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Abstract
Using a regular language as a pattern for string
matching is nowadays a common—and sometimes
unsafe—operation, provided as a built-in feature by
most programming languages. A proper constraint
solver over string variables should support most of
the operations over regular expressions and related
constructs. However, state-of-the-art string solvers
natively support only the membership relation of a
string variable to a regular language. Here we take
a step forward by defining a specialised propaga-
tor for the match operation, returning the leftmost
position where a pattern can match a given string.
Empirical evidences show the effectiveness of our
approach, implemented within the constraint pro-
gramming framework, and tested against state-of-
the-art string solvers.

1 Introduction
Regular expressions are a powerful and useful way of pro-
cessing strings. Nowadays they are commonly used in lan-
guages such as Python, Java and JavaScript for data parsing
and validation. The widespread use of regular expressions ar-
guably coincides with the increasing development of web ap-
plications heavily using string operations both explicitly (i.e.,
by directly invoking string functions) and implicitly (i.e., by
silently converting objects of different type into strings). Un-
surprisingly, this led to the development of a number of both
static and dynamic string analysis frameworks especially tar-
geted to cybersecurity issues [Bultan et al., 2017].

In this paper we focus on the dynamic side of string anal-
ysis, and more precisely on string constraint solving [Ama-
dini, 2021], to show how the Constraint Programming (CP)
paradigm [Rossi et al., 2006] can be used to tackle string
constraints where a pattern —be it a regular expression, an
automaton or a grammar— denoting a regular language is
matched against a string variable. The key practical moti-
vation of this work is the constraint-based reasoning about
string manipulating programs, e.g., JavaScript web applica-
tions, where match constructs, and related operations like
string replacement, are heavily used.

CP is a well-established framework for general-purpose
constraint solving and optimization. Handling constraints

over regular expressions is not new to CP, having been in-
troduced in the early 2000’s by Pesant [2004] for fixed se-
quences of integer variables, and more recently retrofitted by
Amadini et al. [2018]. However, these works refer to the
constraint regular(x,R) which only considers the member-
ship of x to the regular language L(R) denoted by the finite-
state automaton R, and not what is, nowadays, probably the
most common operation: using R as a pattern to be matched
against x. Instead, in this paper we will show how to handle
in CP the constraint match(x, ρ) returning the position in x
of the leftmost possible match of a string of L(ρ). To our
knowledge, at present no CP propagator exists for match.

To represent the finite domain of bounded-length string
variables, we consider the dashed string abstraction as done
in [Amadini et al., 2018]. Given a finite alphabet Σ and
a maximum string length λ, dashed strings (over-)represent
subsets of {w ∈ Σ∗ | |w| ≤ λ} through the concatenation of
distinct sets of characters called blocks. Using blocks of char-
acters prevents the eager unfolding of the domain of a string
variable into O(λ) integer variables, which is definitely a big
plus when λ is large.

We compared the performance of our approach against dif-
ferent state-of-the-art string solving technologies. Empirical
results underline the importance of implementing native sup-
port for the match constraint.

2 Preliminaries
In this section we give the necessary background notions
about strings, regular languages, constraint programming and
(dashed) string solving.

2.1 Strings and Regular Languages
Let Σ be a finite, non-empty alphabet and Σ∗ the set of all
its strings. A string w ∈ Σ∗ is a finite sequence of |w| ≥ 0
characters of Σ, where |w| is the length ofw (the empty string
is denoted with ε). We focus on bounded-length strings: fixed
λ ∈ N, we only consider strings w ∈ Σ∗ such that |w| ≤ λ.

The concatenation of v, w ∈ Σ∗ is denoted by v ·w (or sim-
ply by vw) while wn is the iterated concatenation: w0 = ε
and wn = wwn−1 for n > 0. Similarly, given V,W ⊆ Σ∗,
we denote by V · W = {vw | v ∈ V,w ∈ W} (or sim-
ply by VW ) their concatenation and with Wn the iterated
concatenation (W 0 = {ε}). We adopt a 1-based array no-
tation: w[i] is the i-th symbol of w, with 1 ≤ i ≤ |w|.
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We define l..u = {x ∈ Z | l ≤ x ≤ u} and denote with
w[i..j] the substring of w from character i to character j, i.e.,
w[i]w[i+ 1] · · ·w[j] (if i > j, then w[i..j] = ε).

A subset L ⊆ Σ∗ is called a language. A regular language
can be defined in several equivalent ways. For example, as
the language L(R) accepted by a finite-state automaton R,
the language L(r) denoted by regular expression r, or the
language L(Γ) generated by regular grammar Γ.1 We call
regular pattern (shortly, pattern) a formalism ρ describing a
regular language L(ρ).

A deterministic finite-state automaton (DFA) is a tuple
R = (Σ, Q, δ, q0, F ) where: Σ is the alphabet, Q the fi-
nite set of states, δ : Q × Σ → Q the transition function,
q0 ∈ Q the initial state and F ⊆ Q the accepting or final
states. A computation for w ∈ Σ∗ is a sequence of transi-
tions s0 → · · · → sn where n = |w| and s0, . . . , sn ∈ Q
such that si = δ(si−1, w[i]) for i = 1, . . . , n. We denote
with δ̂ : Q × Σ∗ → Q the extension of δ to strings such that
δ̂(q, w) = q′ if and only if q → · · · → q′ is a computation for
w. A string w ∈ Σ∗ is accepted by R if δ̂(q0, w) ∈ F . The
language of R is L(R) = {w ∈ Σ∗ | δ̂(q0, w) ∈ F}.

If δ is a total function, the DFA is complete. If δ is partial,
we can get a complete DFA by extending Q to Q′ = Q ∪
{q⊥}, and δ to δ ∪ {(q, c, q⊥) | q ∈ Q′, c ∈ Σ, δ(q, c) = ⊥}.
The complement automaton R having L(R) = Σ∗ \ L(R) is
easily computed from a complete DFA R by complementing
its final states. If there does not exist a DFA R′ with less than
|Q| states such that L(R′) = L(R), thenR is minimal. Given
a regular pattern ρ, we denote by DFA(ρ) the minimal and
complete DFA such that L(ρ) = L(DFA(ρ)).

If R = (Q,Σ, δ, q0, F ) is complete, a state q ∈ F is said
universally accepting if all computations from q bring to a
state q′ ∈ F . Dually, q ∈ Q \ F is universally rejecting
if all computations from q bring to a q′ ∈ Q \ F . If R is
minimal, it has at most one universally accepting state, and
at most one universally rejecting state (if they have two or
more universally accepting/rejecting states then those states
can be merged, so R would not be minimal). We denote with
minlen(R) the minimum length of a string accepted by R.

A well-known way to identify regular languages is using
regular expressions. We define inductively the set RE of
regular expressions, and the language L(r) denoted by each
r ∈ RE , as: (i) ∅ ∈ RE , denoting L(∅) = ∅; (ii) if
c ∈ Σ ∪ {ε}, then c ∈ RE denoting L(c) = {c}; (iii) if
r, r′ ∈ RE , then r · r′ ∈ RE denoting L(r · r′) = L(r)L(r′),
and r|r′ ∈ RE denoting L(r|r′) = L(r) ∪ L(r′); (iv) if
r ∈ RE then r∗ ∈ RE denoting L(r∗) = L(r)∗.

2.2 Constraint Programming and String Solving
Constraint programming [Rossi et al., 2006] solves Con-
straint Satisfaction Problems (CSPs), defined by a triple
(X ,D, C) where: X = {x1, . . . , xn} is a finite set of vari-
ables, D = {D(x1), . . . ,D(xn)} is a set of domains, where
each D(xi) is the set of the values that xi can take, and C is a
set of constraints over the variables of X defining the feasible

1We assume that these formalism are familiar to the reader.

assignments. The goal is to find an assignment of domain val-
ues to corresponding variables satisfying all of the constraints
in C. To do so, CP heavily relies on propagators. A propa-
gator for a constraint C defined over variables x1, . . . , xk is
an algorithm that aims to prune the most inconsistent values
fromD(x1), . . . ,D(xk) according to the semantics ofC. The
level of pruning is a compromise between efficacy (how many
values we prune) and efficiency. Most of the propagators are
not complete: a fixpoint is reached even if the domains could
in principle be further pruned.

Most CSPs are defined over finite domains, i.e., D only
contains finite sets, and X only contains integer variables. In
this work, we also consider constraints over bounded-length
strings. Fixing a finite alphabet Σ and an upper bound λ ∈ N,
a CSP with bounded-length strings contains k > 0 string vari-
ables {x1, . . . , xk} ⊆ X such that D(xi) ⊆ Σ∗ and |xi| ≤ λ.
The set C may contain well-known string constraints, such
as string length, (dis-)equality, concatenation, substring se-
lection, and finding/replacing. We refer to constraint solving
involving string variables as string (constraint) solving.

Different approaches to string constraint solving have
been proposed, based on: automata [Li and Ghosh, 2013;
Tateishi et al., 2013], word equations [Berzish et al., 2017;
Barbosa et al., 2022], unfolding (using either bit-vector
solvers [Kieżun et al., 2012; Saxena et al., 2010] or CP [Scott
et al., 2017]), and dashed strings [Amadini et al., 2020]. In
this work we focus on the latter approach, which can be con-
sidered the state-of-the-art for CP string solving.

Dashed strings are special cases of regular expressions, de-
fined by k > 0 blocks Sl1,u1

1 Sl2,u2

2 · · ·Slk,uk

k , where Si ⊆ Σ

and 0 ≤ li ≤ ui ≤ λ for i = 1, . . . , k and Σk
i=1li ≤ λ. For

each block Sl,u, we call S its base and l, u its lower/upper
bound, respectively. We denote with maxlen(X) the sum of
the upper bounds of each block ofX , withX[i] the i-th block
of a dashed string X , and with |X| the number of blocks of
X . We consider only normalised dashed strings, where the
adjacent blocks have distinct bases and the null block ∅0,0
occurs only to denote the empty string.

Let γ(Sl,u) = {x ∈ S∗ | l ≤ |x| ≤ u} be the lan-
guage denoted by block Sl,u.2 We extend γ to dashed strings:
γ(Sl1,u1

1 · · ·Slk,uk

k ) = (γ(Sl1,u1

1 ) · · · γ(Slk,uk

k )) ∩ S, where
the intersection with S = {w ∈ Σ∗ | |w| ≤ λ} excludes the
strings with length greater than λ. Normalisation entails that
each string w ∈ S has a unique dashed string X such that
w = γ(X).

Given dashed strings X and Y we define the relation
X v Y ⇔ γ(X) ⊆ γ(Y ) denoting a relation “is more pre-
cise than” between dashed strings. Unfortunately, the set of
dashed strings does not form a lattice according to v [Ama-
dini et al., 2020]. For example, there is no single “best”
dashed string denoting {ab, ba} ⊆ Σ∗: three maximally
accurate but incomparable dashed strings that represent this
set are {a, b}2,2, {a}0,1{b}1,1{a}0,1 and {b}0,1{a}1,1{b}0,1,
each represents a different over approximation. This means
that workarounds have to be used to preserve the soundness

2γ(Sl,u) is the set of strings having length in l..u and characters
in S. We use the notation γ(X) instead of L(X) to be consistent
with the original dashed string definition [Amadini et al., 2020].
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(0,k)

(2,0)
(1,1)

(2,1) (2,2) (2,3) (3,0)
(2,4)

(4,0)
(3,1)

(4,1) (4,2) (4,3)
(5,0)

B, b o o o o m ! ! !

Figure 1: Graphical representation of the dashed string
{B,b}1,1{o}2,4{m}1,1{!}0,3 and its positions.

of propagation.
From a graphical point of view, we can see each block

Sli,ui

i as a solid segment of length li followed by a dashed
segment of length ui − li. The solid segment indicates
that exactly li characters of Si must occur in each string of
γ(Sl1,u1

1 · · ·Slk,uk

k ), and defines the mandatory part Sli,li .
The dashed segment indicates that n characters of Si, with
0 ≤ n ≤ ui − li, may occur and defines the optional
part S0,ui−li

i . Consider, e.g., the graphical representation of
dashed string X = {B,b}1,1{o}2,4{m}1,1{!}0,3 in Fig. 1.
Each string of γ(X) starts with B or b, followed by 2 to 4 os,
one m, then 0 to 3 !s.

A convenient way to refer a dashed string is through its
positions. Given X = Sl1,u1

1 · · ·Slk,uk

k , we can define 1 +∑k
i=1 ui positions (i, j) where index i ∈ {1, . . . , k} refers to

block X[i] and offset j indicates how many characters from
the beginning of X[i] we are considering. To better represent
the beginning (or the end) of a block, offsets are 0-based. In
particular, (i, 0) refers to the beginning of block i, and can
be equivalently identified with (i − 1, ui−1), i.e., the end of
block i − 1 (see Fig. 1). For convenience, we also consider
(k + 1, 0) to be equivalent to the position (k, uk), and (0, k)
for any k to be equivalent to position (1, 0), the beginning of
the dashed string.

Given X = Sl1,u1

1 · · ·Slk,uk

k and positions (i, j), (i′, j′),
we denote with X[(i, j), (i′, j′)] the region of X be-
tween (i, j) and (i′, j′), i.e., X[(i, j), (i′, j′)] is equal to:
∅0,0 if (i, j) � (i′, j′)

S
max (0,li−j),j′−j
i else if i = i′

S
max (0,li−j),ui−j
i S

li+1,ui+1

i+1 · · ·Sli′−1,ui′−1

i′−1 S
min (li′ ,j

′),j′

i′

otherwise
where � is the lexicographic ordering between pairs.

For example, with X as in Fig. 1, X[(2, 1), (4, 2)] =
{o}1,3{m}1,1{!}0,2. For brevity, we indicate with X[P, ...]
the “suffix region” X[P, (k, uk)] between a position P and
the last position (k, uk) of X , and with X[..., P ] the “prefix
region” between (0, 0) and P . For example, with X as in
Fig. 1 and P = (2, 3) we have X[..., P ] = {B,b}1,1{o}2,3
and X[P, ...] = {o}0,1{m}1,1{!}0,3.

3 Matching Regular Expressions
In this section we show how we propagate the match con-
straint. To do so, we need to introduce some notions and
properties exploited by our propagator.

Definition 1. Let Σ be a finite alphabet and ρ a pat-
tern for Σ. For each w ∈ Σ∗ we define the set
MI(w, ρ) ⊆ 0..|w| of matching indexes of ρ in w as:


{0} if 6 ∃ i, j. w[i..j] ∈ L(ρ)

{1} else if w = ε and ε ∈ L(ρ)

{i ∈ 1..|w| | ∃j. w[i..j] ∈ L(ρ)} otherwise

In practice, MI(w, ρ) is the set of all the positions in w
where ρ matches a substring w′ of w, i.e., w′ ∈ L(ρ). For ex-
ample, if Σ = {a, b, c}, ρ = ab(a|c)∗ and w = cabbcab
then MI(w, ρ) = {2, 6}. If instead w = caacb, then
MI(w, ρ) = {0} because no match occurs. Note that with
this definition if ε ∈ L(ρ) then for each w ∈ Σ∗ \ {ε} we
haveMI(w, ρ) = 1..|w| because w[i..i− 1] = ε ∈ L(ρ) for
i = 1, . . . , |w|. In this way, we capture the fact that ε occurs
at each position of a non-empty string, being the empty string
substring of every string.

Let ρ be a regular pattern. The (full) wrapping of ρ is
the minimal pattern ?ρ? denoting the language Σ∗L(ρ)Σ∗.
We also define the left-wrapping ?r, denoting Σ∗L(ρ),
and the right-wrapping r?, denoting L(ρ)Σ∗. For exam-
ple, if Σ = {a, b, c} and ρ = ab(a|c)∗ its wrapping
is ?ρ? = (a|b|c)∗ab(a|b|c)∗, the left-wrapping is ?ρ =
(a|b|c)∗ab(a|c)∗ and the right-wrapping is ρ? = ab(a|b|c)∗.

Lemma 1. Let ρ be a regular pattern with L(ρ) 6= ∅, R =

DFA(ρ) and R̂ = DFA(?ρ?). The following properties hold:

(i) R̂ has no universally rejecting states

(ii) R̂ has exactly one universally accepting state

Proof. (i): Suppose R̂ has a universally rejecting state q⊥.
R̂ is minimal, so there is a R̂-computation q0 → · · · → q⊥
for a certain w0 ∈ Σ∗. Hence, for each w ∈ Σ∗ we would
have w0w 6∈ L(R̂). In particular, if w ∈ L(R) we would
have w0w 6∈ L(R̂) = L(?R?) ⊇ L(?R) which is impossible
being w0w ∈ L(?R) = Σ∗L(R).

(ii): Because L(ρ) 6= ∅, there is at least a final state. If
R̂ has no universally accepting states, there exist two states
qi ∈ F , qj 6∈ F and a character a ∈ Σ such that δ(qi, a) = qj .
So there is aw ∈ L(R̂) such thatwa 6∈ L(R̂) which is impos-
sible being L(R̂) = Σ∗L(R)Σ∗ closed under concatenation.
So, R̂ has at least a universally accepted state. Because it is
minimal, it must have at most one universally accepting state.
So, R̂ has exactly one universally accepting state.

Lemma 2. Let ρ be a regular pattern with ε 6∈ L(ρ) and
R = DFA(?ρ?) = (Σ, Q, δ, q0, F ). For each w ∈ Σ∗, if
δ̂(q0, w) = q0 then w 6∈ L(ρ).

Proof. Let w ∈ Σ∗ such that δ̂(q0, w) = q0 and suppose w ∈
L(ρ). Because L(ρ) ⊆ L(?ρ?), then w ∈ L(?ρ?) = L(R)
so it must be q0 ∈ F and thus ε ∈ L(?ρ?). Because by
hypothesis ε 6∈ L(ρ), it must be ε ∈ L(?ρ?) \ L(ρ) which is
impossible.

3.1 Propagating match

Let us now explain how we propagate i = match(x, ρ),
which semantics is i = min(MI(x, ρ)). We represent the
domain of x with a dashed string. However, this propagator
also works whenD(x) is a fixed sequence of integer variables
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as in [Pesant, 2004; Scott et al., 2017]. In fact, the sequence
x1 · · ·xn whereD(xi) ⊆ Σ (xi = j iff x[i] is the j-th symbol
of Σ) corresponds to dashed string D(x1)1,1 · · · D(xn)1,1.

It is also important to note that, because we assume ε oc-
curring at each position of a string, we have ε ∈ L(ρ) ⇒
match(x, ρ) = 1 for any string variable x. Hence, before
propagating match we should check if ε ∈ L(ρ). If so, we
can simply rewrite i = match(x, ρ) into i = 1. Because
we focus on the more interesting cases, in the following we
consider only patterns ρ such that ε 6∈ L(ρ).

A specialized match propagator is not strictly necessary,
e.g., we can impose 0 ≤ i ≤ |x| and rely on the regular
propagator to rewrite i = match(x, ρ) into:
¬regular(x,DFA(?ρ?)) if i = 0

¬regular(x[1..i− 1],DFA(?ρ?))

∧ regular(x[i..|x|],DFA(ρ?))

∧ ∀j ∈ 1..i− 1 : ¬regular(x[j..|x|],DFA(ρ?)) if i 6= 0
(1)

This rewriting, especially when i is not fixed, is inefficient,
as it involves a universal quantification over 1..i−1 and many
reifications.1 This implies a rather weak propagation. Note
that ¬regular(x[1..i − 1],DFA(?ρ?)) is redundant, but it en-
ables a stronger propagation. The universal quantification is
instead necessary. Imagine, e.g., ρ = aa and x = baaa.
Without ∀j ∈ 1..i − 1 : ¬regular(x[j..|x|],DFA(ρ?)), the
solution (x = baaa, i = 3) would be sound: x[1..2] =
ba 6∈ L(?aa?) and x[3..4] = aa ∈ L(aa?). But it must
be match(baaa, aa) = 2.

PROPMATCH
Let us now describe with pseudo-code our propagator. The
function PROPMATCH described by Algorithm 1 propagates
i = match(x, ρ). It is called after the constraint is posted
and anytime the domain of x or i gets updated. It takes as
input the variables x and i, the automata R = DFA(?ρ?) and
S = DFA(ρ?), and the minimal length r = minlen(ρ) of a
word of L(ρ), computed with a breadth-first search over the
states of DFA(ρ). It returns a pair (X, I) of possibly refined
domains for x and i, i.e., γ(X) ⊆ D(x) and I ⊆ D(i).

At line 2 we initializeX and I with the domains of x and i,
respectively. At line 3 we possibly refine the upper bound of
I , which cannot be bigger than the length of the longest string
of γ(X) minus the length of the shortest string accepted by
ρ plus one (we recall that, in our notation, the i-th leftmost
character of a string has index i). The function CHECK (A)
throws a failure if A = ∅, otherwise A is returned. The ’if’
statement at line 4 handles a particular case: if i is fixed and
its value is at most 1, then we can safely rewrite match into a
single regular constraint.

The while loop starting at line 12 calls CHECKBLOCK
(explained below) on the blocks of X to get a pair (Qi, j),
whereQi is the set of states reachable after consuming blocks
X[1] · · ·X[i], and j is the offset within X[i] such that if
Qi = {q0} then γ(X[..., (i, j)]) ∩ L(ρ) = ∅. Indeed, if

1The reified version of regular is b ⇔ regular(x,R) where b is
a Boolean variable. If b = false , this is equivalent to regular(x,R),
where R is the complement of R.

Algorithm 1 PROPMATCH function.
1: function PROPMATCH(x, i, R = (Σ, Q, δ, q0, {qF }), S, r)
2: X ← D(x), I ← D(i)
3: I ← I ∩ CHECK (0..maxlen(X)− r + 1)
4: if I = {k} ∧ k ≤ 1 then . i = 0 ∨ i = 1
5: if k = 0 then
6: REWRITE(¬regular(x,R)) . x 6∈ L(R)
7: else
8: REWRITE(regular(x, S)) . x ∈ L(S)

9: return X, I
10: i← h← k ← 0, n← |X|
11: Q0 ← {q0}
12: while i < n ∧ qF 6∈ Qi do
13: i← i+ 1
14: (Qi, j)← CHECKBLOCK(X[i], Qi−1, R)
15: if Qi = {q0} then
16: (h, k)← (i, j)

17: if qF 6∈ Qi then . No match
18: I ← CHECK (I ∩ {0})
19: return X , I
20: if Qi = {qF } then . Surely a match
21: I ← CHECK (I ∩ 1..max(I))
22: if i < n then
23: I ← CHECK

Ä
I ∩ 1..

∑i
j=1 uj − r + 1

ä
24: `←

∑h−1
j=1 lj + k + 1

25: if 0 ∈ I then
26: return X , {0} ∪ (I ∩ `..max(I))

27: if ` < min(I) then
28: h← 1, k ← min(I)− 1 . Update (h, k)
29: while h ≤ n ∧ k ≥ uh do
30: (h, k)← (h+ 1, k − uh)

31: X ′ ← PROPAGATE (¬regular(X[..., (h, k)], R))
32: if |I| > 1 then
33: X ′′ ← PROPAGATE (regular(X[(h, k), ...], R))

34: else
35: I ← CHECK (I ∩ `..max(I))
36: X ′ ← X[..., (h, k)], X ′′ ← X[(h, k), ...]

37: if |I| = 1 then
38: X ′′ ← PROPAGATE (regular(X[(h, k), ...], S))

39: X ← NORMALIZE(X ′ ·X ′′)
40: return X , I ∩ CHECK (1..maxlen(X)− r + 1)

Qi = {q0} and (Qi, j) is returned by CHECKBLOCK, then
δ̂(q0, w) = q0 for each w ∈ γ(X[..., (i, j)]). By Lemma 2,
this means that no w ∈ γ(X[..., (i, j)]) can be in L(ρ). In
other terms, if we feedR with any string w ∈ γ(X[..., (i, j)])
we always go back to the initial state. Position (h, k) is meant
to be the leftmost position where ρ can match X , as anytime
we find thatQi = {q0} at line 16 we update (h, k) with (i, j).

We exit the while loop if all theX-blocks are consumed, or
the unique and universally accepting state qF (see Lemma 1)
is reached. If qF is never reached, it must be match(x, ρ) = 0
(line 17). If instead Qi = {qF }, then surely match(x, ρ) ≥
1 (line 20). In this case, we may also refine the upper
bound of I because we know that w ∈ L(ρ) for each w ∈
γ(X[..., (i, ui)]), hence the match cannot happen after posi-
tion

∑i
j=1 uj− r+1 (line 23). Note that if qF is not the only

reachable state we cannot refine the bounds of I: there may
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be no match.
A more general, and computationally expensive, way of re-

fining the upper bound of I would be to reverse X and R to
get X−1 = X[n] · · ·X[1] and the non-deterministic automa-
ton R−1 = (Σ, Q, {qF }, {(q′, c, q) | (q, c, q′) ∈ δ}, {q0})
having qF as initial state and q0 as the only final state. In
this way, by running the propagator in reverse, we can find
the rightmost position where ρ can match x and therefore an
upper bound for I . However, the benefits of this approach are
overshadowed by its higher computational cost, and the fact
that refining the upper bound of I is not that important as we
are seeking the smallest index inMI(x, ρ).

In line 24 from (h, k) we get the leftmost position ` =∑h−1
j=1 lj +k+1 where a match can occur. Then, if we cannot

refine X because 0 ∈ I , we may still refine I by removing all
the values in 1..` − 1 (line 26). If ` < min(I) we cannot
refine I (line 27) but we can impose that no match occurs
before min(I) by considering the prefix region X[..., (h, k)].
The while loop at line 29 computes the rightmost position
(h, k) such that |w| < min(I) for each w ∈ γ(X[..., (h, k)]).
Then, we impose that no string of γ(X[..., (h, k)]) belongs
to L(R) by applying a regular filtering algorithm returning
a possibly refined prefix X ′ (line 31). Here we deliberately
allow flexibility about which regular algorithm to use, e.g., it
may be the one defined in [Pesant, 2004], where D(x) is a
fixed-size array of integer variables, or the one by [Amadini
et al., 2018], where D(x) is a dashed string.

Similarly, at line 33 we may propagate regular over the suf-
fix X ′′ with R = DFA(?ρ?). This is sound, but only applied
when I is not fixed (otherwise we can do better, as explained
below) and ` < min(I), i.e., the lower bound of I is greater
than the position of the leftmost possible match. In this case,
it makes sense to look “to the right” of position min(I) to
basically check for inconsistencies. Indeed, this propagation
will hardly result in a refinement of X[(h, k), ...] because any
character of Σ can occur in a string of L(R), which implies a
likely weak propagation at the expense of a higher computa-
tional cost. This is why if ` ≥ min(I) we do not apply this
reasoning: we already know that ρ can match x at position
`. In this case we possibly refine I (line 35) and we only use
(h, k) as a pivot to split X into X ′ and X ′′ (line 36).

At line 38, we possibly perform a stronger suffix propa-
gation by applying regular on L(S) = L(ρ?). But this is
only sound when |I| = 1, i.e., i is fixed to a certain value. If
instead |I| > 1, we cannot know at which position in I the
match should happen, and therefore we cannot invoke regular
on S. For example, if X = {a, b}0,5, ρ = a and I = 3..5
then the leftmost position for a match is (1, 2). Propagating
¬regular(X[..., (1, 2)], ?a?) fixes prefix X ′ to {b}2,2. How-
ever, propagating regular(X[(1, 2), ...], a?) sets suffix X ′′ to
{a}1,1{a, b}0,2. This refines X to {b}2,2{a}1,1{a, b}0,2, and
so i must be 3, which is in general not sound as the leftmost
occurrence of character a could also be at position 4 or 5 de-
pending on the actual prefix of x.

At line 39 we concatenate the blocks of X ′ and X ′′. If the
last block ofX ′ and the first block ofX ′′ have the same base,
or ∅0,0 occurs inX’ orX ′′, then a normalization is performed
via the NORMALIZE function. Finally, we return the possibly

Algorithm 2 CHECKBLOCK function.
1: function CHECKBLOCK(Sl,u, Qin,
R = (Σ, Q, δ, q0, {qF }))

2: δS ← {q 7→ {δ(q, a) | a ∈ S} | q ∈ Q}
3: Q0 ← Qin, j ← 0
4: for i ∈ 1, 2, . . . , l do . Mandatory region
5: Qi ←

⋃
q∈Qi−1

δS(q)

6: if Qi = {q0} then
7: j ← i . All paths lead to q0
8: else if qF ∈ Qi then
9: return (Qi, j) . Final state reached

10: if Qi = Qi−1 then
11: if Qi = {q0} then . Fixpoint
12: return (Qi, l)
13: else
14: return (Qi, j)

15: dist←
ß
q 7→ l if q ∈ Ql

+∞ if q ∈ Q−Ql

™
16: U ← QUEUE(Ql) . U = queue of all the states in Ql

17: while U 6= [ ] do
18: q ← POP(U) . Breadth-first search.
19: d← dist[q] + 1
20: if d ≤ u then
21: for q′ ∈ δS(q) where dist[q′] > d do
22: PUSH(U, q′)
23: dist[q′] = d

24: if qF ∈ δS(q) then . Final state reached
25: break
26: return ({q ∈ Q | dist[q] ≤ u}, j)

refined domains.

CHECKBLOCK
The function CHECKBLOCK described by 2 is similar to the
forward pass of the regular propagator described in [Ama-
dini et al., 2018], because it explores the sets Qi of states
reachable from Qin after consuming i characters of block
Sl,u. However, here we are not interested in recording
Q0, . . . , Ql+1 for each block because no backward pass is
needed, while in [Pesant, 2004; Amadini et al., 2018] the do-
mains’ refinement is performed “backwards” starting from a
feasible set of reachable states. Moreover, here we stop as
soon as a candidate match is found, i.e., qF ∈ Qi. Further-
more, CHECKBLOCK keeps track of the offset j within block
Sl,u so that if Sl,u is the k-th block of dashed string X and
( , j) is returned, then no match can occur in X[..., (k, j)].

The function δS : Q → P(Q) at line 2 returns the set of
states reachable from a given state after consuming any of the
characters in S. We explore the reachable states Qi for each
of the l mandatory characters of input block Sl,u, and we stop
earlier when either the final state qF (line 9) or a fixpoint Qi

(line 10) is reached. At each step, we update j with i if we
find that Qi = {q0} (line 7), i.e., all the possible paths we get
from a state of Qin by consuming i characters of S lead to
q0. In this way, if Sl,u = X[k] and Qin is the set of states
reachable after consuming the prefix X[..., (k, 0)], then by
Lemma 2 no string of L(R) can match γ(X[..., (k, j)]).

The second part of CHECKBLOCK, from line 15, performs
a breadth-first search over the optional part S0,u−l to possi-
bly update the set of reachable states. If we reach the final
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Figure 2: DFA of ?(ab|c)?

state, we interrupt the search (line 24). The returned set will
be the input set of states of CHECKBLOCK when called by
PROPMATCH on the following block. To be sound, we can
only update the offset j when considering the mandatory part
of the block because, by definition, the optional part may not
be present.

Example 1. Consider Σ = {a, b, c, d}, ρ = (ab|c), X =
{d}2,3{c}0,5{a, b}3,5 and I = 10..100. Then, maxlen(X) =
3 + 5 + 5 = 13, R = DFA(?ρ?) as in Fig. 2, and
r = minlen(R) = 1. Hence, I is refined into 10..13. The
call of CHECKBLOCK on X[1] returns ({q0}, 2). The call
on X[2] returns ({q0, q2}, 0). So, after the while loop of
PROPMATCH we have (h, k) = (1, 2) and at line 24 we
get ` = 3. Because ` < min(I) = 10 we update (h, k) to
(3, 1) and propagate ¬regular({d}2,3{c}0,5{a, b}1,1,R) to
get X ′ = {d}2,3{a, b}1,1. Because |I| > 1, we also prop-
agate regular(X[(3, 1), ...],R), but in this case the propaga-
tion has no effect so X ′′ will be X[(3, 1), ...] = {a, b}2,4.

We cannot further refine the suffix, so X becomes
NORMALIZE({d}2,3{a, b}1,1{a, b}2,4) = {d}2,3{a, b}3,5.
Now, maxlen(X) = 8, hence CHECK (10..8− 1 + 1) =
CHECK (∅) will throw a failure before returning.

Example 2. Let Σ and ρ as in Example 1, I = 0..10, and
X = {b, d}2,5{a, c}0,3. Then I is refined into 0..8. The
call of CHECKBLOCK on X[1] returns ({q0}, 2) so (h, k) =
(1, 2). The call on X[2] returns ({q1, q2}, 0) so (h, k) is not
updated. So again ` = 3, but in this case we cannot refine X
because 0 ∈ I . However, we can refine I into {0} ∪ 3..8.

Example 3. Let Σ, ρ and X as in Example 2, and I =
{3}. As above, (h, k) = (2, 1) and ` = 3. But this time
` = min(I), so we do not update (h, k) and we split X into
X ′ = {b, d}2,2 and X ′′ = {b, d}0,3{a, c}0,3. Finally, |I| =
1 so we can safely propagate regular(X[(2, 1), ...], (ab|c)?)
to refine X ′′ into {c}1,1{a, c}0,2. Then, we update X to
{b, d}2,2{c}1,1{a, c}0,2.

3.2 Complexity and Consistency
Let us analyze the worst case complexity of PROPMATCH.
The cost of the first part of the algorithm (lines 1–26) is domi-
nated by the while loop at line 12, which calls CHECKBLOCK
at most n = |X| times. Each call to CHECKBLOCK considers
each transition of δ at most l + 1 times (one for each of the l
mandatory characters of block Sl,u, plus one for the BFS over
the optional part of Sl,u). So, the worst case time complexity
of CHECKBLOCK isO((l+1)×|δ|). IfX = Sl1,u1

1 · · ·Sln,un
n

the overall complexity of the first part of PROPMATCH is

therefore O(
∑n

i=1 li × |δ|), which depends on the characters
that must occur (the mandatory part of each block) but not on
those that may occur (the optional part).

The complexity of the second part of PROPMATCH (from
line 27) depends on the regular propagator adopted, which is
called at most twice. It is however reasonable to assume that
regular complexity is also bounded by O(

∑n
i=1 li × |δ|), as

in [Amadini et al., 2018].
Unfortunately, we can say very little about the consistency

notions ensured by the propagator. This is because, in gen-
eral, dashed strings cannot guarantee a unique best represen-
tation of a set of strings (see the example in Sect. 2). Hence,
it is infeasible to maintain consistency notions such as, e.g.
the generalized arc-consistency.

4 Validation
We implemented our match propagator in G-STRINGS, a
string solver based on CP solver GECODE [Gecode Team,
2023]. We compare its performance against the approach us-
ing decomposition (1), which we will call G-STRINGSdec.
We also include in the evaluation the state-of-the-art SMT
solvers CVC5 [Barbosa et al., 2022] and Z3 [de Moura and
Bjørner, 2008]. Although these solvers support the theory of
strings, they do not natively support the match constraint, so
we had to use some workarounds.

4.1 Latin Square
We first compared the above approaches on a “stringy” ver-
sion of the latin square problem: given n > 1, generate a
n × n latin square over alphabet {a1, . . . , an} using string
variables only. We use 2n string variables: r1, . . . , rn for
the rows and c1, . . . , cn for the columns, and we impose for
k = 1, . . . , n that:

• |rk| = |ck| = n and rk, ck ∈ L(a1| . . . |an)∗

• match(ri, ak) > 0 for i = 1, . . . , n

• match(cj , ak) > 0 for j = 1, . . . , n

• match(ri, ak) = j ⇔ match(cj , ak) = i for i, j =
1, . . . , n

We encoded the problem in MiniZinc [Nethercote et al.,
2007] for G-STRINGS and G-STRINGSdec, while for SMT
solvers we used the SMT-LIB [Barrett et al., 2010] lan-
guage. For SMT solvers, we replaced each match constraint
with a corresponding str.indexof function, returning the
first occurrence of a pattern string in a target string (we can
soundly use str.indexof because in this case the patterns
are always fixed strings a1, . . . , ak of length 1).1

Fig. 3 shows the runtimes in seconds for n = 2, 3, . . . , 26.
Z3 is not included because it could not find any solution.
CVC5 can only solve small size instances (n ≤ 8). As n
gets bigger the performance of G-STRINGSdec clearly dete-
riorates: for n ≥ 20 it cannot solve the problem within the

1We used CVC5 1.0.2 and Z3 4.11.2 with Z3str3 string solver
(we also tried Z3seq, which did not improve Z3’s performance). We
run all the experiments on a Ubuntu 22.04 machine with 8 GB of
RAM and 1.60 GHz Intel i5 CPU, with a timeout of 300s. We will
disclose the source code in case of acceptance of the paper.
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solver opt sat unk ttf time score borda
CVC5 6.25 87.5 12.5 38.44 292.5 5.25 0.51

Z3 37.5 50.0 50.0 174.0 196.94 7.5 14.52
G-STRINGS 43.75 100.0 0.0 4.56 172.19 13.75 26.16

Table 1: Results for the shortest matching superstring problem. Best results in bold font.

Figure 3: Latin square runtimes for n = 2, 3, . . . , 26.

300s timeout (note that we are not charging for the flattening
time into FlatZinc). Conversely, G-STRINGS equipped with
match propagator can solve all the problems within 32s.

4.2 Shortest Matching Superstring
The second problem we consider is the shortest matching su-
perstring: given patterns ρ1, . . . , ρn, the goal is to find the
shortest string matched by all patterns, i.e., a minimal-length
string x such that match(x, ρi) > 0 for i = 1, . . . , n. For
the SMT solvers, instead of match we used the regular ex-
pression membership function str.in re applied to each
wrapped pattern ?ρi? for i = 1, . . . , n.

We generated 16 sets Sl,n of patterns for n ∈
{32, 64, 128, 256} and l ∈ {5, 10, 15, 20}. Each Sl,n con-
tains n random patterns such that there exists a string of
length l matched by all patterns (but there could be a shorter
one). So, l is an upper bound on the length of the shortest
string matched by all patterns. We use this information to
provide an initial bound for each problem.

The results are shown in Tab. 1, showing for each solver the
percentage of problems: solved to optimality (opt), where a
solution was found (sat), no solution was found (unk). Then
it reports the average time to first solution (ttf) when one is
found, and solve time (which equals the time limit for un-
known cases). Last two columns are comparative scores:
score gives 0 for finding no solution, 0.25 for finding the
worst known solution, 0.75 for finding the best known so-
lution, a linear scale value in (0.25, 0.75) for finding other
solutions, and 1 for proving the optimal solution. borda is
the MiniZinc Challenge score [Stuckey et al., 2014], which
gives a Borda score where each pair of solvers is compared
on each instance, the better solver gets 1, the weaker 0, and if
they are tied the point is split inversely proportional to their
solving time.

SMT solvers perform better on this problem, but G-
STRINGS still achieves the best results. It is the quickest

to find solutions and the most robust overall, always finding
a solution and proving optimality more often than other ap-
proaches. The score shows that its solutions are significantly
better than other approaches, while borda shows that CVC5
is effectibely dominated by the other approaches. It is impor-
tant to note the performance difference between G-STRINGS
with G-STRINGSdec, which is not in Tab. 1 because it could
not find any solution. This witnesses the scalability issues
of the decomposition approach, and hence the importance of
having a specialized match propagator.

5 Conclusions
We introduce a propagation algorithm for the constraint
match(x, ρ), returning the position in x of the leftmost pos-
sible match of a string belonging to the language denoted
by the regular pattern ρ. This generalizes existing propaga-
tors and decision procedures for the regular constraint, which
only enforce the membership of a string variable to the lan-
guage denoted by a regular pattern. We provided empirical
evidence demonstrating the benefits of a specialized propa-
gator for match, in contrast to a less efficient rewriting of this
constraint in terms of regular.

Possible future directions include the extension of the
replace constraint where the string to be replaced is defined
by a regular pattern instead of a string variable, and other
harder constraints such as, e.g., finding and replacing all the
occurrences or considering non-regular patterns such as back-
references.
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