
Improved Algorithms for Allen’s Interval Algebra by Dynamic Programming with
Sublinear Partitioning

Leif Eriksson and Victor Lagerkvist∗

Department of Computer and Information Science, Linköping University, Linköping, Sweden
{leif.eriksson, victor.lagerkvist}@liu.se

Abstract
Allen’s interval algebra is one of the most well-
known calculi in qualitative temporal reasoning with
numerous applications in artificial intelligence. Re-
cently, there has been a surge of improvements in
the fine-grained complexity of NP-hard reasoning
tasks, improving the running time from the naive
2O(n2) to O∗((1.0615n)n), with even faster algo-
rithms for unit intervals a bounded number of over-
lapping intervals (theO∗(·) notation supresses poly-
nomial factors). Despite these improvements the
best known lower bound is still only 2o(n) (under
the exponential-time hypothesis) and major improve-
ments in either direction seemingly require funda-
mental advances in computational complexity. In
this paper we propose a novel framework for solv-
ing NP-hard qualitative reasoning problems which
we refer to as dynamic programming with sublinear
partitioning. Using this technique we obtain a major
improvement of O∗((cn

logn)n) for Allen’s interval
algebra. To demonstrate that the technique is appli-
cable to more domains we apply it to a problem in
qualitative spatial reasoning, the cardinal direction
point algebra, and solve it in O∗((cn

logn)2n/3) time.
Hence, not only do we significantly advance the
state-of-the-art for NP-hard qualitative reasoning
problems, but obtain a novel algorithmic technique
that is likely applicable to many problems where
2O(n) time algorithms are unlikely.

1 Introduction
Allen’s interval algebra (ALLEN) is one of the most well-
known examples of qualitative temporal reasoning where the
task is to decide whether a set of (typically incompletely
specified) intervals in R2 can be ordered in a consistent way.
ALLEN is an influential formalism with a wide range of ap-
plications in artificial intelligence, and for a handful of con-
crete examples we may e.g. mention planning [Allen and
Koomen, 1983; Dorn, 1995; Mudrová and Hawes, 2015;

∗Partially supported by the Swedish research council (VR) under
grant 2019-03690.

Pelavin and Allen, 1987], natural language processing [Denis
and Muller, 2011; Song and Cohen, 1988], and molecular biol-
ogy [Golumbic and Shamir, 1993]. The second major problem
that we consider, the cardinal direction point algebra (CDPA),
can be seen as an offshoot of Allen’s interval algebra where the
task is to reason about directions of objects in a 2-dimensional
space. This algebra has seen applications in e.g. geographical
information science and image retrieval and we refer the reader
to the survey by Dylla et al. [2017] for additional references
and applications for both these formalisms.

Both these formalisms are in general NP-hard and admit
non-trivial tractable fragments. Hence, in actual applications
one is rarely contempt with reasoning only with tractable frag-
ments, which spurs the question of how fast we can solve
NP-hard qualitative reasoning tasks. First, we need to care-
fully establish a baseline upper bound that we can use to
measure whether an algorithm for these problems is indeed an
improvement or not. This is easy for many types of problems
over finite universes, e.g., finite domain constraint satisfac-
tion problems (CSPs) and the Boolean satisfiability problem,
which can always be solved simply by enumerating all possi-
ble assignments from variables to the finite universe. Clearly,
this cannot be done for ALLEN or CDPA, but these prob-
lems can be solved in 2O(n·log n) time by enumerating certain
total orderings, which for ALLEN gives the precise upper
bound O∗((2n)2n) [Jonsson and Lagerkvist, 2017]1. Hence,
the question is whether this upper bound can be improved,
and we stress that this is sometimes known to be possible
(e.g., k-SAT and k-COLORING) but that there also exist prob-
lems where this is conjectured to be impossible (e.g., CNF-
SAT, SAT with unrestricted clause length). However, this has
been proven possible for ALLEN which was recently solved
in O∗((1.0615n)n) time [Eriksson and Lagerkvist, 2021] by
a novel dynamic programming algorithm. Additionally, if
ALLEN is restricted to intervals of length one, then it can even
be solved in 2O(n log log n) time [Dabrowski et al., 2020]. A
fasterO∗(cn) time algorithm is also known for the special case
where no point occurs inside more than k intervals [Eriksson
and Lagerkvist, 2022]. However, despite these improvements,
we are still far away from an unconditional single-exponential
O∗(cn) time algorithm and even further away from the best-

1The notationO∗(·) suppresses polynomial factors and n denotes
the number of intervals.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1919

known lower bounds which only rule out subexponential al-
gorithms running in 2o(n) time under the exponential-time
hypothesis [Jonsson et al., 2021].

In this paper we make a significant push for ALLEN and
CDPA by introducing a new variant of dynamic programming;
dynamic programming with sublinear partitioning, which is
exceptionally suited for problems related to orderings. After
having introduced the necessary preliminaries (in Section 2)
we first showcase our new method for ALLEN in Section 3
where we obtain the bound O∗((cn

logn)n), for some constant
c ≥ 1. This is a major improvement compared to the afore-
mentioned bound of O∗((1.0615n)n) and thus proves that
ALLEN is solvable in O∗(f(n)n) time for f ∈ o(n), i.e., a
significant leap towards a O∗(cn) time algorithm. To exem-
plify that our method is not limited to ALLEN we continue (in
Section 4) by showing how it can be tailored to solve CDPA
faster than the general case of ALLEN. Here, we obtain the
bound O∗((cn

logn)2n/3) for a constant c, which is much faster
than the algorithm for ALLEN. The main idea behind our
dynamic programming strategy is to use a table consisting of
records, representing (partially) placed start- and end-points
of intervals, where the twist is that the size of a record is not
fixed beforehand but may expand up to a certain size during
the execution of the algorithm. To achieve this we use a similar
idea to the one presented in Eriksson & Lagerkvist [2021] but
we analyze the structure of potential solutions much deeper.
We manage to identify redundant information by using the
fact that if we know the relative position of more variables
then we need to keep track of fewer potential positions. While
previous approaches have required keeping track of, or storing
information corresponding to, a linear number of partitions
measured in the number of variables, we here manage to solve
the task while only partitioning the variables into a sublinear
number of partitions. Consequently, the upper limit of infor-
mation stored in a record is bounded tighter by the number
of variables than any earlier approach. In turn, this leads to a
lower number of maximum records, and hence a lower over-
all complexity. This idea of managing with only a sublinear
number of partitioning will be our main result throughout the
paper. However, achieving this is as expected far from trivial.

Last, it is worth observing that virtually all qualitative tem-
poral and spatial reasoning problems can be formulated as
CSPs over a template containing a strict partial order or an
acyclic relation [Jonsson et al., 2021]. Hence, all members of
this diverse and rich class of problems are intrinsically related
to the existence of certain orders, and it is not a large stretch
of the imagination to conjecture that more problems can be
solved with our approach. Most pressingly: Can dynamic
programming with sublinear partitioning be used to solve an
NP-hard qualitative reasoning problem in O∗(cn) time? We
discuss this and additional questions in Section 5.

The proofs of statements marked with an asterisk (*) have
been omitted due to space constraints.

2 Preliminaries
Given a set of finitary relations Γ defined on a (potentially
infinite) set D of values, we define the constraint satisfaction
problem over Γ (CSP(Γ)) as follows.

Relation Illustration Interpretation
X < Y XXX X precedes Y
Y > X YYY
X = Y XXXXXXX X is equal to Y

YYYYYYY
X mY XXX X meets Y
Y miX YYY
X oY XXXXX X overlaps with Y
Y oiX YYYY
X sY XXX X starts Y
Y siX YYYYYYY
X dY XXX X during Y
Y diX YYYYYYY
X f Y XXX X finishes Y
Y fiX YYYYYYY

Table 1: The 13 basic relations between two intervals on the same
line. (i denotes the inverse/converse of a relation.)

CSP(Γ)

Instance: A tuple (V,C), where V is a set of variables
and C a set of constraints of the form R(v1, . . . , vt), where
t is the arity of R ∈ Γ and v1, . . . , vt ∈ V .
Question: Is there a function f : V → D such that
(f(v1), . . . , f(vt)) ∈ R for every R(v1, . . . , vt) ∈ C?

The set Γ is referred to as a constraint language, while the
function f is a function satisfying the instance I , or simply a
model of I . Given an instance I of CSP(Γ), we let ||I|| denote
the number of bits required to represent I .

We continue by defining total orders and order relations
induced by a given total order. A total order (S,≤) is a re-
lation ≤ on set S which is reflexive (for all x ∈ S, x ≤ x),
antisymmetric (for all x, y ∈ S, if x ≤ y and y ≤ x, then
x = y), transitive (if x ≤ y and y ≤ z, then x ≤ z), and
strongly connected (for all x, y ∈ S, either x ≤ y or y ≤ x).
If � ∈ {<,>,=} and T = (S,≤T) is a total order then we
write �T for the relation induced by T : x <T y if x ≤T y
and y ≤T x does not hold, conversely for >T , and x =T y
if x ≤T y and y ≤T x. The total number of different total
orders for a variable set of n elements is known as n’th Or-
dered Bell Number (OBN(n)) and is in O∗((n

e log 2)n) and
O∗((0.5307n)n) (recall that the O∗(·) notation supresses poly-
nomial factors).

2.1 Allen’s Interval Algebra
In Allen’s interval algebra the basic relations consists of 13
relations between intervals over R2 (summarized in Table 1).
The computational problem is then defined as follows.

ALLEN’S INTERVAL ALGEBRA

Instance: A set of intervals V and a set of bi-
nary constraints C of the form c(X,Y) where
c ⊆ {<,>,=,m,mi, o, oi, s, si, d, di, f, fi} and
X,Y ∈ V .
Question: Is there a total order T = (S,≤) and a function
f : V → S2 such that for all X ∈ V with f(X) = (u, v)
then u < v and for every constraint c(X,Y) ∈ C then
f(X)� f(Y) for some � ∈ c?

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1920

Equivalently, the problem can be defined as CSP(A) where
A contains the 13 basic relations in Table 1 and is closed
under union. Note from Table 1 that any relation between two
intervals can be described using point relations (<, > and =)
between the start- and end-point of the two intervals. For a set
of intervals V we write V − for the set of start-points and V +

for the set of end-points.

2.2 Cardinal Direction Point Algebra
We follow the projection based approach of Frank [1991] and
define the second major problem of the paper as follows.

CARDINAL DIRECTION POINT ALGEBRA

Instance: A set of pairs of points, V , and a set
of binary constraints C, of the form c(u, v), where
c ⊆ {{<,>,=} × {{<,>,=}} and u, v ∈ V .
Question: Is there a function f : V → {1, . . . , |V |}2 such
that for every constraint c(u, v) ∈ C then f(u) = (ux, uy),
f(v) = (vx, vy), ux�xvx and uy�yvy with (�x,�y) ∈ c?

Alternatively, the problem can be seen as whether V can
be ordered into two separate total orderings such that one
represents the x-dimension and the other the y, such that
they combined satisfy all constraints. Another alternative is
viewing CDPA as a sub-problem of ALLEN (e.g. by letting
a− represent ax and a+ represent the ay coordinate of a point
a).

3 A New Algorithm for Allen’s Interval
Algebra

In this section we present a novel, improved algorithm for
ALLEN based on dynamic programming. The twist with this
algorithm is that the dimension of our table, or the size of
the records stored, is not static, but may dynamically change
during the execution of the algorithm. This dynamic program-
ming is realized by using records functioning as elements or
keys in a map that is dynamically built, and we refer to this
programming scheme as dynamic programming with sublinear
partitioning. Here, sublinear refers to the fact that we partition
the variable set into a sublinear number of partitions. Each
such record represents a set of S variables that have been used
to construct this record, and then pairs of disjoint subsets of
S, and Booleans. The subsets of S are here used to keep track
of the (relevant) ordering between variables that have been
used, while the Booleans serve as markers that tell us if a
certain subset has ever been merged with another subset or not.
This is useful, since if they have previously been merged with
some other subset, we do not want to add any new variables to
this subset, since we could then get inconsistent cases where
x = y, y = z but x < z. Combined, these partitions of S
represent an ordered partition, but we will not strictly use them
as such.

We also introduce two notations for records: left-heaviness
where we require start-points of intervals in a record to always
be in either of the first two subsets, and pair-placing where we
require whole intervals, and not just a start- or an end-point,
to be placed at the same time into a record. Formally, these
notions are now defined as follows.

Definition 1. For a CSP(A) instance (V,C) we say that
r = (S, (S1, B1), . . . , (Sm, Bm)) is a Record if the follow-
ing holds:

1. S ⊆ V − ∪ V +,

2. B1, . . . , Bm ∈ {0, 1}, and

3. S1, . . . , Sm is a partitioning of S.

We say that m is the size of the record. A record is left-heavy
if Si ∩ V − = ∅ for all 3 ≤ i ≤ m. A record is pair-placing if
and only if for all x− ∈ Si for any i, there is a j > i such that
x+ ∈ Sj or i = j and Bi = 0.

For any two variables u, v in some Record with u ∈ Si and
v ∈ Sj , then we also assume that u < v if i < j, u > v if
i > j and that u = v if i = j and Bi = 1. However, if i = j
and Bi = 0 we have to assume all three relations between u
and v holds. Further, a Record contradicts C if and only if
there is a constraint c(X,Y) ∈ C such that no assumption we
can make about the relations X and Y given said Record will
satisfy c(X,Y).

Generalization between records, i.e. whether a record A
can be converted to a record B by adding variables and merg-
ing subsets, will be important, and we define the following
concept.

Definition 2. We say that for two records

r1 = (S1, (S1,1, B1,1), . . . , (S1,m, B1,m))

and

r2 = (S2, (S2,1, B2,1), . . . , (S2,k, B2,k))

then r2 is a generalization of r1 if:

1. S1 ⊆ S2,

2. k ≤ m (r2 is not larger than r1),

3. for every S1,i there is a S2,j such that S1,i ⊆ S2,j (no
set in r1 is split in r2),

4. for every j then B2,j = 1 if and only if either S2,j = ∅
or if there is an i such that B1,i = 1 and S1,i = S2,j ,
otherwise B2,j = 0 (only empty or unchanged sets keep
their positive B value), and

5. for all variables x ∈ S1,i and x′ ∈ S1,i′ with i ≤ i′ then
x ∈ S2,j and x′ ∈ S2,j′ such that j ≤ j′ (ordering is
kept).

For a record r = (S, (S1, B1), . . . , (Sm, Bm))
we can recursively generate all generalizations
r′ = (S, (S′1, B

′
1), . . . , (S′m′ , B

′
m′)) with m′ ≤ m in

O∗(3m) time. We do this by branching on every Si and
constructing two new records, one where Si is merged with
Si−1 (when these exists) and (Si−1, Bi−1) is removed and
one where we also replace (Si−1, Bi−1) with (∅, 1). For the
value of B′i we strictly follow the definition. By checking if
a given result has earlier already been created we can also
prevent calling the recursion with the same record more than
once. Our complexity of O∗(3m) then comes from that either
(S′i, B

′
i) = (Si, Bi), (S′i−1, B

′
i−1) = (Si−1, Bi−1) ∪ (Si, Bi)

or (S′i, B
′
i) = (Si−1, Bi−1) ∪ (Si, Bi) and

(S′i−1, B
′
i−1) = (∅, 1), creating fewer than 3m different

possibilities. Let GenerateGeneralizations(r,H) be the

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1921

function doing this for a record r and where H is the set of all
previously generated records. Note that the records in H does
not need to be generalizations of r, since this set is just used
to prevent unessesary computational complexity.

After this we want to continue by adding new intervals to
existing records. When adding new intervals to records we do
so in such a manner that given an ALLEN instance I = (V,C)
we never contradict C, while, if given a left-heavy and pair-
placing record, the result is also left-heavy and pair-placing.

We briefly remind the reader that for an interval X the
points x− and x+ represents the start- and endpoint of said
interval.

Algorithm 1 Add a new pair to a given record R, assuming
B2 = 1, not contradicting C

1: function ADD(I = (V,C),
R = (S, (S1, B1), . . . , (Sm, Bm)), Output)

2: for every x−, x+ ∈ (V − ∪ V +) \
⋃m

i=1 Si

and every 2 ≤ j ≤ m with Bj = 1 do
3: if for all X ′ ∈ V with x′− ∈ Su and x′+ ∈ Sv all

c(X,X ′), c(X ′, X) ∈ C are satisfied by
x− = 2, x+ = j, x′− = u and x′+ = v then

4: Output←GenerateGeneralizations((
S∪{x−, x+}, (S1, B1), (S2∪{x−}, 1), . . . ,
(Sj ∪ {x+}, 1), . . . , (Sm, Bm)), Output)

5: end if
6: end for
7: return Output
8: end function

As we can see, Algorithm 1 guarantees that for any pair
X we add to a record (S, (S1, B1), . . . , (Sm, Bm)), all con-
straints c(X,X ′) ∈ C with X ′ ∈ S are satisfied. Quite
obviously the work done in Algorithm 1 (excluding the work
done in GenerateGeneralizations) is also polynomial in
terms of ||I|| + m. By only ever adding x− to S2 the algo-
rithm keeps left-heaviness if the input is left-heavy, and as we
add one pair (x−, x+) at a time, the result is also pair-placing
if the input is pair-placing. Here we also see how the Boolean
variables Bi are used, as we only add new start- and end-points
to sets with a Boolean set to 1. Combined with the definition
of generalization this helps ensure we avoid situations where
now x = y and x = z, but x < z in an earlier record which
the current record is a generalization of.

With Algorithm 1 we now have everything we need for
solving ALLEN. However, we want to optimize our method
and hence want to limit our records to a certain size, i.e. limit
our m. The choice of m needs to be big enough to ensure
correctness of the algorithm, i.e. big enough so that we can
always ensure that every pair can be placed into some record,
while the number of already placed pairs increases. Choosing
m = 4n would trivially give us enough room to place every
single variable, be it a start- or end-point, in any possible
ordering. To do better we first make the following observation:
given an arbitrary ordering of V − ∪ V + and placing pairs
following the ordering of the start-points, if we let k be the
number of pairs yet to be placed, we need at most 2k pairs
(Si, Bi) for which Bi = 1. This leads to a situation where

we have records where for every second pair, the Boolean is
set to one while for the other pairs it is set to zero, while still
allowing the placement of every remaining variable. If more
than 2k + 1 pairs with Bi = 0 exists, there must exist two
pairs (Sj , 0) and (Sj+1, 0) and hence a generalization with
(Sj ∪ Sj+1, 0), but which is otherwise identical. Hence we
take m = 4k + 1, which also leads us to our main algorithm
as presented in Algorithm 2.

Algorithm 2 Solving ALLEN by dynamic programming.

1: function MAIN(I = (V,C))
2: R← {(∅, (S1 = ∅, 1), . . . , (S4n+3 = ∅, 1))}
3: for every record

r = (S, (S1, B1), . . . , (Sm, Bm)) ∈ R do
4: if |S| = 2n then
5: return True
6: else if m ≤ 4(n− |

⋃m
i=1 Si|) + 3 then

7: R←Add(I, r, R)
8: end if
9: end for

10: return False
11: end function

In Algorithm 2 we see how we make use of this decreasing
number of pairs (S,B) by ignoring any records containing
more pairs that we think we will need. This algorithm works
by iteratively calling Algorithm 1 with new records, until every
record has been either tested, or we find a record containing all
intervals (in which case we must have a satisfiable instance).

Lemma 3. For an arbitrary CSP(A) instance I , Algorithm 2
returns True if and only if I is a satisfiable instance.

Proof. We begin by proving completeness. Given a satisfi-
able instance I = (V,C), we know there exists a function
f : V − ∪ V + → N such that f satisfies every constraint in C.
Let V − = {x−1 , . . . , x−n } and V + = {x+

1 , . . . , x
+
n } such that

f(x−1) ≤ f(x−2) ≤ · · · ≤ f(x−n), i.e., each pair x−i , x
+
i is as-

signed an index i according to some ordering of the start-points
of the intervals. Define the sets T1, . . . , Tn such that x±j ∈ Ti

if and only if there is no variable v ∈ {x−i , x
+
i , . . . , x

−
n , x

+
n }

such that f(v) < f(x±j). Furthermore, define the aux-

iliary function #< : V − ∪ V + × 2V
−∪V + → N such that

#<(x±j , U) returns the number of variables y such that
f(y) < f(x±j) and y ∈ U . From this we define the functions
f#,i : V − ∪ V + → {1, . . . , 4n + 1}:

f#,i(x
±
j) =2 ·#<(x±j , {x

−
i , x

+
i , . . . , x

−
n , x

+
n })+{

2, if x±j ∈ Ti,

1, if x±j 6∈ Ti.

Since f#,i follows the same ordering as f , it is also a solution
for I[{x−i , x

+
i , . . . , x

−
n , x

+
n }], i.e. the sub-problem of I where

only variables {x−i , x
+
i , . . . , x

−
n , x

+
n } are considered. Addi-

tionally, for all intervals Y ∈ V and Xi ∈ {Ti ∪ . . . ∪ Tn},
f#,i also satisfies any constraints c(Xi, Y) ∈ C. For each

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1922

i ∈ {0, . . . , n} define the record

ri = ({x−1 , x
+
1 , . . . , x

−
i , x

+
i },(S1,i, B1,i), . . . ,

(S4(n−i)+3,i, B4(n−i)+3,i))

such that x±j ∈ Si′,i if and only if f#,i(x
±
j ,) = i′ and j ≤ i,

and Bi′,i = 1 if and only if Si′,i ∩ Si = ∅ and Bi′,i = 0 oth-
erwise. According to our definitions ri+1 is a generalization
of ri, and every record is both left-heavy and pair-placing.
As such, Algorithm 2 generates all records ri, i ∈ {0, . . . , n}
starting from the original record constructed at line 2, which
is equivalent to r0. By doing so the algorithm must reach a
record containing all variables (rn), and hence returns True .

For soundness, assume that the algorithm returns True .
Then there must be an ordering of the variables in V ,
X1, . . . , Xn, and sequence of records r0, . . . , rn such that

ri = ({x−1 , x
+
1 , . . . , x

−
i , x

+
i },(S1,i, B1,i), . . . ,

(S4(n−i)+3,i, B4(n−i)+3,i))

for all i ∈ {0, . . . , n} and such that

({x−1 , x
+
1 , . . . , x

−
i , x

+
i },(S1,j \ S′, B1,j), . . . ,

(S4(n−j)+3,j \ S′, B4(n−j)+3,j))

is a generalization of ri for all j ∈ {i + 1, . . . , n} when

S′ = {x−i+1, x
+
i+1, . . . , x

−
j , x

+
j }.

This holds because of how GenerateGeneralizations to-
gether with Add constructs records. Since Bi,j must be 1
for Add to add new a new pair to Si,j , since (1) Bi,j is
set to 0 as soon as two sets are merged into Si,j , and (2)
every constraint c(Xi, Xi′) ∈ C must be satisfied for all
i′ < i, for Xi to be added. Given this set, define the function
h : V − ∪ V + → {1, . . . , 4n + 3} such that (assuming i > i′)
if x±i ∈ Sj,i and x±i′ ∈ Sj′,i with j � j′ then h(x±i)� h(x±i′).
Since every c(Xi, Xj) ∈ C is satisfied for all j < i when Xi

is added (since h orders Xi according to its position when
added), and since this is true for all i, h must satisfy C. Hence,
h is a solution for I , implying that our algorithm is sound.
With both soundness and completeness proven, the algorithm
must also be correct, and hence we are done.

With all supporting lemmas in place, we can now present
the main result of the section.
Theorem 4. There is a constant c such that ALLEN can be
solved inO∗((cn

lnn)n) time and space using dynamic program-
ming with sublinear partitioning.

Proof. We know that Algorithm 2 is correct from Lemma 3.
For the run-time we note that Add is polynomial (with re-
spect to n and m), GenerateGeneralizations adds fewer
than 3m sets to Output and does linear work in terms of
the size of the return. Our Main itself also only does poly-
nomial work for each record, and hence the question that
remains is the maximal possible number of records. With the
way we limit records size, we have that for a certain m there
are at most poly(n,m,) · 24(n−m)

(
n
m

)
(8(n−m))m different

records with m pairs placed. Here, 24(n−m) is an overesti-
mation for our possible assignments of Booleans,

(
n
m

)
is the

different ways to choose pairs, 2m is from start-points being
in either S1,m or S2,m, and (4(n−m))m comes from the
number of ways to place end-points into the available Si,m. In
total we hence have roughly

∑n
0=m 24(n−m)

(
n
m

)
(8(n−m))m

records, which is linear in terms of the maximum value of
24(n−m)

(
n
m

)
(8(n − m))m. Since 24(n−m)

(
n
m

)
8m ≤ 32n

we are left with having to maximize (n − m)m. Since
n,m, n − m ≥ 0 and n,m ∈ N, replacing n−m
with x (and m with n − x) and derivation gives us
d
dxx

n−x = xn−x−1(n− x− x lnx). The maximum must
then occur when n = x + x lnx, which have no exact fi-
nite expression, but can be estimated as x = n

ln n
lnn

. Since
n < n

ln n
lnn

ln n
ln n

lnn
this gives us an overestimation of x, and

hence we get a valid upper bound on xn−x by also approxi-
mating n− x = n. Inserting this in the original formula and
assuming n is large enough gives us(cn

ln (n/ lnn)

)n
=
(cn

lnn− ln lnn

)n ≤ (2cn

lnn

)n
.

Hence, we have an upper bound on the form O∗((cn
lnn)n)

where c is some constant, which completes the proof.

Compared to the previous best known upper bound of
O∗((1.0615n)n) [Eriksson and Lagerkvist, 2021] this is a
clear improvement. In fact, we even changed the category
ALLEN belongs to by pushing it below O∗((cn)n) for every
constant c > 0. This may be a major cornerstone towards a
single-exponential algorithm for ALLEN.

While the algorithm presented here only decides consitency
by outputing a True or False answer, one can using standard
implementations of e.g. backpoints also use the algorithm to
yield solutions to satisfiable instances. Or even modify the
algorithm to instead count solutions.

4 Cardinal Direction Calculus
In this section we focus on CDPA. While CDPA can be
reduced to a subproblem of ALLEN, the problem is interesting
in its own right and is typically viewed as an independent
formalism. The CDPA formalism also allows significantly
better complexity than the general case of ALLEN and we will
show that CDC can be solved in O∗((cn

logn)2n/3) time for a
constant c.

We achieve this in three steps: first we modify the algo-
rithm from Eriksson & Lagerkvist [2021] to work in the now
two-dimensional space. Second, we show that by running
the modified version four times in different combinations of
directions, while not storing orderings longer than roughly
n/3, the worst case is significantly improved. Last, we show
how the method from Section 3 can be applied, yielding the
final complexity of O∗((cn

logn)2n/3).
Briefly, the algorithm presented in Eriksson &

Lagerkvist [2021] works on intervals by dynamic pro-
gramming and adding points in a brute force way (regardless
of whether they are start-points or end-points) in sets of
equality, one set of a time, to the end of the working ordering.
While the complexity of this approach is generally bounded
by the size of the ordering, we can further bound the size

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1923

of said ordering, since if we remove whole intervals from
the ordering when both start- and end-point are placed, the
ordering will never contain any end-points, except in the very
last position.

For our first approach to CDPA we follow a similar strategy
but in two dimensions: we use dynamic programming and
keep track of two active orderings, one in the direction of
positive x-relations, and one positive y-relations direction. We
also keep track of points already having been placed into both
orderings, and as a result we also, directly or indirectly, know
which variables that have not been used in either ordering.
Effectively, we have records (S, (Sx,≤x), (Sy,≤y)) where
(Sx ∪ Sy) ⊆ S ⊆ V while Sx ∩ Sy = ∅ and both (Sx,≤x)
and (Sx,≤x) are total orders. By only placing (sets) of points
into the smaller of the two orderings, and only at the very end,
and then “forgetting” points used in both orderings, we achieve
the worst case for this approach. Again, these partitions of S
form an ordered partition, but we will not strictly use them as
such.
Lemma 5. (*) CDPA can be solved in
O∗(23n/2OBN(n/2)2) or O∗((0.7506n)n) time with
dynamic programming.

This is already enough to surpass the previous best result for
ALLEN [Eriksson and Lagerkvist, 2021] but does not beat the
bound from Section 3. To improve this approach for CDPA
consider the scenario of having the solution be all points on a
diagonal line from positve X and negative Y towards negative
X and positive Y . This represents the worst-case for the algo-
rithm outlined previously and naturally raises the question of
whether one could order in negative x- or y-direction instead
(since this would yieldO∗(1) complexity for this case instead).
However, there are of course other cases (we could just mirror
this example along either axis) that are instead the worst case
for this approach. So, instead we try all four possible com-
binations of directions: positive x + positive y, positive x +
negative y, negative x + positive y and negative x + negative
y. Using this approach and not allowing the orderings to grow
larger than some maximum, we are able to avoid all these
worst cases.
Definition 6. Given a finite total ordering (S,<) and an inte-
ger k ≥ 0 let Subk((S,<)) be the first k elements in (S,<),
or S if k ≥ |S|.
Lemma 7. For any distribution of a finite set of two dimen-
sional points V in two dimensional space, there are two total
orders Tx = (V,≤x) and Ty = (V,≤y) such that for all
u, v ∈ V if ux � vx then u�x v and if uy � vy then u�y v
and such that |Subk(Tx) ∩ Subk(Ty)| ≥ k − 1/3n for every
0 ≤ k ≤ n.

Proof. Constructing orderings such that such that for all
u, v ∈ V if ux � vx then u �x v and if uy � vy then
u �y v is trivial. From here on, we assume that n is a
multiple of 3. Take the four total orders that can be gen-
erated by sorting our distribution in (1) either positive or
negative and (2) either x- or y-direction. Call these four to-
tal orders T+

x = (V,≤+
x), T−x = (V,≤−x), T+

y = (V,≤+
y)

and T−y = (V,≤−y). Let k++ > n/3 be the smallest in-
teger such that |Subk++

(T+
x) \ Subk++

(T+
y)| = n/3 but

x

y

x3,1 x3,2 x3,3

x2,1 x2,2 x2,3

x1,1 x1,2 x1,3

Figure 1: Graphic representation of the nine sets described
by V , Subk++(T

+
x), Subk++(T

+
y), Subk−−(T

−
x) and

Subk−−(T
−
y). E.g. x1,1 = |Subk++(T

+
x) ∩ Subk++(T

+
y)|,

x1,2 = |Subk++(T
+
y) \ Subk++(T

+
x) ∪ Subk−−(T

−
x)|,

x1,3 = |Subk++(T
+
y) ∩ Subk−−(T

−
x)| and

x2,1 = |Subk++(T
+
x) \ Subk++(T

+
y) ∪ Subk−−(T

−
y)|.

|Subk+++1(T+
x) \ Subk+++1(T+

y)| > n/3, or if no such in-
teger exists, then k++ = n. Similarly we define k−− for T−x
and T−y , k+− for T−x and T+

y and k−+ for T+
x and T−y . By

symmetry and renaming we can safely assume that k++ is not
smaller than any of k+−, k−+ and k−−. Using Subk++(T+

x),
Subk−−(T−x), Subk++

(T+
y) and Subk−−(T−y) we now parti-

tion V into nine subsets and label these as shown in Figure 1.
We will now prove that k++ = n using proof by contradiction.
First we assume that k++ < n but that k++ + k−− ≥ n:

In this case we know that n− k++ ≤ k−−, hence
|Subn−k++(T−x) \ Subn−k++(T−y)| ≤ n/3 and that
|Subn−k++−1(T−x) \ Subn−k++−1(T−y)| ≤ n/3. But
Subk++

(T+
x) \ Subk++

(T+
y) = Subn−k++

(T−y) \
Subn−k++(T−x) and Subk+++1(T+

x) \ Subk+++1(T+
y) =

Subn−k++−1(T−y) \ Subn−k++−1(T−x). This leads to a
contradiction since

n/3 ≥ Subn−k++−1(T−y) \ Subn−k++−1(T−x) > n/3.

Hence, our assumption must be incorrect.
In our second case we assume that k++ < n but

that k++ + k−− < n: Our first observation is that
x1,2 + x1,3 = x2,3 + x1,3 = n/3 by our definition of k++.
For simplicity we will assume x1,2 = x2,3 and similarly
x2,1 = x3,2. Again, by arguments about symmetry we can
safely assume that x1,3 ≥ x3,1. We have that x1,3 ≥ n/6,
otherwise x1,2 + x1,3 + x2,3 + x2,1 + x3,1 + x3,2 > n. By
our definition of K++, x1,1 < n/3 must hold, otherwise

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1924

Subk++(T+
x) ∪ Subk++(T+

y) = V and k++ = n. Simi-
larly x1,1 ≥ 1, otherwise x1,2 = x2,1 = x3,2 = x2,3 = n/3,
which can only be true if n = 0 and then k++ = n.
Assume that x3,1 = x1,3 = n/3. This implies that
x1,1 + x2,2 + x3,3 = n/3 and x1,2 = x2,1 = 0 and a
situation where k+− > k++, as for all n/3 ≤ k ≤ n
then k − |Subk(T+

x) ∩ Subk(T−y)| ≤ n/3. Hence this also
contradicts our original assumption of k++ ≥ k+−. So
x3,1 < n/3 and x2,1 > 1 as x2,1 + x3,1 = n/3. But
this means that x1,1 + x1,2 + x1,3 + x2,3 + x3,3 < n/3
(recall that all xi,i are disjoint) which in turn implies that
Subk++

(T−x) \ Subk++
(T+

y) < n/3 and hence k++ < k+−.
But k++ ≥ k+− so we again have a contradiction! Hence
k++ = n is the only viable alternative, completing our
proof.

By Lemma 7 the following result becomes fairly straight-
forward.
Lemma 8. (*) CDPA can be solved in O∗((cn)2n/3) time
with dynamic programming.

To improve this approach further we implement the same
methods as we used in Section 3: instead of strictly using
orderings we use records containing pairs (Si, Bi) where
Si are subsets of V and Bi is the Boolean keeping track
of if we can add new variables to the given set or not.
Similarly to the ALLEN case we also limit the number of
such pairs we allow at once. What differs from ALLEN to
CDPA is that we, again, for CDPA need to keep track of
two orderings, giving us both (Sx

0 , B
x
0), . . . , (Sx

m, Bx
m) and

(Sy
0 , B

y
0), . . . , (Sy

m, By
m). Hence the final form of the records

are (S, (Sx
0 , B

x
0), . . . , (Sx

m, Bx
m), (Sy

0 , B
y
0), . . . , (Sy

m, By
m)).

Further, the notation of left-heaviness needs to be adapted
to the use of two ordered partitions: For all i ∈ {0, . . . ,m}
every variable in some Sx

i also needs to be in either Sy
0 or S2

1
and every variable in Sy

i also needs to be in either Sx
0 or Sx

1 .
By also balancing Sx

0 ∪ Sy
1 and Sy

0 ∪ Sy
1 to remain of roughly

similar size, we also keep the advantages from our earlier im-
provements to CDPA. Pair-placing here means that once we
place a variable in Sx

1 or Sy
1 we also simultaneously place it

in Sy
i or Sx

i respectively. With this approach, combined with
similar logic to our second improvement for CDPA, we at
most need as many holes as the current number of unplaced
variables. If more is needed, the solution is easier to find in
another orientation.
Theorem 9. CDPA can be solved in O∗((cn

logn)2n/3) time
using dynamic programming with sublinear partitioning.

Proof. (Sketch) By using records of the form
(S, (Sx

0 , B
x
0), . . . , (Sx

i , B
x
i), (Sy

0 , B
y
0), . . . , (Sy

j , B
y
j)),

balancing Sx
0 ∪ Sy

1 and Sy
0 ∪ Sy

1 to roughly equal size, and
using our substitute for left-heaviness and pair-placing, we
can apply Algorithm 2 with only a few minor modifications.
While we in Lemma 8 effectively found the optimum for
|Subk++

(T+
x) \ Subk++

(T+
y)|! we are here instead interested

in optimizing (2 · |V \ {Subk++(T+
x) ∪ Subk++(T+

y)}| +

1)|Subk++
(T+

x)\Subk++
(T+

y)|. I.e., assuming there are m
unplaced variables we need at most m holes in both the x
and y direction, while partitioning our current variables into

the roughly 2m + 1 possible sets in each direction, yielding
(2m + 1)(1−1/3)n−m. Since this function, for large n, has a
smaller optimum than n!, our complexity is directly given by
Lemma 8 combined with the same logic as for Theorem 4.
Similarly, correctness also follows via similar arguments to
those in Theorem 4.

With Theorem 9 in place we now have a o(n)2n/3 algorithm
for CDPA.

5 Discussion and Conclusion
While the results presented in the paper yield significant im-
provement to the worst-case complexity of ALLEN and CDPA,
a plethora of questions and open ends remain.

For ALLEN we consider two major open questions left by
our results; the first one being the true value of c and the
second that our approach with using left-heaviness seems
overly restrictive. Is there a better algorithm that does not
necessitate the restriction of left-heaviness and instead allows
merging sets to both the left and the right? While removing
the restriction of left-heaviness is not difficult, it significantly
complicates the analysis, and we did therefore not attempt it.

The questions raised for ALLEN naturally also hold for
CDPA. However, in this case the value of the exponent is
arguably of more interest. While we saw in Section 4 how
the exponent 2n/3 occurred naturally, many general problems
solvable in 2O(n) time often have 2O(

√
n) algorithms for the

two-dimensional variants. Could this imply that there might be
an O∗((cn)n/2) algorithm for CDPA? Finding such an algo-
rithm, and maybe even improving it further to O∗((cn

logn)n/2)

would be very interesting.
The main idea behind the dynamic programming with sub-

linear partitioning scheme is that we can dynamically restrict
the amount of information stored. To the best of our knowl-
edge, this approach has not been explored before in the lit-
erature, and we believe that it can be expanded further. For
example, while we here focus on only one type of structure,
there is nothing preventing us from storing multiple, e.g. ex-
ponentially many, different types of structures simultaneously.
This concept would likely be enough to at least match the
2O(n log log n) results for ALLEN restricted to only interval
length one of [Dabrowski et al., 2020], while keeping the
O∗((cn

lnn)n) complexity for general ALLEN.
In conclusion, we have in this paper seen how we can use

structural properties required by solutions for ALLEN and
CDPA instances to achieve, significantly, improved upper
bounds for these problems. In particular we have seen how we
using dynamic programming combined with optimizing how
much information we store in each iteration, can solve ALLEN
in O∗((cn

lnn)n) time CDPA in O∗((cn
lnn)2n/3) time.

Acknowledgements
We thank the anonymous reviewers for several insightful com-
ments. The first author is partially supported by the National
Graduate School in Computer Science (CUGS), Sweden. The
second author is partially supported by the Swedish Research
Council (VR) under grant 2019-03690.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1925

References
[Allen and Koomen, 1983] James F. Allen and Johannes A.

G. M. Koomen. Planning using a temporal world model.
In Proceedings of the 8th International Joint Conference
on Artificial Intelligence (IJCAI-1983), pages 741–747.
William Kaufmann, 1983.

[Dabrowski et al., 2020] Konrad K. Dabrowski, Peter Jons-
son, Sebastian Ordyniak, and George Osipov. Fine-grained
complexity of temporal problems. In Proceedings of the
17th International Conference on Principles of Knowledge
Representation and Reasoning (KR-2020), pages 284–293,
2020.

[Denis and Muller, 2011] Pascal Denis and Philippe Muller.
Predicting globally-coherent temporal structures from texts
via endpoint inference and graph decomposition. In Pro-
ceedings of the 22nd International Joint Conference on
Artificial Intelligence (IJCAI-2011), pages 1788–1793. IJ-
CAI/AAAI, 2011.

[Dorn, 1995] Jürgen Dorn. Dependable reactive event-
oriented planning. Data & Knowledge Engineering,
16(1):27–49, 1995.

[Dylla et al., 2017] Frank Dylla, Jae H. Lee, Till
Mossakowski, Thomas Schneider, André V. Delden,
Jasper V. D. Ven, and Diedrich Wolter. A survey of
qualitative spatial and temporal calculi: Algebraic and
computational properties. ACM Computing Surveys
(CSUR), 50(1):7:1–7:39, April 2017.

[Eriksson and Lagerkvist, 2021] Leif Eriksson and Victor
Lagerkvist. Improved algorithms for Allen’s interval alge-
bra: a dynamic programming approach. In Proceedings
of the 30th International Joint Conference on Artificial
Intelligence (IJCAI-2021), pages 1873–1879, 2021.

[Eriksson and Lagerkvist, 2022] Leif Eriksson and Victor
Lagerkvist. A multivariate complexity analysis of qualita-
tive reasoning problems. In Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence,
IJCAI-22, pages 1804–1810. International Joint Confer-
ences on Artificial Intelligence Organization, 7 2022.

[Frank, 1991] Andrew U. Frank. Qualitative spatial reasoning
with cardinal directions. In Hermann Kaindl, editor, Pro-
ceedings of the 7th Austrian Conference on Artificial Intelli-
gence (ÖGAI-91), volume 287 of Informatik-Fachberichte,
pages 157–167. Springer, 1991.

[Golumbic and Shamir, 1993] M. C. Golumbic and
R. Shamir. Complexity and algorithms for reason-
ing about time: A graph-theoretic approach. Journal of the
ACM, 40(5):1108–1133, 1993.

[Jonsson and Lagerkvist, 2017] Peter Jonsson and Victor
Lagerkvist. An initial study of time complexity in infinite-
domain constraint satisfaction. Artificial Intelligence,
245:115–133, 2017.

[Jonsson et al., 2021] Peter Jonsson, Victor Lagerkvist, and
George Osipov. Acyclic orders, partition schemes and csps:
Unified hardness proofs and improved algorithms. Artificial
Intelligence, 296:103505, 2021.

[Mudrová and Hawes, 2015] Lenka Mudrová and Nick
Hawes. Task scheduling for mobile robots using interval
algebra. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA-2015),
pages 383–388. IEEE, 2015.

[Pelavin and Allen, 1987] Richard N. Pelavin and James F.
Allen. A model for concurrent actions having temporal
extent. In Proceedings of the 6th National Conference on
Artificial Intelligence (AAAI-1987), pages 246–250. Mor-
gan Kaufmann, 1987.

[Song and Cohen, 1988] Fei Song and Robin Cohen. The
interpretation of temporal relations in narrative. In Pro-
ceedings of the 7th National Conference on Artificial Intel-
ligence (AAAI-1988), pages 745–750. AAAI Press / The
MIT Press, 1988.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1926

