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Abstract
Vision-language navigation (VLN) requires an
agent to perceive visual observation in a house
scene and navigate step-by-step following natu-
ral language instruction. Due to the high cost of
data annotation and data collection, current VLN
datasets provide limited instruction-trajectory data
samples. Learning vision-language alignment for
VLN from limited data is challenging since visual
observation and language instruction are both com-
plex and diverse. Previous works only generate
augmented data based on original scenes while fail-
ing to generate data samples from unseen scenes,
which limits the generalization ability of the nav-
igation agent. In this paper, we introduce the
Knowledge-driven Environmental Dreamer (KED),
a method that leverages the knowledge of the em-
bodied environment and generates unseen scenes
for a navigation agent to learn. Generating an
unseen environment with texture consistency and
structure consistency is challenging. To address
this problem, we incorporate three knowledge-
driven regularization objectives into the KED and
adopt a reweighting mechanism for self-adaptive
optimization. Our KED method is able to generate
unseen embodied environments without extra an-
notations. We use KED to successfully generate
270 houses and 500K instruction-trajectory pairs.
The navigation agent with the KED method out-
performs the state-of-the-art methods on various
VLN benchmarks, such as R2R, R4R, and RxR.
Both qualitative and quantitative experiments prove
that our proposed KED method is able to high-
quality augmentation data with texture consistency
and structure consistency.

1 Introduction
Vision-Language Navigation (VLN) task [Anderson et al.,
2018a] requires an agent to navigate in an embodied envi-
ronment following a natural language instruction. This task
is closely connected to many real-world applications, such as
household robots and rescue robots [Zhu et al., 2021]. The
VLN task is challenging since it requires an agent to master

diverse skills, such as vision-language alignment, sequential
vision perception, and long-term decision-making. The key
to the VLN task is to perceive the panoramic visual scene,
comprehend natural language instructions sequentially, and
make actions step-by-step.

Learning a robust navigation policy is a long-study prob-
lem in the Artificial Intelligence community. Previous meth-
ods [Fried et al., 2018; Wang et al., 2019; Chen et al., 2021;
Qiao et al., 2022] attempt to have made great progress in im-
proving the ability to perceive the vision and language in-
puts and learn a robust navigation policy [Liu et al., 2021;
Hao et al., 2020; Hong et al., 2021]. However, the limited
scale of training data introduces a large bias between train-
ing environments and testing environments, which severely
impacts navigation performance. The most widely used VLN
dataset, Room-to-room dataset [Anderson et al., 2018b], con-
tains only 22K instruction-path pairs from 90 house scenes.
However, the space of possible navigation paths and vi-
sual observations increases exponentially along with the path
length. Therefore, the learned navigation policy can easily
overfit the seen scenes and is hard to generalize to the unseen
scenes. For example, if an agent learns navigation in a scene
with red chairs and a blue sofa, it may be confused when it is
tested in an unseen scene with blue chairs and a red sofa.

In this paper, we propose a model named Knowledge-
driven Environmental Dreamer (KED), which is able to gen-
erate unseen environmental scenes without extra data annota-
tions. The environmental dreamer is built based on an auto-
encoder model, which consists of an encoder and a decoder.
The encoder learns to disentangle two latent encodings from
an image view: a texture encoding and a structure encoding.
The decoder receives these two latent encodings and gener-
ates a synthetic image to represent a panoramic view of an
agent in an unseen environment. The environmental dreamer
generates an unseen environment by three steps: 1) we di-
vide house scenes into rooms; 2) we extract texture encodings
and structure encodings of each room; 3) we randomly match
the texture encodings and the structure encodings from differ-
ent house scenes and decode them to generate unseen house
scenes. An overview of our Knowledge-driven Environmen-
tal Dreamer method is shown in Figure 1.

Different from previous image generation works [Park et
al., 2020; Zhu et al., 2020b; Karras et al., 2021] that synthe-
size unseen images, our work is required to generate unseen
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Figure 1: An overview of our proposed knowledge-driven Environmental Dreamer (KED). The environmental dreamer takes two house scenes
as input, and uses an encoder to disentangle the texture encoding and semantic encoding of the two scenes. Then it decodes a combination of
a texture encoding from one room and a semantic encoding from the other room to generate a new house scene. We introduce a “speaker”
model to describe the sampled trajectory in the generated seen as an instruction with new entities to augment our training data.

environments. Generating unseen environments is challeng-
ing because we need to ensure texture consistency and struc-
ture consistency of the generated environments. The texture
consistency indicates that the nearby views should have sim-
ilar textures. If a sofa could be observed from several po-
sitions, the sofa should have the same color in the views of
these positions. The structure consistency means the house
structure shown in nearby views should be consistent. If
a pillar could be observed from several positions, the pillar
should have the same shape in the views of these positions.
Therefore, we introduce semantic regularization objectives
in order to ensure texture consistency and structure consis-
tency. First of all, we suggest that all panoramic views in
the same room, which are represented as all nodes in a con-
nected block, should be transferred by the same texture. Sec-
ond, we propose that the semantic information of an original
panoramic view and the generated view should be consistent.
Third, we suggest that a trajectory sampled in a generated
house scene should contain the same semantic information as
the original trajectory.

Our experiments show that the navigation agent with KED
outperforms the previous state-of-the-art method on various
VLN benchmarks, such as R2R, R4R, and RxR. The results
also demonstrate that using the augmentation data generated
by KED is able to significantly reduce the performance gap
between seen and unseen environments, which dramatically
improves the overall navigation performance. Our ablation
study shows that the proposed augmentation method outper-
forms other augmentation methods at the same augmentation
data scales. The visualization results show that our proposed
regularization objectives are able to ensure texture consis-
tency and structure consistency and generate environments
with higher-quality images.

2 Related Work
Embodied Navigation Environments. have been pro-
posed for navigation learning. House3D [Wu et al.,
2018] is the first indoor environment for navigation. AI2-
THOR [Kolve et al., 2017] is an interactable indoor en-
vironment. The Active Vision dataset [Ammirato et al.,
2017] consists of dense scans of 16 different houses. Mat-
terport3D [Anderson et al., 2018b], Gibson [Xia et al., 2018;
Xia et al., 2020] and Habitat [Savva et al., 2019] propose
high-resolution photo-realistic panoramic view. However, the
scales of these environments are small since collecting data
for rendering house scenes is expensive.

Vision-language Navigation. Anderson et al. [Anderson
et al., 2018b] propose the Room-to-Room (R2R) dataset,
which is the first Vision-Language Navigation (VLN) bench-
mark [Chang et al., 2017]. To address the VLN task, Fried
et al. propose a speaker-follower framework [Fried et al.,
2018] for data augmentation and reasoning in a supervised
learning context, along with a concept named “panoramic ac-
tion space” that is proposed to facilitate optimization. Wang
et al. [Wang et al., 2019] demonstrate the benefit of com-
bining imitation learning [Bojarski et al., 2016; Ho and Er-
mon, 2016] and reinforcement learning [Mnih et al., 2016;
Schulman et al., 2017]. Due to the success of BERT [De-
vlin et al., 2018], researchers have extended it to learn vision-
language representations in VLN. PRESS [Li et al., 2019] ap-
plies the pre-trained BERT to process instructions. PREVA-
LENT [Hao et al., 2020] pre-trains an encoder with image-
text-action triplets to align the language and visual states,
while VLN-BERT [Majumdar et al., 2020] fine-tunes ViL-
BERT [Lu et al., 2019] with instruction-trajectory pairs.
Hong et al. [Hong et al., 2021] implement a recurrent func-
tion to leverage the history-dependent state representations
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Figure 2: The detailed framework of our Knowledge-driven Environmental Dreamer (KED).

based on previous models. However, the agent learned with
limited training scenes can overfit seen textures, and hard to
generalize to unseen scenes where objects look different.

Style transfer. requires blending two objects, one contain-
ing content and the other containing style, to integrate into
a new object. Many classic works of style transfer [Hertz-
mann et al., 2001; Johnson et al., 2016; Tenenbaum and
Freeman, 2000] focus on obtaining human faces of differ-
ent styles [Hertzmann et al., 2001; Tenenbaum and Freeman,
2000] as well as art works [Chen et al., 2017; Gatys et al.,
2016]. Later, with the potentiality of style transfer being re-
vealed, it has been applied to some challenging tasks like nav-
igation [Zhu et al., 2020c] and super-resolution [Johnson et
al., 2016]. However, the application of this technique to vi-
sion language navigation is not trivial since it is difficult to
generate unseen scenes which vary in size, shape, and tex-
ture. Compared with previous works that generate a synthetic
scene [Zhao et al., 2021] or introduce segmentation data [Koh
et al., 2021], our work makes the first attempt at generating
photo-realistic scenes without additional prior.

3 Knowledge-driven Environmental Dreamer
3.1 Problem Setup
In the Vision-and-Language Navigation (VLN) task, an agent
follows a natural language sentence and predicts actions A =
{a1, ..., an} step-by-step to reach the target. A navigation
environment is formulated as a graph G = {V, E} consisting
of nodes and edges. At each node, a navigation agent is able
to observe a panoramic image view I . The agent takes an

action a to navigate from one node to another via an edge.

3.2 Learning to Dream
Here we introduce the framework and the objective functions
for learning the environmental dreamer. The detailed frame-
work is shown in Figure 2. Our environmental dreamer con-
sists of an encoder E and a decoder G. The encoder takes a
panoramic view as input and outputs a texture encoding fT

and a semantic encoding fS . The decode is used to decode a
concatenated feature with a texture encoding and a semantic
encoding as a panoramic image view.

Reconstruction and Adversarial Objectives. For each
image I in a minibatch, we calculate a reconstruction loss
as:

Lrec(E,G) = ∥I −G(E(I))∥ . (1)

In addition, we introduce an adversarial objective with a dis-
criminator D to improve the quality of the generated image:

Ladv(D) = −log(D(G(E(I))))

Ladv(E,G) = −log(1−D(G(E(I))))
(2)

This objective encourages the discriminator D to distinguish
fake image and encourage the generator G to generate high
quality image to deceive D.

Decomposition Objective. is adopted to help our model to
learn feature decomposition. Different from classical auto-
encoder framework, we divide the latent feature encoding f
into two parts: a texture encoding fT and a semantic encod-
ing fS . The texture encoding is a shallow but wide feature
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map and the semantic encoding fS the deep but narrow fea-
ture map. We sample two images IA and IB from different
house scenes and optimize the decomposition objective:

fT
A , fS

A = E(IA), fT
B , fS

B = E(IB),

IC = G([fT
A , fS

B ]), ID = G([fT
B , fS

A ]),

Ldec(D) = −log(D(IC))− log(D(ID)),

Ldec(E,G) = −log(1−D(IC))− log(1−D(ID)),

(3)

where [·] represents concatenation. IC and ID are unseen syn-
thetic images generated by G. The decomposition objective
enables the encoder to learn to represent texture encoding and
semantic encoding respectively. The encoder and decoder are
jointly optimized by these objectives.

3.3 Regularizing Environmental Consistency
Texture Consistency Objective. We propose the texture
consistency objective to ensure that all panoramic images in
the same room are consistent. Firstly, we adopt a neural map-
ping network M to map the texture encodings of the origi-
nal image IB and the generated image IC as feature vectors
that represent the global texture information. We use a cosine
similarity loss to maximize the similarity of the global texture
vectors:

f̂T
B = M(fT

B ), f̂T
C = M(E(IC))

Ltex(E,G,M) = 1− f̂T
B · f̂T

C

∥ f̂T
B ∥∥ f̂T

C ∥
.

(4)

Semantic Consistency Objective. One difficulty in our
environmental generation task is to ensure that all objects
should be easily distinguished without distortion, especially
small objects at a distance. To address this problem, we pro-
pose to leverage the knowledge from the visual encoder of the
CLIP [Radford et al., 2021] model. We use the CLIP model
to encode the original image IA and the generated image IC
as features, and use Mean Absolute Error (MAE) to penalize
the error between the features:

f̂S
A = CLIP(IA), f̂S

C = CLIP(IC)

Lsec(E,G) = |f̂S
A − f̂S

C |.
(5)

The semantic consistency objective encourages the environ-
mental dreamer to generate panoramic views that contain di-
verse objects with new textures. It solves the problem that the
model focuses on style transfer while ignoring the generation
of detail objects.

Instruction Consistency Objective. In addition to visual
objectives, we suggest that the semantic information con-
tained in the trajectory of a generated scene should be con-
sistent with which of the original scene. Firstly, we train a
“speaker” model P using the instruction-trajectory pairs as
in [Fried et al., 2018]. The “speaker” model encodes a se-
quence of image observations following a trajectory and de-
codes a natural language sentence to describes the image se-
quence. Secondly, we sample a trajectory from an original
room A and a trajectory from a generated room C, and use
the “speaker” model to describe the trajectories by natural

Algorithm 1 Selecting key vertexes
Input: Two environments GA = {VA, EA}, GB = {VB , EB},
encoder E, decoder D

1: ṼA = {v | top 10% v in VA ordered by BC(v)};
2: ṼB = {v | top 10% v in VB ordered by BC(v)}
3: RA = ConnectedBlock(VA − ṼA);
4: RB = ConnectedBlock(VB − ṼB)
5: for rA in RA do
6: rB = random(RB)
7: vB = random(rB)
8: fT

B , fS
B = E(vB)

9: for vA in rA do
10: fT

A , fS
A = E(vA)

11: vC = D([fT
B , fS

A ]);
12: VC = VC ∪ {vC};
13: end for
14: end for
15: for vA in ṼA do
16: vB = random(ṼA)
17: fT

A , fS
A = E(vA)

18: fT
B , fS

B = E(vB)
19: vC = D([fT

B , fS
A ])

20: VC = VC ∪ {vC}
21: end for
22: return GC = {VC , EC}

language sentences and penalize the error by a cross-entropy
loss:

Lins = −
∑
i

wA,ilog(P (wC,i|wA0
, ..., wAi−1

, ICi
)). (6)

The wA,i denotes the ground truth word at position i in room
A, and ICi

denotes the view of position i in room C. We reg-
ularize the instruction consistency objective in the “teacher-
forcing” paradigm. This training paradigm gives the previous
ground truth words to the “speaker” model to reduce the accu-
mulating error. The weights of the “speaker” model are fixed
in optimizing the instruction consistency objective.
Loss Reweighting for Adaptive Optimization. If the
model focuses on regularization too early in the training pro-
cess, the performance of image translation can be reduced.
Therefore, we design a loss reweighing mechanism to en-
courage the model to focus on the image translation task at
the beginning and pay more attention to regularization after it
performs the image translation task well:

α = 1− 1

2
(Ladv + Ldec),

Lreg = α(Ltex + Lsec + Lins).
(7)

Above all, we sum up all objectives to jointly train the envi-
ronmental dreamer:

Ltotal = λ1Lrec + λ2Ladv + λ3Ldec + λ4Lreg. (8)

3.4 Generating Training Data for Navigation
To describe our method for generating augmented training
data for the vision-language navigation task, we first gener-
ate views of house scenes to build environments. Then we

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1843



Method R2R Validation Seen R2R Validation Unseen R2R Test Unseen
TL NE↓ SR↑ SPL↑ TL NE↓ SR↑ SPL↑ TL NE↓ SR↑ SPL↑

Random 9.58 9.45 16 - 9.77 9.23 16 - 9.89 9.79 13 12
Human - - - - - - - - 11.85 1.61 86 76
Speaker-Follower [Fried et al., 2018] - 3.36 66 - - 6.62 35 - 14.82 6.62 35 28
RCM+SIL [Wang et al., 2019] 10.65 3.53 67 - 11.46 6.09 43 - 11.97 6.12 43 38
PRESS [Li et al., 2019] 10.57 4.39 58 55 10.36 5.28 49 45 10.77 5.49 49 45
EnvDrop [Tan et al., 2019] 11.00 3.99 62 59 10.70 5.22 52 48 11.66 5.23 51 47
AuxRN [Zhu et al., 2020a] - 3.33 70 67 - 5.28 55 50 - 5.15 55 51
PREVALENT [Hao et al., 2020] 10.32 3.67 69 65 10.19 4.71 58 53 10.51 5.30 54 51
RelGraph [Hong et al., 2020] 10.13 3.47 67 65 9.99 4.73 57 53 10.29 4.75 55 52
VLN⟳Bert [Hong et al., 2021] 11.13 2.90 72 68 12.01 3.93 63 57 12.35 4.09 63 57
HOP [Qiao et al., 2022] 11.26 2.46 76 70 12.27 3.79 64 57 12.68 3.87 64 58
RCM* [Tan et al., 2019] 10.25 4.91 53.8 50.7 9.38 5.89 46.2 42.5 9.58 5.88 46.4 43.3
RCM+KED 10.20 3.79 64.2 61.4 10.78 5.39 48.6 44.5 9.81 5.67 48.7 45.1
VLN⟳Bert* [Hong et al., 2021] 12.09 2.99 70.7 65.9 12.58 4.02 61.4 55.6 11.68 4.35 61.4 56.7
VLN⟳Bert+KED 11.27 2.58 75.6 70.9 12.01 3.66 64.9 58.1 12.80 3.88 64.3 59.4

Table 1: Comparison of agent performance on R2R in single-run setting. * reproduced results in our environment.

Method R4R Validation Seen R4R Validation Unseen
NE↓ SR↑ SPL↑ CLS↑ nDTW↑ SDTW↑ NE↓ SR↑ SPL↑ CLS↑ nDTW↑ SDTW↑

Speaker-Follower 4.31 59.0 50.8 50.8 49.9 35.5 6.37 43.5 33.6 40.5 38.8 23.3
Envdrop 4.82 55.8 48.6 50.3 49.0 34.6 6.42 43.1 34.1 40.9 39.0 23.4
KED (ours) 4.36 63.7 52.5 51.7 51.1 36.9 6.26 44.0 34.5 41.5 39.3 23.4

Table 2: Comparison of agent performance on R4R in single-run setting.

sample instruction-trajectory data from the generated house
scenes.

As described in the Problem Setup section, we model a
navigation environment as a graph. We pick out the key nodes
according to the betweenness centrality (BC). A node is con-
sidered a critical node if it has a betweenness centrality score
in the top 10%. The connected sub-graphs divided by key
nodes are regarded as rooms.

We generate a new house scene by generating new views
room-by-room in three steps: 1) we randomly sample a scene
A to provide semantic information and a scene B to provide
texture information; 2) for each room in scene A, we encode
a random view from rooms in scene B as fT

B and use this tex-
ture encoding to decode all semantic features of that room to
generate a new room; 3) for each key node in scene A, we use
the texture encoding of a random key node in scene B to gen-
erate a new view for that key node. A detailed demonstration
of this process is shown in Algorithm 1. The reason we only
use the texture encoding of scene B instead of all the scenes
in the dataset is that it prevents the textures from changing too
much in the new scene. Ideally, our method is able to gener-
ate more than 8K new scenes. Due to the limit of computation
resources, we generate 270 scenes in practice, 3 times more
than the original scenes provided by the R2R dataset.

Next, we randomly sample trajectories in the generated un-
seen scenes and use the “speaker” model to describe these tra-
jectories to generate instruction-trajectory pairs. At last, we
generated 500K instruction-trajectory pairs, 25 times the size
of the original data, which greatly enriches our training data.

3.5 Learning to Navigate
We adopt a joint optimization policy that uses imitation learn-
ing and reinforcement learning.

Imitation Learning. forces the agent to mimic the behavior
of its teacher. Our agent learns from the teacher action a∗t for
each step:

LIL =
∑
t

−a∗t log(pt), (9)

where a∗t is a one-hot vector indicating the ground truth.

Reinforcement Learning. We implement the A2C algo-
rithm [Mnih et al., 2016] to maximize the total reward of
navigation, whose loss function is formulated as:

LRL = −
∑
t

atlog(pt)At, (10)

where At is a scalar representing the advantage defined
in [Mnih et al., 2016].

4 Experiment
Dataset and Environments. We evaluate our navigation
agent on three VLN benchmarks: Room-to-Room (R2R),
Room-for-Room (R4R), and Room-Across-Room (RxR).
The original training set provided by R2R consists of 61 en-
vironments and 14,025 instructions. We augment the training
dataset by 500K instruction-trajectory pairs from 270 gener-
ated unseen scenes.
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Method RxR Validation Seen RxR Validation Unseen
NE↓ SR↑ SPL↑ CLS↑ nDTW↑ SDTW↑ NE↓ SR↑ SPL↑ CLS↑ nDTW↑ SDTW↑

Speaker-Follower 12.11 20.7 18.9 46.2 37.2 17.1 11.34 21.1 19.0 46.4 38.0 17.6
Envdrop 11.66 22.4 20.8 47.2 39.2 18.7 11.12 21.1 19.4 46.8 38.9 17.8
KED (ours) 11.43 23.0 22.2 48.2 40.8 19.3 10.97 21.7 19.6 47.5 39.7 18.1

Table 3: Comparison of agent performance on RxR in single-run setting.

Method R2R Validation Seen R2R Validation Unseen
TL NE↓ SR↑ SPL↑ TL NE↓ SR↑ SPL↑

1 VLN⟳Bert 12.09 2.99 70.7 65.9 12.58 4.02 61.4 55.6
2 VLN⟳Bert+KED w/o Lreg 11.34 2.68 73.9 69.3 11.34 4.00 63.5 55.8
3 VLN⟳Bert+KED with Lreg 11.02 3.21 68.3 63.9 11.23 3.95 62.0 56.7
4 VLN⟳Bert+KED (270 scenes) 11.68 2.71 73.7 68.6 12.46 3.92 63.1 56.9

Table 4: Ablation study on R2R in validation seen and unseen splits.

Evaluation Metrics. We use a large number of metrics for
evaluation, such as Trajectory Length (TL), Navigation Error
(NE), Success Rate (SR), and Success rate weighted by Path
Length (SPL). In the evaluation of R4R and RxR, we com-
pare our method with previous state-of-the-art methods on
Coverage weighted by LS (CLS), Normalized Dynamic Time
Warping (nDTW), Success weighted by normalized Dynamic
Time Warping (sDTW).

Results on VLN Standard Benchmark. In this section,
we compare our method with several other representative
methods on the standard R2R benchmark. We apply our
KED method on two backbone models: a seq-to-seq model
with cross-modal attention [Wang et al., 2019], and a recur-
rent VLN-BERT model [Hong et al., 2021]. Tab. 1 shows
that both backbone models trained with our augmentation
data outperform the models without augmentation data. Our
method improves the SPL performance of the RCM model
by 10.7% on validation seen, 2.0% on validation unseen, and
1.8% on test split. Our method improves the SPL perfor-
mance of the recurrent VLN-BERT model by 5.0% on valida-
tion seen, 2.5% on validation unseen, and 2.7% on test split.
The KED based on the VLN-BERT model outperforms the
previous state-of-the-art model [Qiao et al., 2022] by 0.9% on
validation seen, 1.1% on validation unseen, and 1.4% on test
split. Above all, the agent built on the recurrent VLN-BERT
model and learned with our augmentation data outperforms
all previous methods and achieves the state-of-the-art method
on the standard R2R benchmark.

Results on R4R and RxR. Here we investigate if our
method works on other navigation benchmarks, such as R4R
and RxR. The result are shown in Table 2 and Table 3. We
compare KED with other augmentation methods: 1) pair-
wise data augmentation (Speaker-follower); 2) feature-wise
data augmentation (Envdrop); 3) and scene-wise data aug-
mentation (KED). Our KED method significantly outper-
forms the other two augmentation methods on all metrics in
the R4R dataset and RxR dataset, which validate the effec-
tiveness of our method.

Ablation of Knowledge-driven Dreamer (KED). In this
section, we ablate different versions of our model and com-
pare how much performance improvement the navigation
agent is able to achieve by each part. Results are shown in
Table 4. By comparing 1 and 2 , we find that the train-
ing data generated by the baseline model is able to improve
the navigation performance. We discover that 3 significantly
outperforms 2 , which infers that the regularization objective
largely improves the quality of training data. 3 is trained
with 90 scenes. The performance of this model improves if
it is trained with more data like 4 , which reveals that our
data is beneficial and large-scale scene-wise augmentation
data can reduce the training-testing domain gap.

Ablation of Speaker. Here, we ablate the impact of the
speaker for our data augmentation method based on the RCM
backbone, as shown in Table 5. The KED method without
a speaker is able to improve the navigation performance on
both validation sets. More performance improvement can be
get by applying the speaker, which indicates that the speaker
is useful in our data augmentation method.

Quality of Generated Scenes. In Figure 3, we compare the
generated panoramic views between the model with regular-
ization objectives and the baseline model without regulariza-
tion objectives. It turns out that our model with regularization
objectives have several advantages: 1) they have fewer frag-
ments and “dirty” regions, such as 1 , 4 , 5 ; 2) the objects
are clearer and easier to distinguish, such as 2 , 6 , 8 ; 3) the
shadows and light effects are more realistic. For example, the
baseline model produces shades of orange in 7 when there is
no orange object or light source in the view. We conclude that
is because the baseline model mistakenly transfer the texture
information to the generated image. 4) the generated views
contain more detailed objects, especially the small objects in
the distance. In 3 , 6 and 8 , the objects generated by the
baseline model cannot be seen clearly while our model is able
to generate detailed objects. 5) The objects in the generated
view look more realistic. In 7 , the clock is transferred to
another texture but the numbers are still clear. In contrast, the
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Method R2R Validation Seen R2R Validation Unseen
TL NE↓ SR↑ SPL↑ TL NE↓ SR↑ SPL↑

RCM 10.3 4.9 54.7 51.9 9.4 5.9 46.2 42.6
RCM+KED w/o speaker 9.2 6.5 55.9 54.0 8.7 7.1 48.5 43.3
RCM+KED with speaker 10.2 3.8 64.1 61.1 10.8 5.4 49.7 45.2

Table 5: Ablation study of speaker on R2R dataset.

Semantic image Texture image Swapping Autoencoder Ours

①

②

③

④

⑤

⑥

⑦

⑧

Figure 3: visualization results of our model and the model w/o regularization objectives.

numbers generated by the baseline model have large distor-
tion.

5 Conclusion
In this paper, we propose Knowledge-driven Environmental
Dreamer (KED) to generate unseen scenes for agents to learn.
KED is required to ensure texture consistency and structure
consistency in generating new scenes. We propose three

novel reconstruction objectives that leverage knowledge from
pertained CLIP model and the “speaker” model to regular-
ize the optimization of KED. Our experimental results reveal
that the augmentation data generated by KED is able to sig-
nificantly improve the performance of the navigation agent.
Both quantitatively and qualitatively analysis infers that the
knowledge-driven environmental dreamer is able to generate
high-quality augmentation data.
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Ethical Statement
Positive Impacts. Our work proposes a method to im-
prove navigation performance, which contributes to real-
world robotic applications. Household robots and rescue
robots are required to navigate following a natural language
instruction in an unseen house. Our work enables robots to
complete navigation tasks accurately and efficiently without
high-precision maps or hard-coded rules. Our work has a
wide range of industrial applications, which could make to-
day’s robots more intelligent.

Risks and Ethical Concerns. In this paper, we use an
openly published dataset, named Matterport3D [Chang et al.,
2017] for our research. Collecting 3D house scenes require
consent from house owners to avoid violation of privacy.
There is a local government “general data protection regu-
lation” that a researcher needs to obtain prior ethical commit-
tee approval before conducting the investigation. As the end-
to-end framework is vulnerable to abuse, security protection
mechanisms should be incorporated to protect its embedded
algorithm from hacking. If multiple languages are to be incor-
porated, then additional unified textual information protection
techniques should be developed to alleviate natural language
processing risk.
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