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Abstract
Video text spotting (VTS) aims at extracting texts
from videos, where text detection, tracking and
recognition are conducted simultaneously. There
have been some works that can tackle VTS; how-
ever, they may ignore the underlying semantic rela-
tionships among texts within a frame. We observe
that the texts within a frame usually share similar
semantics, which suggests that, if one text is pre-
dicted incorrectly by a text recognizer, it still has a
chance to be corrected via semantic reasoning. In
this paper, we propose an accurate video text spot-
ter, VLSpotter, that reads texts visually, linguis-
tically, and semantically. For ‘visually’, we pro-
pose a plug-and-play text-focused super-resolution
module to alleviate motion blur and enhance video
quality. For ‘linguistically’, a language model is
employed to capture intra-text context to mitigate
wrongly spelled text predictions. For ‘semanti-
cally’, we propose a text-wise semantic reasoning
module to model inter-text semantic relationships
and reason for better results. The experimental
results on multiple VTS benchmarks demonstrate
that the proposed VLSpotter outperforms the ex-
isting state-of-the-art methods in end-to-end video
text spotting.

1 Introduction
In recent years, we have witnessed rapid growth in new meth-
ods [Wang et al., 2017; Cheng et al., 2019; Cheng et al.,
2020; Wu et al., 2021; Wu et al., 2022] and datasets [Karatzas
et al., 2013; Karatzas et al., 2015; Wu et al., 2021; Cheng et
al., 2019] for video text spotting (VTS). It has been draw-
ing increasing research interest due to its crucial role in
computer vision tasks, such as video retrieval [Spolaor et
al., 2020] and video subtitle recognition [Xu et al., 2018],
and downstream industrial applications, such as license plate
recognition [Shashirangana et al., 2020] and machine trans-
lation [Stahlberg, 2020].

There have been some works [Wang et al., 2017; Cheng et
al., 2019; Cheng et al., 2020; Wu et al., 2021; Wu et al., 2022]
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Figure 1: Examples of inter-text semantic relationships in a frame.

aiming to tackle the VTS problem, most of which tend to de-
sign a multi-task pipeline containing text detection, tracking
and recognition as three major components. For example, a
Transformer-based VTS model is proposed to boost perfor-
mance in [Wu et al., 2021]. Some methods [Cheng et al.,
2019; Cheng et al., 2020] utilize a scoring mechanism to save
recognition time. In addition, a light-weighted VTS model
is proposed in [Wu et al., 2022] to achieve real-time infer-
ence. However, these methods mainly focus on improving the
backbones of models and may ignore the underlying semantic
relationships among texts within a frame. In this case, most
existing methods leverage only two types of information, i.e.,
visual information and temporal information.

In addition to the aforementioned two types of helpful
information, inter-text semantic relationships among texts
within a frame may also be beneficial for improving the per-
formance of VTS. For example, the first frame in Fig. 1 is
captured from a food store, where the texts therein are related
to the semantic concept of food. One can consider a situa-
tion that ‘Steak’ and ‘Panini’ are correctly predicted, while
‘Hamburger’ is wrongly predicted as ‘lamberger’ due to oc-
clusion. As the texts within this particular frame share similar
semantics, humans can naturally figure out that ‘lamberger’
is wrongly spelled based on the observation that both ‘Steak’
and ‘Panini’ belong to the semantic concept of food, and can
further infer the correct text ‘Hamburger’ belonging to the
same semantic concept. There exist a non-ignorable number
of such cases in scene text videos, which hatches our core
motivation: We can introduce inter-text semantic reasoning
into VTS to achieve more accurate results.

Based on this motivation, we propose an accurate video
text spotter, VLSpotter, to read texts visually, linguistically,
and semantically. Following the fashion of existing VTS
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methods [Wang et al., 2017; Cheng et al., 2019; Cheng et al.,
2020; Wu et al., 2021; Wu et al., 2022], VLSpotter adopts the
paradigm of performing text detection, tracking and recogni-
tion simultaneously. In addition to leveraging visual and tem-
poral information carried in text videos, the unique design
of the proposed VLSpotter further explores the potential of
inter-text semantic relationships. Specifically, for ‘visually’,
we propose a text-focused super-resolution (TFSR) module
to effectively alleviate motion blur and produce high-quality
frames for subsequent detection, tracking and recognition;
moreover, we propose a mask-adaptive super-resolution loss
to supervise TFSR, making it focus more on text areas. For
‘linguistically’, a language model is employed to mitigate
wrongly predicted texts through capturing intra-text context.
For ‘semantically’, we propose a text-wise semantic rea-
soning (TWSR) module to model the semantic relationships
among texts with similar semantics. To train the proposed
TWSR, we categorize 21K commonly used texts into 20
semantic concepts, and perform semantic reasoning among
texts that belong to the same concept. In this way, better
recognition results can be obtained with fused visual, linguis-
tic and semantic features.

Extensive experiments of text spotting, tracking and detec-
tion are conducted on three VTS benchmarks, ICDAR2013
Video [Karatzas et al., 2013], ICDAR2015 Video [Karatzas
et al., 2015], and BOVText [Wu et al., 2021], to evaluate the
effectiveness of the proposed VLSpotter. The experimental
results demonstrate that VLSpotter outperforms the existing
methods by a clear margin under the criterion of end-to-end
text spotting, and achieves comparable performance under the
criterion of text detection and tracking. The code of VLSpot-
ter is available at GitHub1.

The contributions of this paper are three-fold:

• Based on the observation that texts within a video frame
usually exhibit similar semantics, we propose a text-
wise semantic reasoning module to model inter-text se-
mantic relationships.

• We propose a plug-and-play text-focused super-
resolution module to enhance video quality and design
a mask-adaptive super-resolution loss to force this mod-
ule to focus more on text areas.

• The proposed VLSpotter outperforms the state-of-the-
art methods by a clear margin on ICDAR2015 Video and
BOVText in end-to-end text spotting.

2 Related Works
In this section, we first introduce text recognition. Then, we
introduce the recent development of end-to-end video text
spotting. Finally, we briefly introduce the text image super-
resolution task.

2.1 Text Recognition
Some existing text recognition works have introduced seman-
tic reasoning to text recognition. [Yu et al., 2020] proposes a

1https://github.com/FudanVI/FudanOCR/VLSpotter

Transformer-based global semantic reasoning module to cap-
ture global semantic context via parallel transmissions; its se-
mantic context is actually the embedded features of attended
visual features aligned to characters. Additionally, [Bhunia
et al., 2021] develops a multi-stage and multi-scale attention
decoder to perform reasoning procedure. Different from [Yu
et al., 2020], this method conducts a joint visual and seman-
tic reasoning. Inspired by [Bhunia et al., 2021], [He et al.,
2022] proposes a reasoning module implemented based on
graph convolution to infer the text results with both visual
and textual (language) features in an iterative manner. Tech-
nically, the aforementioned works conduct semantic reason-
ing on top of intra-text semantics, thus still ignoring inter-
text semantic relationships. Speaking of the diversity of lan-
guages in text recognition, a large portion of Chinese texts
appear in the VTS benchmarks such as BOVText [Wu et
al., 2021] and LSVTD [Cheng et al., 2019]. Some recently
proposed Chinese text recognition methods [Yu et al., 2022;
Zu et al., 2022; Yu et al., 2021a; Su et al., 2023; Chen et al.,
2021b] are capable of tackling them.

2.2 End-to-End Video Text Spotting
Spotting text from videos has already been studied before the
era of deep learning. Recently, the rapid growth of deep learn-
ing techniques and datasets for text detection and recognition
have hatched several new approaches to end-to-end video text
spotting. In [Wang et al., 2017], temporal information is used
to enable multi-frame tracking, thus improving spotting per-
formance. Subsequently, [Cheng et al., 2019] and [Cheng et
al., 2020] design a scoring network to select high-quality in-
stances from the tracking stream, thus allowing their methods
to recognize only once. The framework for tracking, recog-
nition, and scoring is also made end-to-end in these works.
Recently, [Wu et al., 2021] employs a Transformer-based de-
tection and tracking system to spot arbitrarily oriented texts
in videos, and brings the end-to-end spotting performance to
a higher level. [Wu et al., 2022] develops an extremely effi-
cient solution while not harming the performance by conduct-
ing GPU-parallel detection post-processing. [Wu et al., 2022]
introduces contrastive learning to VTS for managing long-
range dependencies across multiple frames. Different from
these methods, the proposed VLSpotter attempts to leverage
the inter-text semantic relationships within video frames.

2.3 Text Image Super-Resolution
Image super-resolution aims to enhance the quality of low-
resolution images, and it is also effective in blurred situations.
However, generic image super-resolution methods like [Chen
et al., 2022b] have limited effect on text regions. To fill this
gap, [Mou et al., 2020] employs super-resolution blocks to
benefit text recognizer. [Chen et al., 2021a] makes use of
text position and content priors; and [Ma et al., 2023] further
leverage text probability priors in a concurrent manner. [Chen
et al., 2022a] reconstructs high-quality text images by focus-
ing on text strokes. However, these methods only work on
text-line images instead of an entire scene image with multi-
ple texts, which is highly demanded in VTS tasks. In this pa-
per, the proposed text-focused super-resolution module aims
to handle text-focused super-resolution of the entire image.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1859



B
ackbone

 

Text-Focused Super-Resolution (TFSR)

iterations

HR Text
Image 

Text 
Detction

Segmentation 
Mask 

Resize 

Super-Resolution
Block

Text
Segm

entation

Pixel
Shuffle

V
ision M

odel

Prediction H
ead

Text 
Recognition 

TWSR

Language Model

Fusion &
Prediction

Text-Wise Semantic
Reasoning (TWSR) 

Predicted
T

exts
T

ext G
T

CNN

Embedding

Fusion

Text Tracking

...

Text Image 
Patches 

SG

Bbox GT

Figure 2: The overall architecture of the proposed VLSpotter. Data flow only used for training is marked in red. The modules that require
pre-training are marked with the symbols of a black lock.

3 Methodology
We introduce the details of the proposed VLSpotter in the fol-
lowing. First, we present the proposed Text-Focused Super-
Resolution (TFSR) module, which is developed to alleviate
the motion blur in text videos and enhance video quality. We
next introduce the procedures for text detection, recognition
and tracking in VLSpotter. Finally, we introduce the pro-
posed Text-Wise Semantic Reasoning (TWSR) module for
correcting text predictions with inter-text semantic relation-
ships within a frame. The overall architecture of VLSpotter
is shown in Fig. 2.

3.1 Text-Focused Super-Resolution
To avoid the side effect of motion blur for text detection
and recognition, the previous methods [Cheng et al., 2019;
Cheng et al., 2020] design a scoring mechanism to select a
frame with the best quality in the temporal tracking stream to
perform one-time text recognition. However, when all frames
in a text video are blurred and achieve low scores, the quality
of text areas in the selected frame may still pose challenges
for subsequent text detection and recognition. Therefore,
we introduce a plug-and-play Text-Focused Super-Resolution
(TFSR) module to conquer motion blur in text videos, thus
improving the quality of input for subsequent modules.

Considering that super-resolving frames of text video only
plays as a preprocessing role for the subsequent modules, we
adopt a light-weighted super-resolution framework [Chen et
al., 2022b] as the main body of TFSR to reduce the time over-
head. Specifically, TFSR consists of a ResNet-based back-
bone G, a super-resolution block R, and a pixel-shuffle mod-
ule S. The entire process of TFSR can be formulated as:

Vt
S = S(R(i)(G(Vt

L))) (1)

where R(i) represents that the image features extracted by
G(·) are iteratively processed by the super-resolution block R
for multiple iterations. Eventually, the input frames Vt

L with

the size of H ×W are super-resolved into the corresponding
super-resolution frame Vt

S with the size of 2H × 2W .
The TFSR module aims to obtain the frames with better

quality for subsequent text detection and recognition. How-
ever, existing datasets for super-resolution mainly focus on
scene images with few texts. Although TextZoom [Wang et
al., 2020] is proposed to solve the text image super-resolution
task, the samples are all cropped text areas rather than scene
images with multiple texts. Therefore, it is necessary to
build a super-resolution dataset for text images to train the
proposed TFSR module. As it lacks a scene-level dataset
for TSFR training, we synthesize a dataset by replacing the
text areas in video frames with the high-resolution (HR)
and low-resolution (LR) images in TextZoom to construct
a HR-LR pair of text images. In addition, we also observe
that the image-quality labels of frames are available in IC-
DAR2013 [Karatzas et al., 2013], ICDAR2015 [Karatzas et
al., 2015], and LSVTD [Cheng et al., 2019]. Thus, two ad-
jacent frames with different quality scores in these datasets
can be regarded as a HR-LR text image pair. Through the
aforementioned two strategies, we can construct a sufficient
super-resolution dataset, containing both synthetic and real-
world samples, for text images to train the proposed TFSR.

To make TFSR focus on text areas, we further propose a
mask-adaptive super-resolution (MASR) loss Lmasr to super-
vise this module. Specifically, we first perform text segmen-
tation on an HR text image to obtain the corresponding text
mask M, where a pre-trained text segmentation model [Xu
et al., 2021] is employed. Then, the text mask M is utilized
to distinguish text and non-text areas in the text image and
further adaptively adjust the loss weight of them. The MASR
loss can be computed by:

Lmasr = tanh(MSE(VH ,VS)) · (2)
MSE(VH ⊙ (1−M),VS ⊙ (1−M))

+ϵ · MSE(VH ⊙M,VS ⊙M)

where VH and VS represent the HR and SR text images, re-
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spectively, ⊙ denotes the pixel-wise product, and ϵ is a hyper-
parameter. Based on the proposed MASR loss, TFSR module
could pay more attention to text areas as the super-resolution
quality of the whole text image improves.

3.2 Text Detection, Recognition and Tracking
The output of the TFSR module, i.e. high-quality video
frames, are then fed into the pipeline of subsequent text de-
tection, tracking and recognition.
Detection. Taking the super-resolved frame Vt

S as input,
the detection head [Wang et al., 2021] Det(·) is utilized to
predict the location of each text area:

Bt = Det(Vt
S) (3)

where Bt = {bt1, bt2, ..., btN} denotes all the bounding boxes
predicted by detector Det(·) in the t-th frame; btn and N de-
note the n-th bounding box and the total number of detected
text boxes, respectively.
Recognition. According to Bt, we can obtain N RoIs
cropped from VS . Through transformation, these RoIs can
be resized into fix-sized text image patches, denoted as Pt =
{pt1, pt2, ..., ptN}, which are further sent to the text recogni-
tion model. For text recognition, we employ the vision model
proposed in [Fang et al., 2021], which consists of a visual
feature extractor VM(·) and a prediction head. VM(·) is used
to extract the visual features of text image patches Ft

C :

Ft
C = VM(Pt) (4)

Then, the extracted features Ft
C go through the predic-

tion head to obtain the coarse text prediction Yt =
{yt1, yt2, ..., ytN}:

Yt = Softmax(WFt
C + b) (5)

Subsequently, the coarse text prediction Yt will be sent to
a pre-trained language model and the proposed TWSR mod-
ule in a parallel manner. The language model conducts intra-
text spell correction and generates intra-text semantic features
Ft

L; and the TWSR module will be detailed in Section 3.3.
Tracking. As shown in Fig. 2, three types of features are
used for text tracking: the visual features Ft

V , the contex-
tual features Ft

C from the vision model VM(·), and the em-
bedding of the coordinates of texts Ft

B . The visual features
Ft

V are extracted by a CNN-based backbone for text track-
ing. For the purpose of introducing more text-related features
to improve the performance of tracking, we fuse the extracted
contextual features Ft

C from VM(·). In addition, the position
information of a text is also crucial for text tracking since the
positional offset of the text in adjacent frames is tiny. There-
fore, we feed the predicted coordinates of texts Bt in the text
detector to an embedding layer to obtain the corresponding
features Ft

B . Finally, we concatenate the three types of fea-
tures and employ a 1×1 convolution layer to fuse them, which
can be represented as follows:

Ft
M = Conv1×1(Concat[Ft

B : Ft
V : Ft

C ]) (6)

where Ft
M denotes the fused features for tracking. In the in-

ference stage, we employ the KM [Kuhn, 1955] algorithm to

Em
bedding

Local Sem
antic  

R
easoning Layer

G
lobal Sem

antic
R

easoning Layer

‘lam
burger’

‘Steak’

D
ecoding

‘ham
burger’

Flexible GT 

Figure 3: Details of the proposed TWSR module. This module
mainly consists of an embedding layer, a local semantic reasoning
layer, and a global semantic reasoning layer.

match the texts between two adjacent frames, and thus creat-
ing a tracking trajectory for each text:

T t = KM(Ft
M ,Ft−1

M ) (7)

where T t denotes the set of all matched texts from the t−1th
frame and the detected new texts in the current frame.

To further increase the effectiveness of Ft
M , we train the

learnable fusion parameters in Eq. 6 by maximizing the sim-
ilarity of the fused tracking features FM between temporal-
adjacent texts (positive pairs) that belong to the same tracking
trajectory, while minimizing the similarity of the fused track-
ing features FM between text pairs that do not exist in the
same trajectory (negative pairs). The contrastive loss is capa-
ble of unifying both the positive and the negative objectives
above: Let T t = {τ1, ..., τL} where τl denotes the l-th text,
the tracking loss of the trajectory can be computed by:

Ltrk = − 1

L

∑
τl∈T t

log
esim(Ft

M (τl),F
t
M (τl−1))/σ∑

τk /∈T t esim(Ft
M (τl),Ft

M (τk))/σ
(8)

where τk /∈ T t denotes a text in the other trajectories and
σ is a temperature parameter. In the beginning of the given
trajectory (t = 1) , the positive pair is set to be τl and itself.

3.3 Text-Wise Semantic Reasoning
The prediction results outputted by the text recognizer may
be wrongly spelled due to occlusion or other reasons. How-
ever, based on our observation that texts within a video frame
usually exhibit similar semantics, which suggests that the
wrongly predicted texts may be corrected via semantic rea-
soning. To this end, we propose a text-wise semantic rea-
soning (TWSR) module to model inter-text semantic relation-
ships among the texts within a frame.

Let ytn denote the n-th text prediction in Yt, and ytj denote
an arbitrary text in Yt other than ytn, i.e., 1 ≤ j ̸= n ≤ N .
As shown in Fig. 3, the TWSR module takes a pair of texts
(ytn, y

t
j) as input, where the support text ytj may have seman-

tic relationships with the coarsely predicted text ytn. Subse-
quently, TWSR processes the input text pair through an em-
bedding layer, a local semantic reasoning layer, and a global
semantic reasoning layer. After going through these layers,
the inter-text semantic features Ft

S between ytn and ytj can be
extracted. Finally, TWSR comes up with a single text output
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stn. We expect the semantic reasoning result stn to be the cor-
rection of ytn, if ytn is wrongly predicted, or to remain ytn, if
ytn and ytj are irrelevant in semantics.

To achieve this goal, we construct a text-to-concept (T2C)
taxonomy, which can be used for training TWSR to success-
fully model the inter-text semantic relationships. The data of
T2C are collected from WordNet, Wikipedia, and Amazon
Reviews2, including 20 concepts (food, feeling, animal, lo-
cation, art, movie, traffic, weather, act, event, brand, sport,
celebrity, book, clothing, health, science, politic, travel and
date), which comprises more than 21K words. Each word
in T2C belongs to a specific concept (e.g. ‘apple–food’ and
‘dog–animal’).

Based on the collected T2C taxonomy, we propose a tai-
lored pre-training strategy to provide flexible supervision for
TWSR. Let cq denote the q-th word in the concept set Ccpt,
which contains all words with the same semantic concept
‘cpt’. The insight of our strategy is to set a flexible ground
truth x̂ that alters conditionally as follows:

x̂ =

{
x, minq(E(x, cq)) ≥ ϕ
cargminq(E(x,cq)), otherwise (9)

where E(·) denotes the character-wise edit-distance and ϕ is
a threshold. In the training stage, x is randomly selected
from the T2C taxonomy during training and the semantic sup-
port text of x, namely cq , should be randomly selected from
Ccpt. Random noises will be manually added to the input text
x to mimic the wrongly spelled situations, where the edit-
distance between the noised text and the original text is con-
strained to be smaller than the threshold ϕ. In this case, if
the shortest edit-distance minq(E(x, cq)) is smaller than ϕ,
cargminq(E(x,cq)) is taken as the ground truth. Otherwise, if
minq(E(x, cq)) is too large, indicating that x does not belong
to the concept ‘cpt’, we use x itself as the ground truth to en-
courage the TWSR to turn off the reasoning mode and main-
tain the original coarse predicted texts from the vision model.
During the pre-training stage, the cross-entropy loss Lsec is
adopted to supervise this module.

In inference, the target text ytn and each support text ytj are
input into the TWSR module to obtain the inter-text semantic
features Ft

S . Following the fashion of ABInet [Fang et al.,
2021], a gated fusion operation is adopted to fuse three types
of features: visual contextual features Ft

C , intra-text seman-
tic features Ft

L, and inter-text semantic features Ft
S . Finally,

the fused visual, linguistic and semantic features Ft
VLS can

be produced and further used for final prediction, which is
supervised by the cross-entropy loss Lrec.

3.4 Overall Objective
Except for the aforementioned pre-training losses Lmasr for
TFSR and Lsec for TWSR, the rest modules of VLSpotter are
jointly trained as follows:

Loverall = Ltrk + λ1Ldet + λ2Lrec (10)

where λ1 and λ2 are hyper-parameters for trade-off.

2https://s3.amazonaws.com/amazon-reviews-pds/readme.html

Methods End-to-End Video Text Spotting (%)

IDF1 MOTA MOTP M-M M-L FPS
ICDAR2015 Video

USTB-TV 21.3 13.2 66.6 6.6 67.7 -
StradVision-1 28.2 15.6 68.5 9.5 60.7 -
USTB-TV(2) 32.0 9.0 70.2 8.9 59.5 -
FREE 61.9 53.0 74.9 45.5 35.9 8.8
TransVTSpotter 61.5 53.2 74.9 - - 9.0
CoText 72.0 59.0 74.5 48.6 26.4 41.0
VLSpotter 72.8 60.1 76.4 50.0 26.1 15.9

BOVText
EAST+CRNN 6.8 -79.3 76.3 - - -
PSENet+CRNN 31.3 -17.0 79.2 - - -
DB+CRNN 38.3 -13.2 81.3 - - -
TransVTSpotter 43.6 -1.4 82.0 - - 9.0
CoText 48.3 11.4 80.3 32.8 62.1 36.2
VLSpotter 48.8 10.5 82.9 34.9 59.9 14.0

Table 1: Performance comparison with state-of-the-art methods for
end-to-end text spotting. The proposed VLSpotter outperforms the
compared methods in most metrics.

4 Experiments
In this section, we first introduce the adopted VTS datasets
and the implementation details of the proposed VLSpotter.
Subsequently, we compare VLSpotter with the state-of-the-
art methods on each VTS benchmark for end-to-end video
text spotting, video text tracking and detection. Finally, abla-
tion studies are conducted to evaluate the effectiveness of the
proposed modules in VLSpotter.

4.1 Datasets
We conduct experiments on three commonly-used datasets:
ICDAR2013 Video [Karatzas et al., 2013], ICDAR2015
Video [Karatzas et al., 2015], and BOVText [Wu et al., 2021].

• ICDAR2013 Video was published in the ICDAR Ro-
bust Reading Competition. It contains 28 wild videos
captured by a moving camera, where 13 videos are used
for training and 15 videos for testing. The total num-
ber of frames is 15,277, containing 93,934 texts. This
dataset only contains English texts.

• ICDAR2015 Video is the upgrade revision of the IC-
DAR2013 Video dataset, and the number of videos ex-
pands to 49, where 25 videos for training and 24 videos
for testing. The total number of frames is 27,824,
containing 143,588 texts. Both ICDAR2013 and IC-
DAR2015 Video datasets are quite challenging due to
frequent motion blurs.

• BOVText is the largest video text spotting dataset that
includes 2,021 text videos in a variety of scenarios. This
dataset covers various scenarios, e.g., life vlog, driving,
movie, etc. It contains 1,757,598 frames with 7,292,261
texts, where 1,328,575 frames from 1,541 videos are
used for training and 429,023 frames from 480 videos
are used for testing.

4.2 Implementation Details
The proposed VLSpotter is implemented with PyTorch. All
experiments are conducted on a single RTX 3090 GPU with
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Methods Video Text Tracking (%)

IDF1 MOTA MOTP M-M M-L FPS
ICDAR2013 Video

YORO 62.5 47.3 73.7 33.1 45.3 14.3
SVRep 65.1 53.2 76.7 38.2 33.2 17.8
CoText 68.1 55.8 76.4 44.6 28.7 41.3
VLSpotter 67.8 52.9 75.0 45.8 26.4 16.0

ICDAR2015 Video
USTB-TV 25.9 7.4 70.8 7.4 66.1 -
StradVision-1 25.9 7.9 70.2 6.5 70.8 -
USTB-TV(2) 21.9 12.3 71.8 4.8 72.3 -
AJOU 36.1 16.4 72.7 14.1 62.0 -
FREE 57.9 43.2 76.7 36.6 44.4 8.8
TransVTSpotter 57.3 44.1 75.8 34.3 33.7 9.0
SVRep 66.1 49.5 73.9 44.9 27.1 13.4
CoText 68.6 51.4 73.6 49.6 23.5 41.0
VLSpotter 67.5 50.8 74.0 45.2 24.7 15.9

BOVText
EAST 28.1 -21.6 75.8 - - -
PSENet 45.9 52.1 77.5 - - -
DB 48.3 53.2 78.3 - - -
TransVTSpotter 64.7 68.2 82.1 57.3 31.4 9.0
SVRep 75.4 69.3 84.5 59.0 29.7 12.2
CoText 77.3 70.0 81.1 61.1 23.7 36.2
VLSpotter 77.4 69.8 80.5 59.9 24.7 14.0

Table 2: Performance comparison with state-of-the-art methods for
text tracking. Compared with these methods, the proposed VLSpot-
ter achieves comparable performance on the three datasets.

24GB memory. For VLSpotter, the TFSR module, the TWSR
module, and the vision model are all pre-trained in advance
for better results. The language model used in VLSpot-
ter is off-the-shelf and frozen during training. We use the
Adadelta optimizer with an initial learning rate 0.1, which
further shrinks every 200 epochs. Based on the empirical ex-
periments, we set the hyper-parameters ε, σ, ϕ, λ1, λ2 to 1,
0.5, 3, 1, 1, respectively.

4.3 Performance Comparison
Following [Wu et al., 2021], we adopt IDF1

, MOTA, MOTP,
M-Matched (M-M), and M-Lost (M-L) as the evaluation met-
rics to evaluate the performance of VLSpotter and the com-
pared methods in video text spotting and tracking. Precision,
Recall, and F-Measure are used to evaluate the performance
in video text detection. In addition, FPS is also reported to
evaluate the efficiency of the compared methods.
End-to-End Video Text Spotting. In VTS, improving the
performance of end-to-end video text spotting is the most
crucial and ultimate goal. Following the fashion of exist-
ing works, we compare VLSpotter with six existing meth-
ods (i.e., USTB-TV/USTB-TV(2) [Karatzas et al., 2015],
StardVision-1 [Karatzas et al., 2015], FREE [Cheng et al.,
2020], TransVTSpotter [Wu et al., 2021] and CoText [Wu et
al., 2022]) on the ICDAR2015 Video dataset. The detailed
experimental results are reported in Tab. 1. The proposed
VLSpotter achieves the best spotting performance in most
metrics. Compared to the most recent state-of-the-art method
CoText, the results of VLSpotter in IDF1

, MOTA, MOTP,
M-Matched, and M-Lost are boosted by 0.8%, 1.1%, 1.9%,
1.4%, and 0.3%, respectively. On the BOVText dataset, ex-
cept for the result in MOTA, the proposed VLSpotter still out-

Methods Video Text Detection (%)

Precision Recall F-Measure FPS
Epshtein et.al. 39.8 32.5 35.9 -
Zhao et.al. 46.3 47.0 46.7 -
Yin et.al. 48.6 54.7 51.6 -
Khare et.al. 57.9 55.9 51.7 -
Wang et.al. 58.3 51.7 54.5 -
Shivakumar et.al. 61.0 57.0 59.0 -
Wu et.al. 63.0 68.0 65.0 -
Yu et.al. 82.4 56.4 66.9 -
ASGD 75.5 64.1 69.3 9.6
FREE 79.7 68.4 73.6 8.8
SVRep 81.2 68.3 74.2 13.5
CoText 82.6 71.6 76.7 41.3
VLSpotter 82.3 71.8 76.0 16.0

Table 3: Performance comparison with state-of-the-art methods for
video text detection on ICDAR2013 Video. In the video text de-
tection setting, the proposed VLSpotter can achieve the best perfor-
mance in Recall.

performs the state-of-the-art method CoText by 0.5%, 2.6%,
2.1%, and 2.2% in IDF1 , MOTP, M-Matched, and M-Lost,
respectively.

To validate the effectiveness of inter-text semantic reason-
ing, we demonstrate four examples that the TWSR module
successfully corrects wrongly predicted texts in Fig. 4. The
presented examples show different scenarios related to food,
traffic, location, and brand, respectively. Through the visu-
alization, we observe that the texts in a frame indeed exist
semantic relationships among one another, which is fully ex-
plored in our method to improve the performance of text spot-
ting. For example, ‘UREO’ is corrected to ‘OREO’ with the
help of ‘FONTANEDA’ (shown in Fig. 4(d)).

Video Text Tracking. As shown in Tab. 2, we evalu-
ate the tracking performance of VLSpotter on ICDAR2013
Video, ICDAR2015 Video, and BOVText, and adopt multiple
state-of-the-art text tracking methods, i.e., USTB-TV/USTB-
TV(2) [Karatzas et al., 2015], StradVision-1 [Karatzas et
al., 2015], AJOU [Koo and Kim, 2013], FREE [Cheng et
al., 2020], TransVTSpotter [Wu et al., 2021], SVRep [Li
et al., 2021], CoText [Wu et al., 2022], YORO [Cheng et
al., 2019], EAST [Zhou et al., 2017], PSENet [Wang et al.,
2019], and DB [Liao et al., 2020] for comparison. Accord-
ing to the experimental results, VLSpotter achieves compa-
rable tracking performance with the state-of-the-art method
CoText; while on challenging BOVText dataset, VLSpotter
even outperforms CoText by 0.1% in IDF1

. Although CoText
models the long-range temporal dependency with the tailored
contrastive loss, VLSpotter can still achieve comparable per-
formance in video text tracking, which may benefit from the
high-quality frames produced by the TFSR module.

Video Text Detection. In video text detection, we evalu-
ate the performance of VLSpotter on ICDAR2013 Video.
Multiple state-of-the-art text detectors, i.e., [Epshtein et al.,
2010], [Zhao et al., 2010], [Yin et al., 2013], [Khare et al.,
2017], [Wang et al., 2018], [Shivakumara et al., 2017], [Wu
et al., 2015], [Yu et al., 2021b], ASGD [Feng et al., 2021],
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Model Video Text Spotting (%) Video Text Tracking (%) Video Text Detection (%)

IDF1 MOTA MOTP IDF1 MOTA MOTP Precision Recall F-Measure
Baseline 70.2 58.8 73.1 65.9 48.2 72.5 78.9 69.3 74.0
Baseline + TFSR 70.6 59.1 73.8 67.2 50.6 73.8 82.0 71.7 75.8
Baseline + TWSR 72.4 59.7 76.2 66.0 48.1 72.5 78.9 69.4 74.2
Baseline + TWSR + TFSR 72.8 60.1 76.4 67.5 50.8 74.0 82.3 71.8 76.0

Table 4: Ablation study of VLSpotter. The experiments of video text spotting and tracking are conducted on ICDAR2015 Video, and the
experiments of video text detection are conducted on ICDAR2013 Video.

(a) Mang_ -- Mango (b) ATLAMTIC -- ATALANTIC

(c) Entranc_ -- Entrance (d) UREO -- OREO

Figure 4: Visualization of the effectiveness of inter-text semantic
reasoning in frames that contain different semantic concepts: (a)
Food, (b) Location, (c) Traffic, and (d) Brand. Red bounding boxes
denote wrongly predicted texts, which are finally corrected through
semantic reasoning by the support texts in green bounding boxes.

FREE [Cheng et al., 2020], SVRep [Li et al., 2021] and Co-
Text [Wu et al., 2022] are used for comparison, and the ex-
perimental results are shown in Tab. 3. According to the ex-
perimental results, the proposed VLSpotter is tied with the
state-of-the-art method CoText [Wu et al., 2022]. Specifi-
cally, VLSpotter is superior in Recall, but it slightly falls be-
hind CoText in Precision and F-Measure.

4.4 Ablation Study
The proposed VLSpotter contains a pluggable super-
resolution module TFSR and a semantic reasoning module
TWSR. Therefore, it is important to investigate the effective-
ness of both modules. As shown in Tab. 4, we conduct ab-
lation experiments to measure the contributions of TFSR and
TWSR. Unsurprisingly, if both of them are unequipped, the
performance of VLSpotter will decrease by nearly 2% in all
metrics. On one hand, when TWSR is equipped to the base-
line model, the performance on recognition-related tasks can
be improved clearly. On the other hand, the performance can
be boosted in a comprehensive manner by equipping TFSR
because it generally increases the visual quality of the input
frame and suppresses motion blurs.

4.5 Temporal Semantic Relationships
Intuitively, it is likely that there also exist inter-text semantic
relationships between texts from temporal-adjacent frames,

Temporal Info. End-to-End Video Text Spotting (%)

IDF1
MOTA MOTP FPS

% 72.8 60.1 76.4 15.9
! 73.0 60.5 76.6 10.8

Table 5: End-to-end text spotting performance of VLSpotter via
semantic reasoning with or without texts from temporal-adjacent
frames. The experiments are conducted on ICDAR 2015 Video.

considering that scenes of adjacent frames are usually the
same ones. Tab. 5 shows interesting results of establish-
ing inter-text semantic reasoning among temporal-adjacent
frames. In this case, by sacrificing inference speed, the per-
formance of text spotting can be further improved, i.e., IDF1

,
MOTA and MOTP boosted by 0.2%, 0.4% and 0.2%, respec-
tively. A possible reason for the performance improvement
is that, when texts of temporal-adjacent frames are taken into
account to perform semantic reasoning, some occluded texts
can be correctly predicted since they may not be occluded in
the adjacent frames.

5 Conclusion

This paper proposes an accurate video text spotter, VLSpot-
ter, which leverages the semantic relationships among texts
within a video frame to correct those wrongly spelled texts
from the vision model of the text recognizer. To model the
inter-text semantic relationships, we propose a text-wise se-
mantic reasoning module to perform semantic reasoning for
mitigating wrongly spelled text predictions. Moreover, we
improve VTS performance by proposing a pluggable text-
focused super-resolution module along with a mask-adaptive
super-resolution loss that significantly alleviates motion blurs
and enhances video quality. The experimental results demon-
strate that VLSpotter outperforms the state-of-the-art meth-
ods by a clear margin in end-to-end video text spotting.
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