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Abstract
Recovering the shape and appearance of real-world
objects from natural 2D images is a long-standing
and challenging inverse rendering problem. In this
paper, we introduce a novel hybrid differentiable
rendering method to efficiently reconstruct the 3D
geometry and reflectance of a scene from multi-view
images captured by conventional hand-held cameras.
Our method follows an analysis-by-synthesis ap-
proach and consists of two phases. In the initializa-
tion phase, we use traditional SfM and MVS meth-
ods to reconstruct a virtual scene roughly matching
the real scene. Then in the optimization phase, we
adopt a hybrid approach to refine the geometry and
reflectance, where the geometry is first optimized us-
ing an approximate differentiable rendering method,
and the reflectance is optimized afterward using a
physically-based differentiable rendering method.
Our hybrid approach combines the efficiency of ap-
proximate methods with the high-quality results of
physically-based methods. Extensive experiments
on synthetic and real data demonstrate that our
method can produce reconstructions with similar
or higher quality than state-of-the-art methods while
being more efficient.

1 Introduction
Inverse rendering, which recovers 3D geometry, reflection
properties and illumination from 2D images, is a long-standing
and challenging problem in computer graphics and vision [Pa-
tow and Pueyo, 2003]. Benefiting from the advances in deep
neural networks, many deep learning-based methods learn to
obtain the materials and plane normals of near-flat objects
in a data-driven way [Li et al., 2018b; Aittala et al., 2016;
Gao et al., 2019]. However, these methods struggle to deal
with complex geometry, resulting in limited application in
practice. Some other deep learning-based methods use 3D ge-
ometric representations such as signed distance fields [Yariv et
al., 2020; Zhang et al., 2021b], tetrahedral meshes [Munkberg
et al., 2021], and occupancy functions [Mildenhall et al., 2020;
Zhang et al., 2021c; Boss et al., 2021; Srinivasan et al., 2021;
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Zhang et al., 2021a; Zhang et al., 2022], to handle more
complex geometries. However, such geometry representa-
tions may require post-processing in order to be used in
traditional graphics pipelines [Lorensen and Cline, 1987;
Remelli et al., 2020], which may cause material information
loss and affect the rendering image quality.

The emergence of differentiable rendering techniques [Kato
et al., 2020] means that image loss can be back-propagated
along the rendering pipeline to solve inverse rendering prob-
lems, which promotes the development of multi-view in-
verse rendering tasks using triangular meshes as the ge-
ometry representation. Approximate differentiable render-
ing methods [Loper and Black, 2014; Kato et al., 2018;
Liu et al., 2019; Chen et al., 2019] utilize simplified ren-
dering processes and can solve the inverse rendering prob-
lem efficiently, but the simple material models they use usu-
ally lead to poor visual effects. On the contrary, physically-
based differentiable rendering methods [Li et al., 2018a;
Li et al., 2021] can reconstruct high-quality physically-based
rendering (PBR) materials in the path tracing manner, but their
realistic results come at a high computational cost. Although
some methods have been proposed to accelerate the recon-
struction process [Luan et al., 2021], they often impose strong
assumptions on the lighting conditions to narrow down the
parameter search space, which hinders their wide application.

In this paper, we propose a hybrid differentiable rendering
method to reconstruct triangular meshes and PBR materials
from multi-view real-world images captured by conventional
hand-held cameras (e.g. mobile phones) with uncontrolled
lighting conditions. Our method consists of two phases. In the
initialization phase, we use traditional methods to reconstruct
a rough triangular mesh for the scene. Then in the optimization
phase, we take a hybrid approach to optimize the scene geom-
etry and PBR materials, where we first optimize the geometry
using an approximate method, followed by the PBR materi-
als using a physically-based method. Our novel formulation
benefits from both the efficiency of approximate methods and
the high quality of physically-based methods. Extensive ex-
periments show that our method achieves a significantly faster
training and rendering speed than state-of-the-art methods,
while achieving results of comparable or better quality.

In summary, our contributions include:

• We propose a novel hybrid differentiable rendering optimiza-
tion method based on triangular meshes, which utilizes an
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Figure 1: (a) Our method takes as input a set of images obtained by conventional hand-held cameras from several viewpoints and gets a
rough initial model (b) by traditional methods. Then, we perform a novel analysis-by-synthesis optimization to refine the model’s shape and
reflectance separately, yielding a high-quality 3D model. In (c) and (d), we show a re-rendering of the result under a novel viewpoint and
environmental lighting. In addition, we can edit the material (e).

approximate differentiable rendering method to optimize the
geometry, and a physically-based differentiable rendering
method to get the PBR materials.

• The proposed pipeline is user-friendly and can work end-to-
end. Furthermore, the optimized scene parameters can be
easily deployed on mainstream commercial graphics engines
without the need for conversion, making it applicable to
a wide range of applications such as virtual reality and
augmented reality.

• We conduct extensive experiments on both synthetic and
real-world data, which demonstrate that our method outper-
forms or achieves comparable results to the state-of-the-art
methods while being significantly more efficient.

2 Related Work
Shape Reconstruction. Reconstructing object geometry is
a long-standing problem in computer vision and graphics. In
traditional methods, the Structure-from-Motion (SfM) method
[Schonberger and Frahm, 2016] is first applied to generate
sparse feature points and find their correspondence to further
generate a sparse point cloud and a rough mesh. Then, the
Multi-View-Stereo (MVS) method [Schönberger et al., 2016]
is leveraged to generate dense pixel-level matching. Finally,
a dense mesh with vertex color is generated by the Poisson
reconstruction method [Kazhdan and Hoppe, 2013]. A few
recent learning-based methods assume that the target object
mesh is homeomorphic with the sphere. The method in [Wang
et al., 2018] uses an image feature network (2D CNN) to ex-
tract perceptual features from the input image, and a cascaded
mesh deformation network (GCN) to progressively deform
an ellipsoid mesh into the desired 3D model. These methods
can only reconstruct rough geometry, which is insufficient for
downstream tasks such as VR and AR.

Reflectance Reconstruction. Reflectance model, i.e.,
spatially-varying bidirectional reflectance distribution func-
tion (SVBRDF), describes how light interacts with surfaces
in the scene. Traditional SVBRDF reconstruction methods
[Matusik, 2003; Lensch et al., 2003; Holroyd et al., 2010;
Dong et al., 2010; Chen et al., 2014; Dong et al., 2015;
Kang et al., 2018] rely on dense input images measured using
auxiliary equipment, e.g., gantry. Some other works focus on

[Zhou et al., 2016; Kim et al., 2017; Park et al., 2018] ex-
ploiting the structure of SVBRDF parameter spaces to reduce
the requirement for the number of input images. Additionally,
some data-driven works [Li et al., 2018b; Aittala et al., 2016;
Gao et al., 2019] have been introduced recently to produce
plausible SVBRDF estimations for near-flat objects using a
small number of input images. Despite their ease of use, these
methods struggle to handle more complex objects.

Differentiable Rendering. Differentiable methdos are re-
viewed in detail in [Kato et al., 2020]. Here we focus on
methods closely related to our work. Traditional rendering
pipelines, e.g., rasterization and ray-tracing, are not differ-
entiable due to some discrete parts, which means that they
cannot work with the gradient descent method just like neu-
ral networks. The emergence of differentiable rendering has
changed all. Some approximately-based methods have been
proposed recently. [Loper and Black, 2014; Kato et al., 2018;
Kato and Harada, 2019] compute approximated gradients
to optimize scene parameters. Besides, [Liu et al., 2019;
Chen et al., 2019] replace the z-buffer-based triangle selec-
tion of a vanilla rasterization process with a probabilistic
manner. Unfortunately, the result is not so good due to in-
accuracies introduced by these methods. On the contrary,
Monte Carlo edge sampling based methods [Li et al., 2018a;
Zhang et al., 2019] provide unbiased gradient estimates ca-
pable of producing plausible results. But these methods are
resource-consuming because of their path tracing module, hin-
dering their generalization.

Differentiable Rendering based Multi-view Inverse Ren-
dering. The emergence of differentiable rendering boosts
the development of the inverse rendering techniques. Several
prior works leverage differentiable rendering methods to solve
the inverse problem. Wu et al. [2020] propose a completely un-
supervised method for face reconstruction from just one face
image using the approximately-based differentiable method,
which does not rely on existing 3D morphable face models.
Luan et al. [2021] leverage the Monte Carlo edge sampling
based methods to reconstruct fine geometry and plausible ma-
terial. However, they assume that the camera and light are
collocated. In addition, a rough geometry scanned by pro-
fessional equipment is also needed. Although these settings
could narrow down the solution space, they also reduce the
generalization of the method. The method proposed by Li et
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Figure 2: Overview of our inverse rendering pipeline. Our method takes as input a set of RGB images of some object obtained by conventional
hand-held cameras from several viewpoints with uncontrolled lighting conditions. Then, we utilize SfM and MVS method to reconstruct a
virtual scene roughly matching the real scene in the initialization phase. In the optimization phase, we first optimize the geometry using the
approximately-based differentiable rendering method, then optimize reflection using the physically-based differentiable rendering method.
Both methods work iteratively by pushing the loss between rendering images and the ground truth in the camera pose.

al. [2021] reduces the requirements for input. It takes as in-
put multi-view wild scene images, and reconstructs the initial
geometry through MVS, then use the general Monte Carlo
path tracing differentiable renderer to optimize the material,
illumination, and geometry. Although it can achieve good
results, it is resource-consuming and time-consuming.

3 Our Method
3.1 Overview
Our inverse rendering pipeline, shown in Figure 2, takes as
input a set of RGB images captured by conventional hand-held
cameras from multiple viewpoints. Using traditional methods
(SfM and MVS), our method first reconstructs a virtual scene
(in the form of a triangle mesh with vertex color) that roughly
matches the real scene in the initialization phase. Afterward, in
the optimization phase, our method first uses an approximate
differentiable rendering method to optimize the geometry, then
uses a physically-based differentiable rendering method to
optimize the reflectance. Both methods iteratively improve the
image loss between rendered images and the ground truth for
the same viewpoint. Finally, the optimized scene parameters
can be used for a variety of applications such as novel view
synthesis and relighting. Conceptually, our pipeline can be
formulated as an analysis-by-synthesis problem

Θ∗ = argmin
Θ

L(I(Θ),Θ; Ĩ),

where Θ represents the scene parameters that need to be es-
timated, including geometry and reflection parameters; L is
a loss function to be minimized; Ĩ is the ground truth image,
and I(Θ) is the image rendered by our hybrid differentiable
rendering method using the same camera parameters as Ĩ. In
the following, we present the details of each phase.

3.2 Initialization Phase
Our reconstruction pipeline is designed to work in complex,
unstructured scenes where the input images have no addi-
tional information, such as depth. To tackle these challenges,
we leverage traditional methods to obtain an initial geometry.
Specifically, as shown in Figure 2(a), we use the SfM method
from [Schonberger and Frahm, 2016] to generate sparse fea-
ture points in each image. These points are then used to
reconstruct a sparse point cloud and a rough mesh by match-
ing the feature points across images. Next, we use the MVS
reconstruction method from [Schönberger et al., 2016] to gen-
erate dense pixel-level matching. Finally, a dense mesh is then
obtained from Poisson surface reconstruction [Kazhdan et al.,
2006], with vertex colors derived from the input images.

In terms of lighting, we use an environment map as our
lighting source. The resolution of the environment map is
512 × 128. The environment map is a learnable parameter
that is inferred during the material optimization phase. In the
beginning, we assume that the light is white and the three
channels of our environment map are set to (0.5, 0.5, 0.5).

3.3 Optimization Phase
In the optimization phase, starting from the initial geometry
obtained in the previous step, we adopt a hybrid differen-
tiable rendering method to further optimize the geometry and
reflectance. Specifically, we utilize an approximate differ-
entiable rendering method to optimize the geometry, and a
physically-based differentiable rendering method to optimize
the reflectance. Our hybrid approach is motivated by the fol-
lowing observations in experiments:

• Although the geometry reconstructed by SfM and MVS in
the initialization phase provides a good approximation of the
scene, there can be some defects in the boundary regions.

• Approximate differentiable rendering methods dedicated to
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calculating the gradient of geometry can be very efficient,
but the visual effect of their results may be of lower quality
due to their simplification of the material model.

• Physically-based methods can accurately reconstruct com-
plex materials, but their high computational costs and re-
source demands may impede their efficiency.

Specifically, starting from the triangle mesh obtained in the
initialization phase, we further optimize its vertex positions
θp which define the geometry, as well as two 2D texture maps
that contain the diffuse albedo θd and specular albedo θs re-
spectively and define the SVBRDF. In this way, our scene
parameters can be represented as Θ = (θp, θd, θs). We first
optimize the vertex positions using an approximate differen-
tiable rendering method. Afterward, we optimize the diffuse
albedo and specular albedo using a physically-based differ-
entiable rendering method. Details of the optimization are
presented below.
Geometry Optimization. To optimize the geometry, we
adopt a differentiable model similar to Soft Rasterizer [Liu
et al., 2019] to compute a silhouette image for each input
image using the same camera parameters (see the supplemen-
tary materials for details of the computation), to indicate the
occupancy from the same view directions as the input images.
Then we minimize the following loss function to derive the
vertex positions θp:

Lgeo = λsilLsil +λlapLlap +λnormalLnormal +λedgeLedge , (1)

where Lsil is a silhouette loss that indicates the consistency be-
tween the computed silhouette images Isil(θp) and the ground-
truth ones Ĩsil derived from the input [Liu et al., 2019]:

Lsil = 1−
∥∥∥Ĩsil ⊗ Isil

∥∥∥
1
/
∥∥∥Ĩsil ⊕ Isil − Ĩsil ⊗ Isil

∥∥∥
1
,

with ⊗ and ⊕ being the element-wise product and sum oper-
ators, respectively. The other terms in Lgeo are regularizers.
Among them, Llap = ∥LV∥2 is a mesh Laplacian loss Llap of
a mesh with n vertices, V is the n× 3 coordinates matrix, and
L ∈ Rn×n is the Laplacian matrix of the mesh (See [Nealen
et al., 2006] for details). Lnormal =

∑
i,j [1− (ni · nj)]

2 is a
normal consistency loss to make the normals of adjacent faces
to vary slowly, where the sum is over all triangle pairs (i, j)
sharing a common edge, and ni and nj are the face normals of
the two specific triangles. Ledge =

√∑
i e

2
i is an edge length

loss to avoid long edges that can cause ill-shaped triangles,
where ei denotes the length of the i-th edge.
Reflectance Optimization. Our reflectance optimization is
based on the rendering equation proposed in [Kajiya, 1986].
For a surface point x with surface normal n, let Li(ωi;x) be
the incident light intensity at location x along the direction
ωi, and SVBRDF fr(ωo, ωi;x) be the reflectance coefficient
of the material at location x for incident light direction ωi

and viewing direction ωo. Then the observed light intensity
Lo(ωo;x) is an integral over the upper hemisphere Ω:

Lo(ωo;x) =

∫
Ω

Li(ωi)fr(ωo, ωi;x)(ωi · n)dωi .

We leverage a modified Cook-Torrance (CT) model [Cook
and Torrance, 1982] based on [Zeltner et al., 2021] as our

reflectance model, which contains a rough surface with diffuse
and specular reflection without refraction. Mathematically,
our reflectance model can be described as the following,

fr (ωo, ωi;x) = θd(x) + θs (ωo, ωi;x) ,

where θd and θs are the diffuse and specular reflectance:

θd(x) = ρd(x)/π,

θs (ωo, ωi;x) = ρs(x)
D(h, α)G (ωo, ωi, n(x))

(n(x) · ωi) (n(x) · ωo)π
.

Specifically, ρd is diffuse albedos, ρs is specular albedos, and
h is the halfway vector. D(h, α) is the microfacet distribu-
tion function which is GGX [Walter et al., 2007] used in our
work. α and n(x) denote the surface’s roughness and normal,
respectively. G is a shadowing-masking function. Like other
works, we also ignore the Fresnel effect which cannot be ob-
served in our scene. To optimize the reflectance parameters
θr = (θd, θs), we minimize the following reflectance loss:

Lref = λrgbLrgb(Irgb(θr); Ĩrgb) + λregR(θr), (2)

where Lrgb =
∥∥∥Ĩrgb − Irgb(θr)

∥∥∥
1

measures the ℓ1 norm of the

difference between the rendered color image Irgb(θr) and the
ground truth Ĩrgb. R(θr) is a regularizer for the diffuse albedo
θd and specular albedo θs. Similar to [Schmitt et al., 2020],
we assume that nearby pixels with similar diffuse albedos have
similar specular albedos. So we choose

R(θr) =
∑

p

∥∥∥θs[p]− (∑
q
θs[q]kp,q

)
/
(∑

q
kp,q

)∥∥∥
1
,

where kp,q = exp
(
−∥p−q∥2

2

2σ2
1

− (θd[p]−θd[q])2

2σ2
2

)
and p, q are

two specific mesh vertices.

4 Experiments
We perform quantitative and qualitative evaluation of our
method using extensive experiments on both synthetic and
real data, and compare it with state-of-the-art methods.

Implementation Details. We implement the geometry
reconstruction module in the initialization phase using
COLMAP1 [Schönberger et al., 2016; Schonberger and Frahm,
2016], a general-purpose Structure-from-Motion and Multi-
View Stereo pipeline. In the optimization phase, we imple-
ment the approximate differentiable rendering based on Py-
torch3d [Ravi et al., 2020], and the physically-based differ-
entiable rendering based on Mitsuba 2 [Nimier-David et al.,
2019]. The rest of our optimization pipeline is implemented
with PyTorch using the Adam optimizer. For geometry op-
timization, we use the weights (λsil , λlap , λedge , λnormal ) =
(1.0, 1.0, 1.0, 0.01) for Eq. 1, and 0.001 for the learning rate.
The ground-truth silhouette images required for Eq. 1 are ob-
tained either from rendering (for synthetic data) or using a
background removal tool2 (for real data). For reflectance op-
timization, we use the weights (λrgb, λreg) = (0.1, 1.0) for

1https://github.com/colmap/colmap
2https://www.remove.bg/

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1852

https://github.com/colmap/colmap
https://www.remove.bg/


GT Novel View 1 GT Relighting 1 GT Relighting 2

0.0124/0.975/35.01 0.0263/0.945/34.82 0.0256/0.945/34.86

0.0203/0.901/34.34 0.0288/0.943/33.91 0.0291/0.941/34.10

0.0230/0.903/34.28 0.0233/0.942/32.87 0.0246/0.947/33.99

Figure 3: Results of our method on the synthetic data. We compare our predicted novel views and relighting results to the ground truth images.
The number above each result indicates LPIPS, SSIM, and PSNR metrics calculated in 512× 512 size pictures, respectively. Please zoom in
to see the details, especially the challenging specular highlights on the surface of the objects.

Eq. 2, and 0.0001 for the learning rate. To avoid excessive
memory consumption in the physically-based rendering mod-
ule, we set the maximum depth of ray tracing bounce to 3, the
downsampling factor of raw images to 4, and the number of
sampling per pixel spp to 4 in the iterative optimization phase.

We train and test our method on one NVIDIA RTX 3090
GPU. For geometry optimization, our implementation uses
200 iterations per view and takes about 0.5 hours per example.
For reflectance optimization phase, our implementation uses
400 iterations per view and takes 1.5∼2.5 hours per example.
Synthetic Data. Our synthetic data is created using meshes
and textures from [Zhou et al., 2016] and the Internet, cover-
ing different materials and geometries. Concretely, for each
object, we render 400 images with colored environmental
lighting using graphics engines, 300 for training, and the left
100 for novel view synthesis testing, whose viewpoints are
evenly distributed inside the upper hemisphere. In addition,
we also render the same object with two other environment
lighting maps as the ground truth for the following relighting
performance testing. To quantitatively evaluate our method,
we use three image quality metrics—LPIPS [Zhang et al.,
2018], SSIM and PSNR—to compare the rendering results
with the corresponding ground truth images. Figure 3 shows
examples of results from our method and their ground truth,
as well as their evaluation metric values. Both the quantitative
metrics and the qualitative visualization show that our novel
views and relighting results match the ground truth closely.
Fig. 6 shows the diffuse and specular albedo for the lemon
model.
Real Data. We evaluate our method on multiple real-world
images from the DTU datasets [Aanæs et al., 2016], where the
objects are glossy and the illumination is static across different

views. We use two objects from the dataset, shiny scan114
buddha and scan110 ghost, and discard photos with strong
shadows. Our inverse rendering results are shown in Figure
4. We can see that our pipeline generates photo-realistic novel
views, and results of relighting and material editing.

Comparison with State-of-the-art Methods. As far as we
are aware, there is no prior work tackling exactly the same
problem as our work: reconstructing triangle meshes and
PBR materials from multi-view real-world object images with
uncontrolled lighting conditions. The methods closest to our
method are [Luan et al., 2021; Li et al., 2021], but no source
code or data is released. It is worth noting that our method
addresses the shortcomings of [Li et al., 2021] in dealing with
geometry, while overcoming the limitation of [Luan et al.,
2021] which requires the camera and point lighting to be in
the same position and the images to be taken in dark scenes.

We compare our method to the most related neural ren-
dering approaches, including PhySG [Zhang et al., 2021b],
NeRF [Mildenhall et al., 2020] and IDR [Yariv et al., 2020], in
terms of novel view synthesis. These approaches are different
from our method in the model of light transport: NeRF uses
the occupancy function to describe geometry and appearance
maps and gets the pixel color according to location and view-
ing direction in a ray-marching way, while PhySG and IDR use
SDF to represent geometry and material. In addition, unlike
the aforementioned two methods that focus solely on novel
view synthesis, PhySG also performs inverse rendering tasks,
using Spherical Gaussian functions to describe materials and il-
lumination. Qualitative and quantitative comparisons between
different methods on our synthetic data are depicted in Fig-
ure 5 and Table 1. The unsatisfactory performance of PhySG
may be due to the presence of strong specular highlights in our
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Original View 1 Relight 1View 2 Relight 2 Edit 1 Edit 2

Figure 4: With our pipeline, we can synthesize novel views and edit the materials and lighting of the real-world captures.

GTNeRF IDR OursPhySG

Figure 5: We qualitatively compare our results with PhySG [Zhang et al., 2021b], NeRF [Mildenhall et al., 2020] and IDR [Yariv et al., 2020].

Ours Diffuse Specular

Figure 6: Our diffuse and specular albedo. We have adjusted the
tonal range to make the variation of specular albedo more visible.

synthetic data, which are difficult to describe using the Spheri-
cal Gaussian functions employed by PhySG. NeRF performs
relatively poorly in view synthesis because its volumetric rep-
resentation does not concentrate colors around surfaces as well
as surface-based approaches. IDR does a better job in view

synthesis because of its view-dependence model. However,
it still struggles to synthesize specular highlights due to the
non-physical model of appearance. In contrast, our method
models highlight well, benefiting from our PBR materials. We
also compare the running time, where our training time is the
sum of initialization time and optimization time. Thanks to the
combination of efficiency from the approximate method and
the accuracy from the physically-based method, our hybrid
approach runs significantly faster than the two baselines both
in training and testing. In addition, our optimized geometry
and material can be deployed directly on mainstream graphics
engines.

We also compare our method with the latest related work
IRON [Zhang et al., 2022] which adopts neural representa-
tions and also leverages a hybrid optimization scheme. Note
that IRON assumes a point light source, while our method
allows for uncontrolled lighting conditions. As a result, IRON
performs poorly in complex lighting situations. Figure 9 com-
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Synthetic Pig (512×512) Synthetic Pomegranate (512×512) Synthetic Hotdog (512×512)
#train=300, #test=100 #train=300, #test=100 #train=300, #test=100

Training Testing Training Testing Training Testing
LPIPS↓ SSIM↑ PSNR↑ Time (h)↓ Time (s)↓ LPIPS↓ SSIM↑ PSNR↑ Time (h)↓ Time (s)↓ LPIPS↓ SSIM↑ PSNR↑ Time (h)↓ Time (s)↓

PhySG 0.2200 0.784 17.39 ∼ 15 ∼ 4 0.0425 0.928 23.98 ∼ 15 ∼ 4 0.1473 0.8319 22.30 ∼ 15 ∼ 4
NeRF 0.0878 0.859 27.19 ∼ 15 ∼ 10 0.0600 0.918 31.91 ∼ 15 ∼ 10 0.0453 0.921 27.90 ∼ 15 ∼ 10
IDR 0.0183 0.955 29.94 ∼ 18 ∼ 5 0.0211 0.942 26.85 ∼ 18 ∼ 5 0.0303 0.945 30.97 ∼ 18 ∼ 5
Ours 0.0124 0.975 35.01 ∼ 3 ∼ 1 0.0230 0.903 34.28 ∼ 2.5 ∼ 1 0.0088 0.951 33.89 ∼ 3 ∼ 1

Table 1: Comparison between PhySG [Zhang et al., 2021b], NeRF [Mildenhall et al., 2020], IDR [Yariv et al., 2020] and our method. #train
and #test denote the size of training set and test set, respectively. Training time is in hours and rendering time is in seconds.

150 Inputs 200 Inputs 250 Inputs 300 Inputs 350 Inputs

26.63/0.772/0.093 31.04/0.890/0.063 33.28/0.9160/0.045 34.42/0.924/0.041

GT

35.07/0.928/0.036 PSNR/SSIM/LPIPS

Figure 7: Ablation study on the number of input images. We show a novel view synthesis result of the reconstruction for each object, given a
different number of input images, whose viewpoints are evenly distributed inside the upper hemisphere. We recommend that readers zoom
in to see the details of the picture, especially the folds at the top and the specular highlights on the face.

GTIRON Ours

Figure 8: Comparison between our method and IRON [Zhang et al.,
2022] on the hotdog data.

pares the two methods in different lighting conditions. Our
method can achieve similarly good results as IRON on point-
lighting data, while being superior with more complex lighting.
In particular, IRON cannot handle the highlights on the sur-
face of objects under environment lighting because their light
source cameras are in the same position, while our method can
handle it well. In addition, for some flat data like the hotdog
in Figure 8, IRON struggles to obtain appropriate geometry,
while our method can produce an accurate reconstruction.

Ablation Study. Figure 7 shows our ablation study on the
number of input images, which depicts how the number of
input images affects our reconstruction quality. With too few
input images, the optimization may become highly under-
constrained, making it difficult to produce accurate synthesis
results. In our experiments, 150 images are sufficient to pro-
duce a quite good result. With 250 or more input images, our
results will closely match the ground truth. More ablation
studies can be found in the supplementary materials.

0.0203/0.901/34.340.1273/0.873/22.20

0.0246/0.960/39.010.0253/0.965/38.94

0.0163/0.981/39.610.0176/0.970/39.69

0.0230/0.903/34.280.1230/0.891/24.16

GTIRON Ours

Figure 9: Comparison between our method and IRON [Zhang et al.,
2022]. The first and third rows are point lighting, and the second and
fourth rows are environment lighting. The numbers above each result
show the LPIPS, SSIM and PSNR in 512×512 pictures, respectively.
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5 Conclusion
We introduce a novel efficient hybrid differentiable rendering
method to reconstruct triangular object mesh and PBR ma-
terial from multi-view real-world images with uncontrolled
lighting conditions. Unlike prior works that require massive
resource consumption or approximated rendering process, we
utilize an approximate method to optimize the geometry and
a physically-based method to estimate the reflectance so that
we could benefit from both the efficiency of the former and
the high quality of the latter. In general, our method can han-
dle a wide range of real-world scenes, providing an attractive
and efficient solution and enabling photo-realistic novel view
synthesis and relighting applications.

Limitations and future work. Our method can have diffi-
culties with very thin geometry, which is a common problem
of mesh-based methods. In addition, our method optimizes
geometry and material separately. A potential future work is a
unified pipeline to optimize geometry and material simultane-
ously, which should further improve the result quality.
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