multiple inferences for a single sample,
which hinders the training efficiency and increases the mem-
ory usage when the number of attributes is large. To address
this issue, a second pipeline for efficient single-inference-
every-instance is introduced in Eq.4. It extends the concept
behind MixUp to significantly lower the training cost, and
achieves performance similar to Eq.3, as can be seen in the
third row of Table.2. During our multiple rounds of exper-
iments, we find that Eq.4 can always yield slightly better
mA, and we credit such improvement into that the biased at-
tribute correlation within dataset is totally discarded during
the training of classifier in Eq.4, since the labels used in it are
attribute-wise randomly generated thus can form any possible
pattern of attribute co-occurence, making classifier hardly to
memorize the limited attribute co-occurence presenting in the
dataset, and thereby generalize better, as shown in Figure.4.
Norm-direction separated interpolation vs. plain feature
interpolation. We apply the proposed norm-direction sep-
arated interpolation in Eq.3 and Eq.4 to fully exploit the pos-
sible variations of attribute-specific features, as graphed in
Figure.3b. The results in Table.2 clearly demonstrate that this
trick, in tandem with both pipelines, outperforms the plain in-
terpolation used in previous work and thus can be applied in
other related fields of research like recognition with unstable
image quality for enhanced robustness and performance.
Mixup vs. Proposed Methods. Eq.4 directly optimizes
over the interpolated features with their correspondingly in-
terpolated labels, in a similar way as that of Mixup. There-
fore, it might be questioned that our method’s superiority can
fundamentally come from tailoring on MixUp. However, as
shown in Table.2, sample interpolation is not the case here for
bringing significant performance boost, since Mixup delivers
even negative increase in mA. Moreover, our pipeline of Eq.3,
which does not optimize over the augmented samples, can
score comparatively with Eq.4. It implies that, what essen-
tially works for Eq.4 is the strategy that we use feature inter-
polation to enable a random and differentiated transform over
each attribute’s specific feature, and empower model with the
consequential mutual information minimization learning by
Eq.3 or Eq.4. On a higher level, data augmentations are meth-
ods creating data points beyond the training set to reduce the

Our model mA Recall F1Pipeline NDSI

Eq.3 83.20 89.27 86.96
Eq.3 ! 83.79 89.51 87.06
Eq.4 83.83 89.04 86.85
Eq.4 ! 84.53 89.13 87.01

Method mA Recall F1

Baseline 80.38 87.01 87.05
MixUp 79.73 85.22 86.75

Table 2: The breakdown effect for each technical component of the
introduced method, in which NDSI is short for the norm-direction
separated interpolation depicted in Figure.3b. Also, the comparison
of our method against MixUp.

  1.0       

  0.0       

  -1.0       

Figure 4: The matrix of cosine similarities between PA100k attribute
anchor features of Left: baseline model and Right: our method.
The results clearly support that our work suppresses the undesirable
modeling of biased attributes co-occurence in classifier. Same to that
in Figure.1, weights in the last FC layer of a trained Resnet-50 are
employed as the attribute anchor features.

various bias embedded in dataset. Under such perspective, it
brings no bad to comprehend our method as a data augmenta-
tion trick that augments the pattern of attributes co-occurence,
out of the less representative dataset.

Analysis on Improvements. In Figure.5, we draw the per-
attribute accuracy results on PA100k dataset of the proposal
and the baseline work. We find that our work is capable of siz-
ably raising scores on almost all attributes. It might serve as
a relief to the likely concern that discarding totally the use of
attributes correlation could be detrimental to the recognition
of some certain type of attributes, for which a further study is
presented in the next parts. Generally, it can be seen that im-
provements are considerable on attributes with positive ratio
closer to 1 or 0. It is expectable as attributes with inadequate
chances to appear or disappear are likely to be limited in the
captured or non-captured scenes and identities in term of the
attributes interdependency. By our framework, on one side
the inference dependence of an imbalanced attribute to its
frequently or hardly co-occurred attributes is greatly under-
mined, reducing the bias within feature learning. On another
side, aforementioned for Figure.4, the memorization effect of
attributes correlation in classifier is also repressed. Thanks
to these two factors, the recognition of attributes with most
potential to be correlated can be facilitated utterly, whilst for
attributes appearing evenly, the improvements can be trivial.
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Figure 5: Accuracy results comparison of our method with the baseline work on all attributes of PA100k. From left to right, the attributes are
arranged in a decreasing order of the distance between their respective positive ratio and 0.5. The black dashed line marks the variation of
accuracy increase on each attribute, which is mean smoothed with the windows size of 2 for better visualization.

It also accounts for the reason that our method works better
on label-based metric than instance-based metric, since the
growth of mA is actually bottlenecked by the imbalanced at-
tributes, while instance-based metrics are relatively not.

On the Attribute Interdependency Modeling. Intuitively,
for attributes not causally independent to each other, discov-
ering and utilizing the relations among them might be con-
ducive for robust information exchanges and propagation in
PAR. For this, turning back to seek help from previous work
that precisely models the attributes interdependency seems
suboptimal, since without elaborate expert knowledge use,
there is no feasibilities of learning, for these methods to dis-
cern the welcomed attributes interdependency from the in-
tricate attributes co-occurence bias, and exclusively dismiss
use of the latter. Noting in Figure.5, the baseline model is
error-prone not only for attributes appearing barely, but those
occurring often like ’Age18-60’ (positive ratio above 0.9)
so, such an indiscriminative modeling of all attributes cor-
relations is overall detrimental to most imbalanced attributes,
making PAR strongly bottlenecked.

Moreover, there is another drawback of learning with at-
tribute interdependencies - even the causally robust ones like
the mutual exclusiveness among ages groups ( ’age < 18’, ’18
≤ age ≤ 60’ and ’age > 60’ in PA100k are of a multi-class
relation rather than that of multi-label), for which we call the
infestation of attribute independency. As shown in Figure.4,
two attributes tending to (not to) co-occur with each other
would also prefer to (not to) co-occur with other attributes,
representing as the dark or light stripes spanning across the
anchor feature similarity matrix. Whereas these traversing
lines do not show up in the Pearson correlation coefficient
matrix of labels, it is actually by-produced during learning of
the attributes correlations. This inclination of hallucinating
new interdependency bias from the dataset attributes interde-
pendency is smoothed out by ours, greatly yet not totally, as
there are still lines can be eyed in the heatmap.

Towards Robust PAR. Ideally, a PAR of robustness should
be capable of inferring on a-prior concrete attributes inter-
dependencies while disregarding the others. Solutions of
ease towards this aim can stand on the base of attributes-
disentangled feature learning. Taking the age groups in
PA100k as example, on a trained model of attributes-
disentangled learning, one could train an additional classifier

Age attributes Baseline Ours Robust-A Robust-B

AgeLess18 61.36 75.67 75.72 75.67
Age18-60 69.36 82.21 81.95 82.22
AgeOver60 73.15 84.87 84.94 84.87

Table 3: On three causally related age attributes, we compare the ac-
curacy results of baseline, our work and the described robust PARs.
For Robust-A, we use weighted loss to soften the class imbalance.

head of multi-class only for age prediction (namely, Robust-
A), or conduct certain back-end processings onto the outputs
to rectify or unify the age predictions (Robust-B). Here, we
realize both in Table.3. For Robust-B, we output only the
age attribute of highest confidence score. Compared to our
method, these robust PARs yield negligible accuracy increase
in test set. However, we still emphasize on the importance
of such designs since they secure the reliability of PAR, and
might make difference in realistic conditions.

5 Conclusion
We present a novel method of attribute-disentangled feature
learning to enhance the robustness of PAR. Without any so-
phisticated or time-consuming frameworks, leveraging a sim-
ple information-theoretic regularizer, it is ensured that the
pedestrian attributes are inferred without considering the bi-
ased attributes interdependency inherent to dataset, in order to
enable an attribute recognition mechanism respecting us hu-
man. The comprehensive experiments demonstrate that our
proposal reaches SOTA performance with appealing merits
like better generalizability and applicability in realistic sce-
narios. Importantly, our theorized perspectives of attribute
disentanglement learning differs from the paradigms of previ-
ous methods, even advancing in an opposite direction, heuris-
tically exploring a promising avenue for future work.
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