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Abstract
This paper addresses the weighted vertex coloring
problem (WVCP) which is an NP-hard variant of
the graph coloring problem with various applica-
tions. Given a vertex-weighted graph, the problem
consists of partitioning vertices in independent sets
(colors) so as to minimize the sum of the maximum
weights of the colors. We first present an iterative
procedure to reduce the size of WVCP instances and
prove new upper bounds on the objective value and
the number of colors. Alternative constraint pro-
gramming models are then introduced which rely
on primal and dual encodings of the problem and
use symmetry breaking constraints. A large num-
ber of experiments are conducted on benchmark in-
stances. We analyze the impact of using specific
bounds to reduce the search space and speed up
the exact resolution of instances. New optimality
proofs are reported for some benchmark instances.

1 Introduction
Given a vertex-weighted graph, the weighted vertex coloring
problem (WVCP) consists of partitioning vertices into inde-
pendent sets (colors) so as to minimize the sum of the max-
imum weights of the colors. This problem has applications
in different domains ranging from metropolitan area network
design [Halldórsson and Shachnai, 2008] and batch schedul-
ing in distributed computing [Liu et al., 2006] to traffic as-
signment in telecommunications [Prais and Ribeiro, 2000].

Formally, a WVCP instance P = (G,w) is defined by an
undirected graph G = (V,E) with vertex set V and edge set
E and a function w : V 7→ N∗ assigning a strictly positive
weightw(v) to each vertex v. A (legal) coloring of P is a par-
tition {V1, . . . , Vk} of V into k independent sets of vertices,
that is, no pair of vertices in each color Vi is connected in G.
The objective is to find a coloring S = {V1, . . . , Vk} whose
score f(S) =

∑k
i=1 maxv∈Vi w(v) is minimum.

WVCP generalizes the graph coloring problem (GCP) which
is NP-hard and consists in determining the chromatic num-
ber χG of a graph G, i.e., the minimum size of its color-
ings. Indeed GCP is the class of WVCP instances whose ver-
tex weights are all equal. Therefore WVCP is also NP-hard.

Various complexity and approximability results have been es-
tablished for specific classes of WVCP (see e.g. [Boudhar and
Finke, 2000; Demange et al., 2007]). New exact methods
have been proposed more recently, notably [Cornaz et al.,
2017]) which is effective for dense instances, as well as pow-
erful metaheuristics [Wang et al., 2020; Nogueira et al., 2021;
Grelier et al., 2022] which have produced new upper bounds
for medium and large instances of all types. Constraint Pro-
gramming (CP) and hybrid CP methods have also been pro-
posed for the graph coloring problem (e.g. [Gualandi and
Malucelli, 2012; Hébrard and Katsirelos, 2020]) but not ex-
tended to WVCP to the best of our knowledge.

In this paper, we propose new vertex reduction rules, up-
per bounds and CP models for WVCP. Building on the work
of [Wang et al., 2020], we first present two vertex reduc-
tion rules and an iterative procedure to reduce instance size
(Section 2). We then establish new upper bounds on the
score and number of colors based on the chromatic num-
bers of the subgraphs induced by the different weight val-
ues of an instance (Section 3). Next, we present three CP
models for WVCP: a primal model enforcing solution com-
pactness using a dedicated global constraint, a dual model
based on a reduction of WVCP to the maximum weighted
stable set problem following [Cornaz et al., 2017], and a
joint model (Section 4). Lastly, we report experimental re-
sults on the CP models and study the impact of pre-computed
bounds. The results show that our approach is competitive
across a wide variety of benchmark instances (Section 5).
The reader is referred to the supplementary material (https:
//github.com/Cyril-Grelier/gc wvcp cp) for proofs, complete
experimental results, and source code.

2 Vertex Reduction Procedure
This section presents an iterative vertex reduction procedure
for WVCP using two rules. We shall denote by N(v) = {u ∈
V | {u, v} ∈ E} the neighborhood of vertex v inG = (V,E),
and ∆ = maxv∈V |N(v)| the degree of G. A clique C of G
is a subset of V whose vertices are pairwise adjacent.

2.1 Reduction Rules
[Wang et al., 2020] proposed a reduction rule (R0) consisting
in comparing the weight of a vertex u with the weights of the
vertices of a given clique C of the graph G, such that u /∈ C.
We propose an improvement R1 to this rule, which takes into
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Algorithm 1 POSICLIQUE

1: Input: WVCP instance P = (G,w), vertex u ∈ V and
clique C = {c1, . . . , c|C|} s.t. w(ci) ≥ w(cj) (1 ≤ i <
j ≤ |C|).

2: Output: d ∈ N∗
3: d← |N(u)|+ 1 ; lC ← |C| − 1
4: for i from 0 to lC do
5: if c|C|−i ∈ N(u) and |C| − i ≥ d then
6: d← d− 1
7: return d

account the fact that u may have neighbors in C using the
POSICLIQUE procedure.

Rule 1. Let P = (G,w) be a WVCP instance with
G = (V,E), C a clique of G, u ∈ V \ C, and d =
POSICLIQUE(u,C). If d ≤ |C| and w(u) ≤ w(cd), the opti-
mal score of P is unchanged after removing u from G.

Proof. See supplementary material.

This first rule (R1) is equivalent to the rule R0 when
N(u) ∩ C = ∅. In this case, d = |N(u)| + 1 and u is re-
moved if d ≤ |C| and w(u) ≤ w(cd). However, our rule
is stronger when N(u) ∩ C 6= ∅ since the value d returned
by POSICLIQUE may be lower than |N(u)| + 1 which im-
proves the chance of a successful check w(u) ≤ w(cd) due
the weight-based decreasing order assumed on the vertices of
cliques. Note that the worst-case time complexity of the rule
is O(∆2).

Figure 1 sketches two graphs including a clique C =
{c1, c2, c3, c4} and a vertex u of weight 6 to illustrate the
evaluation of the rule. In both cases, |N(u)| = 2. On the left,
c2 ∈ N(u). Thus, given u and C as inputs, POSICLIQUE
returns d = 3 and u cannot be deleted since it may have to
take the same color as c3 in the worst case and its weight is
greater than w(c3) = 4. On the right, c3 ∈ N(u). In this
case, POSICLIQUE returns d = 2 and u can be removed since
it can take the blue or red color, and in either case, there is
no impact on the WVCP score because its weight of 6 is lower
than w(c1) = 8 and w(c2) = 7. Note that the rule R0 does
not allow to remove u in these two scenarios since w(u) is
strictly greater than w(c|N(u)|+1) = 4.

Our second reduction rule (R2) is an adaptation of the sec-
ond reduction operator originally proposed by [Cheeseman
et al., 1991] for the k-coloring problem. Its worst-case time
complexity is O(∆2).

Figure 1: Application of rule R1 to a vertex u of weight w(u) = 6
and a clique C = {c1, c2, c3, c4} in two different cases. Left: u
cannot be removed. Right: u can be removed.

Rule 2. Given a WVCP instance P = (G,w) with G =
(V,E) and two vertices u, v ∈ V such that N(u) ⊂ N(v)
and w(u) ≤ w(v) then the optimal score of P is unchanged
after removing vertex u from G.

Proof. See supplementary material.

2.2 Maximum Weighted Cliques Extraction and
Iterative Reduction

R1 considers the deletion of a vertex relatively to a single
clique. We propose to widen its scope by applying it to differ-
ent cliques ofG = (V,E). Ideally, each cliqueC should have
maximum weight

∑
c∈C w(c). However, finding a clique

of maximum weight in a graph is NP-hard so we rely on a
fast heuristic to perform this task, namely, the FastWClq al-
gorithm [Cai and Lin, 2016]. FastWClq iteratively builds a
clique with greedy moves using any vertex as a starting point.
To keep run time acceptable while aiming for diversity across
cliques, we compute |V | cliques by generating a single clique
per vertex v ∈ V using v as the starting point for FastWClq.
This procedure is O(|V |3).

Once the cliques generated, the two reduction rules are ap-
plied to each vertex by increasing order of weights. Each time
a vertex is deleted, it is stored in a list L and the graph G and
the set of cliques are updated to take the deletion into account.
The process is repeated until no vertex can be removed. This
iterative procedure is O(∆2|V |3). When a solution is found
for the instance P ′ = (G′, w) produced by the reduction pro-
cedure, it is possible to obtain a solution of the same score
for the original instance P = (G,w) by coloring each vertex
of the list L with a greedy algorithm in the reverse order of
arrival in L.

3 Upper Bounds on Score and Number of
Colors

Theorem 1 introduces new upper bounds on the score and
number of colors to solve a WVCP to optimality. These
bounds are based on the chromatic numbers of the sub-
graphs induced by each weight value. We denote by W =
{w(v) | v ∈ V } the set of weight values used in G, Gw =
(Vw, Ew) the subgraph of G induced by weight w where
Vw = {v ∈ V | w(v) = w} and Ew = {{u, v} ∈ E | u, v ∈
Vw}, and χGw the chromatic number of Gw.
Theorem 1. Given a WVCP instance P = (G,w) with G =
(V,E) and an optimal solution S∗ = {V1, . . . , Vk} of P cor-
responding to a partition of V into k non-empty independent
sets, then k ≤

∑
w∈W χGw and f(S∗) ≤

∑
w∈W w × χGw .

Proof. See supplementary material.

Consider the WVCP instance shown in Figure 2. The upper
bounds derived from Theorem 1 on the number of colors and
the score are respectively equal to 3 = χ3 + χ1 = 1 + 2
and 5. Both bounds are exact in this case and the solution
shown is optimal. Computing the upper bounds involves solv-
ing |W | GCP sub-problems to obtain the chromatic numbers
χGw (w ∈ W ). Since GCP is NP-hard, the chromatic num-
bers may be upper-bounded using heuristics for GCP such as
TabuCol [Hertz and de Werra, 1987] (see Section 5.2).
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4 Constraint Programming Models
This section introduces three alternative CP models for WVCP
called primal, dual, and joint. We shall use the following no-
tations. Given a set S, [S] denotes the range {1, . . . , |S|}. For
a function f : X 7→ Y and X ′ ⊆ X , f(X ′) denotes the im-
age of X ′ by f and f−1 : Y 7→ 2X the function defined by
f−1(y) = {x ∈ X|f(x) = y}. For a vertex v of a graph G,
N(v), ∆(v) and ∆(G) denote respectively the set of neigh-
bours of v, its degree and the maximum vertex degree in G.

Let κ ∈ N∗ and P be a WVCP instance of graph G =
(V,E) and weight function w, Pκ denotes the problem of de-
termining the existence of a solution to P that uses a number
of colors smaller than or equal to κ. Given a pair (P, κ), each
model searches for an optimal solution to Pκ. i.e. a solution
s to Pκ whose score f(s) is the lowest among all solutions to
Pκ. A model may therefore be instantiated with κ = |V | to
solve P optimally or with any known upper bound κ < |V |
on the number of colors. Note that an optimal solution for Pκ
is not necessarily optimal for P . Consider the instance P of
Figure 2. The optimal score for P3 is the score of the solution
shown and equal to 5 whereas the optimal score for P2 is 6.

The CP models require a total ordering ≥w over V which
is consistent with the descending order of weights (u ≥w
v → w(u) ≥ w(v) for u, v ∈ V ). We shall say that ver-
tex u dominates vertex v if u ≥w v. The dominance or-
dering may be freely chosen and it is encoded by a consis-
tent indexing of vertices over [V ] (vi ≥w vj ↔ i ≤ j
for i, j ∈ [V ]).1 Solutions to Pκ are thus modeled as maps
s : [V ] 7→ K where K = {1, . . . , κ} is the range of colors.
In order to break symmetries induced by color permutation,
the computation is restricted to d-sorted solutions also called
d-solutions. A solution is d-sorted if non-empty colors start
from rank 1 and are sorted consistently with the ordering ≥w
of their dominant vertices. Formally, s : [V ] 7→ K is d-sorted
if s([V ]) = [s([V ])] and min(s−1(j)) < min(s−1(k)) for
1 ≤ j < k ≤ |s([V ])|. Clearly, the set of solutions to Pκ is in
one-to-one correspondence with the set of d-solutions which
we shall denote by SPκ .

The primal model of Pκ represents vertex coloring deci-
sions as variables and uses symmetry breaking constraints to
compute optimal and compact d-sorted solutions. The dual
model is based on a reduction of WVCP to the maximum
weighted stable set problem which turns the complement of
G into a directed graph using the chosen ordering ≥w [Cor-
naz et al., 2017]. Dual variables represent decisions to keep or
remove arcs in this digraph so as to construct pairwise vertex-
disjoint simplicial stars. The simplicial stars of a dual solu-
tion map one-to-one with the colors of size ≥ 2 in the primal
solution, the center of a star being the dominant vertex in the
corresponding color. A dual solution is scored by summing
the weights of the target nodes in the simplicial stars. The
sum of the dual and primal scores of a solution is therefore
equal to the sum of the weights over all vertices. The joint
model is essentially a combination of the primal and dual
models using channeling constraints. Figure 2 illustrates the
primal and dual representations of a d-solution.

1The dominant vertex vi in a set of vertices {vi1 , . . . , vin} is
thus identified by i = min{i1, . . . , in}.

Figure 2: Primal and dual representations of a d-solution to a WVCP
(G,w) using 3 colors and dominance order (v1, . . . , v6). G is rep-
resented with blue edges and the dual graph with red arcs. The pri-
mal solution (K1,K2,K3) is represented by boxes. The simplicial
stars {(v1, v2), (v1, v5)} and {(v3, v6)} of the dual solution are rep-
resented by solid arcs, excluded arcs are dashed. The score of the
primal solution is w(v1) + w(v3) + w(v4) = 5. The score of the
dual solution is w(v2) + w(v5) + w(v6) = 5.

4.1 Primal Model
The primal model supports variability in the number of col-
ors used across solutions and includes symmetry breaking
constraints. To allow for the possibility that some colors of
K may have no vertices in a solution, G is extended with
virtual vertices. Specifically, a disconnected vertex uk of
weight 0 is introduced for each color k ∈ K and system-
atically assigned to k in any solution. The weight function
w is extended accordingly to cover the whole set of vertices
U = V ∪{uk|k ∈ K} and so is dominance ordering≥w. The
latter is encoded by a consistent indexing of vertices over [U ]
(vi ≥w vj ↔ i ≤ j for i, j ∈ [U ]).

The model is given by constraints (P1-P10) and uses global
constraints INT SET CHANNEL and STRICTLY INCREASING
[Beldiceanu et al., 2005]. (P1) models the WVCP score to
minimize with integer variable xo which is lower-bounded by
the maximum vertex weight and upper-bounded by the sum
of the weights (or any given bounds). (P2) associates each
vertex vi ∈ U with an integer variable xUi representing its
coloring in a solution. Each color k ∈ K is associated with
a set variable xKk representing its set of vertices (P3) and an
integer variable xDk representing its dominant vertex (P4).

minimize xo s.t.

xo ∈ {max
vi∈V

(w(vi)), . . . ,
∑
vi∈V

w(vi)} (P1)

∀vi ∈ U : xUi ∈ K (P2)

∀k ∈ K : xKk ∈ 2U (P3)

∀k ∈ K : xDk ∈ U (P4)

INT SET CHANNEL([xKk |k ∈ K], [xUi |vi ∈ U ]) (P5)

∀k ∈ K : xU|V |+k = k (P6)

∀{vi, vj} ∈ E : xUi 6= xUj (P7)

∀k ∈ K : xDk = min (xKk ) (P8)

xo =
∑
k∈K

w[xDk ] (P9)

STRICTLY INCREASING(xD) (P10)
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(P5) links vertex and color variables through a channeling
constraint involving auxiliary boolean variables that reify do-
main membership (xUi = k ↔ i ∈ xKk for all vi ∈ U, k ∈
K). (P6) enforces a one-to-one mapping between virtual ver-
tices and colors thereby ensuring the existence of a dominant
vertex for each color. (P7) models the coloring constraints
induced byG. (P8) defines the dominant vertex (possibly vir-
tual) of each color. (P9) models the scoring function as the
sum of the weights of the dominant vertices using element
constraints. Note that empty colors get cancelled out in this
sum. Lastly, (P10) enforces the dominance ordering on colors
(xDk−1 < xDk for 2 ≤ k ≤ |K|). No lexicographic ordering
constraint [Frisch et al., 2002] is needed here due to the in-
dexing of vertices using ≥w.

We now formalize a compactness property for d-solutions
and show that every WVCP instance (G,w) has optimal d-
solutions which are compact. Such solutions are computable
with a maximum of ∆(G)+1 colors. We then propose a
global constraint that guarantees solution compactness when
it is applied to the neighborhood of each vertex. Informally,
a d-solution is compact if the color of any vertex is the low-
est in K that is left free by its neighbors. In other words, no
vertex may be “left-shifted” to a lower-ranked color without
violating coloring constraints. For instance, the d-solution in
Figure 2 is compact since neither v3, v4 nor v6 may be left-
shifted. If (v3, v4) and (v5, v6) were not part of the graph,
then v6 and v4 could be left-shifted to colors K1 and K2 re-
spectively to compact the solution. Solution compactness is
defined using a function which computes the lowest possible
color for a vertex in a d-solution.

Definition 1. Let Pκ be a satisfiable WVCP instance and
µPκ : SPκ × V 7→ K such that, for all s ∈ SPκ , v ∈ V ,
µPκ(s, v) = mink=1..∆(v)+1({k | ∀u ∈ N(v) : s(u) 6= k}).
s ∈ SPκ is compact if µPκ(s, v) = s(v) for all v ∈ V .

µPκ clearly exists and is uniquely defined since the neigh-
bors of a vertex v may not use more than ∆(v) colors in the
range {1, . . . ,∆(v) + 1}. Besides, left-shifting a vertex v us-
ing µPκ may only decrease the score of a d-solution s or leave
it unchanged. However, the resulting solution may not be d-
sorted if v was the dominant vertex of an intermediate color
k < |s(V )| and the latter gets empty or dominated by the next
color after the shift. The resulting solution may also include
a greater number of vertices that can be left-shifted compared
to the original solution. Theorem 2 shows there actually ex-
ists an idempotent function that turns any d-solution into a
compact d-solution with no score increase. The proof is based
on a recursive algorithm which, given a d-solution, combines
vertex left-shifting (µPκ ) with color left-shifting and swap op-
erations to converge towards a compact d-solution.

Theorem 2. Let Pκ be a satisfiable WVCP instance. There
exists gPκ : SPκ 7→ SPκ such that, for all s ∈ SPκ , gPκ(s) is
compact, f(gPκ(s)) ≤ f(s) and gPκ(gPκ(s)) = gPκ(s).

Proof. See supplementary material.

An immediate corollary of Theorem 2 is that every satisfi-
able instance Pκ has an optimal d-solution which is compact.
Therefore, every WVCP P has an optimal solution which is a

compact and optimal d-solution for Pκ with κ = |V |. By def-
inition of µPκ , no vertex v is colored beyond the first ∆(v)+1
colors in this solution. It follows that the maximum degree
of G plus 1 is a safe upper-bound on the number of colors
needed to optimally solve P as already proved in [Demange
et al., 2007]. Hence Pκ with κ = ∆(G) + 1 has an optimal
and compact d-solution which is also optimal for P .
Corollary 1. Let P be a WVCP instance. P∆(G)+1 has an
optimal and compact d-solution which is optimal for P .

Proof. See supplementary material.

Thanks to Corollary 1, the primal model may be safely in-
stantiated with ∆(G) + 1 colors and, by definition of µPκ ,
be tightened with constraints upper-bounding the domain of
each vertex variable xUi with ∆(vi)+1. We now introduce the
global constraint MAX LEFT SHIFT to enforce solution com-
pactness. MAX LEFT SHIFT applies to a vector of n positive
integer variables and determines the lowest value in the range
{1, . . . , n+ 1} that is not assigned to any of these variables.
Definition 2. Let y be an integer domain variable and
[x1, . . . , xn] be a vector of positive integer domain vari-
ables (n ≥ 0). MAX LEFT SHIFT(y, [x1, . . . , xn]) holds iff
y = mink=1..n+1({k | ∀i = 1..n : xi 6= k}).

Applying MAX LEFT SHIFT in the primal model to the
variable of a vertex vi and those of its neighbors as formulated
in constraint (P11) clearly amounts to enforcing compactness
equation µPκ(s, vi) = s(vi) on any d-solution s. (P11) thus
ensures only compact d-solutions may be generated with the
primal model. Note that (P11) makes all coloring constraints
(P7) redundant by definition of MAX LEFT SHIFT.

∀vi ∈ V : MAX LEFT SHIFT(xUi , [x
U
j |vj ∈ N(vi)]) (P11)

We now provide a decomposition of MAX LEFT SHIFT us-
ing constraints (M1-M4). The decomposition relies on global
constraint NVALUE [Pachet and Roy, 1999; Bessiere et al.,
2006] which counts the number of different values assigned
to a vector of variables: NVALUE(y, [z1, . . . , zn]) holds iff
y = |{zi|i = 1 . . . n}|. Constraint (M1) enforces that y be
different from each xi (equivalent to (P7)). (M2) associates
to each xi a variable zi ranging over {0, . . . , n + 1}. (M3)
either sets zi to xi if the latter is strictly smaller than y or to
0 otherwise. This is achieved by reifying constraint y > xi
with an implicit 0/1 variable. (M4) sets y to the number of
different values taken in the vector including all variables zi
and a ground variable of value 0. Any variable xi strictly
greater than y does not contribute to the count (i.e. the value
of y) since its variable zi is absorbed by value 0 in the vec-
tor. Hence y is the number of different values taken by the
variables it is strictly greater than plus 1 (value 0). Since all
variables are positive, this number is necessarily the lowest
possible value for y (n+ 1 in the worst-case).

MAX LEFT SHIFT(y, [x1, . . . , xn]) ≡
∀i ∈ {1, . . . , n} : y 6= xi (M1)
∀i ∈ {1, . . . , n} : zi ∈ {0, . . . , n+ 1} (M2)
∀i ∈ {1, . . . , n} : zi = (y > xi)× xi (M3)
NVALUE(y, [0, z1, . . . , zn]) (M4)
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4.2 Dual Model
The dual model for problem Pκ is a CP adaptation of the
MIP model of [Cornaz et al., 2017]. The latter applies to a
dual graph based on a reduction of WVCP to the maximum
weighted stable set problem [Cornaz and Jost, 2008]. Given
a WVCP P = (G,w) and a dominance ordering ≥w, the dual
graph is built by turning each edge {vi, vj} of the comple-
ment of G such that vi ≥w vj into the arc (vi, vj) of source
node vi and target node vj . We denote by

#  »

Ec = {ij | vi, vj ∈
V ∧{vi, vj} /∈ E∧vi ≥w vj} the set of arcs of the dual graph,
and T its set of target nodes (nodes with incoming arcs).

The reduction relies on the notion of a simplicial stellar
forest. A pair of arcs (ij, ik) is simplicial if an arc exists be-
tween j and k in the dual graph. A star (i.e. a set of arcs with
the same source node) is simplicial if each pair of arcs in the
star is simplicial in the dual graph. A simplicial stellar forest
is a set of simplicial stars that span disjoint subsets of nodes.
[Cornaz et al., 2017] show that the legal colorings of a WVCP
instance map one-to-one with the simplicial stellar forests of
its dual graph. Note that singleton colors in a WVCP solution
map to the disconnected nodes in the corresponding forest. A
simplicial stellar forest is scored by summing the weights of
the target nodes of its arcs. This score added to the WVCP
score of the corresponding primal solution is therefore equal
to the sum of the weights of all the vertices (see Figure 2).

maximize yo s.t.

∀ij ∈
#  »

Ec : yAij ∈ {0, 1} (D1)

yo ∈ {0, . . . ,
∑
vi∈V

(w(vi))} (D2)

yo =
∑
ij∈

# »

Ec

w(vj)× yAij (D3)

∀ij, ik ∈
#  »

Ec s.t. {jk, kj} ∩
#  »

Ec = ∅ :

yAij + yAik ≤ 1 (D4)

∀ij, jk ∈
#  »

Ec : yAij + yAjk ≤ 1 (D5)

∀hj, ij ∈
#  »

Ec : yAhj + yAij ≤ 1 (D6)

∀vi ∈ V : zVi ∈ {0, 1} (D7)

∀vi ∈ T : zVi = 1− max
(h,i)∈

# »

Ec
(yAhi) (D8)

∀vi ∈ V \ T : zVi = 1 (D9)∑
vi∈V

zVi ≤ κ (D10)

The dual model is given by constraints (D1-D10). (D1-D6)
correspond to the MIP model used to compute simplicial stel-
lar forests. (D1) associates the arcs of

#  »

Ec with 0/1 variables
representing the exclusion (yAij = 0) or inclusion (yAij = 1) of
each arc ij in the forest. (D2) models the score to maximize
and (D3) the scoring function. (D4) forbids non-simplicial
stars. (D5) forbids the chaining of arcs and (D6) multiple
incoming arcs to enforce disjointness and star structure.

Colors are not computed in the MIP model but must be
counted and upper-bounded here to solve Pκ. To this effect,

(D7-D10) make color dominants explicit. (D7) defines 0/1
variables indicating if a node vi is the dominant vertex of a
color in the corresponding WVCP solution (zVi = 1) or not
(zVi = 0). Based on the reduction, a node is dominant iff
it is the center of a simplicial star (hence dominating a color
of size ≥ 2) or it is disconnected in the forest (hence be-
ing the only node in its color). We consider two cases based
on whether vi is a target node in the dual graph (D8) or not
(D9). (D8) ensures that a target node is dominant iff it is not
the target of any arc in the simplicial stellar forest (e.g. v3

and v4 in Figure 2). (D9) ensures that a node which is not
a target node in the graph can never be dominated. The top
node v1 and each disconnected node in the graph always fall
into this category. Since every color has a single dominant,
(D10) upper-bounds the number of dominants with κ. Note
that, as opposed to the primal model, no symmetry breaking
is needed here to handle color permutation, neither is option-
ality modeling [Mears et al., 2014] to handle unused colors.

4.3 Joint Model

The joint model combines the primal and dual models with
constraints (J1-J4). Despite a quadratic space complexity (it
encodes the instance graph and its complement), one may ex-
pect benefits from the bi-directional propagation, especially
for graphs of average density which incur the lowest overhead
compared to the other models. (J1-J3) are the core constraints
matching the primal and dual solutions. (J1) states that the
presence of an arc in the dual solution is a sufficient condi-
tion for its two vertices be colored identically. (J2) matches
the color dominants in the two representations using a global
cardinality contraint and (J3) models the equation linking pri-
mal and dual solution scores. (J4) is equivalent to (P11) but
considers non-adjacent vertices instead of neighbours to left-
shift a vertex. Given a vertex vi and any non-adjacent domi-
nant vertex vj ≥w vi, (J4) enforces that vi is in vj’s color or a
lower-ranked color if none of its neighbors vh is in vj’s color.

minimize xo s.t.

∀ij ∈
#  »

Ec : yAij ≤ (xUi = xUj ) (J1)

GCC([xDk | k ∈ K], V, [zVi | vi ∈ V ]) (J2)

xo + yo =
∑
vi∈V

w(vi) (J3)

∀vi ∈ V, vj ∈ N(vi) s.t. vj ≥w vi :( ∧
vh∈N(vi)∩N(vj)

xUh 6= xUj

)
⇒ xUi ≤ xUj (J4)

5 Experiments

We first introduce the benchmark instances used for exper-
iments and analyse the impact of our reduction procedures
on instance size. We then discuss the impact of using pre-
computed bounds on problem-solving efficiency. Lastly, we
compare the results of our CP models with the state-of-the-art.
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Benchmark instances. A total of 188 WVCP instances
were considered: 30 rxx graphs and 35 pxx graphs from ma-
trix decomposition problems [Prais and Ribeiro, 2000] and
123 graphs coming from the DIMACS and COLOR compe-
titions [Sun et al., 2018]. Due to lack of space, we report
detailed results on 12 instances of different sizes, graph den-
sities, and weight and degree distributions. Complete bench-
mark instances, source code, and results are available in the
supplementary material.
Experimental settings. Experiments were performed on an
Intel Xeon ES 2630, 2.66 GHz, Broadwell. CP models were
programmed using Minizinc [Nethercote et al., 2007] and
solved using OR-Tools [Perron and Furnon, 2022]. We used
heuristics first-fail combined with domain bisection to solve
primal and joint instances and a static heuristics sorting arcs
by descending order of weights to solve dual instances. A
time limit of 1 hour using a single CPU was set for each run.

5.1 Reduction of Instance Sizes
Table 1 reports the impact of the different reduction rules on
the whole set of 188 instances. As for R0 and R1, we pre-
computed a set of cliques C as discussed in Section 2.1 then
applied each rule individually to each pair (v, c) with v ∈ V
and c ∈ C (lines R0 and R1). As for R2, we applied the rule
to each pair of non-adjacent vertices. (R1 + R2) corresponds
to the joint application of the two reduction rules. Lastly It-
erative corresponds to the iterative reduction procedure (see
Section 2.2) which applies R1 and R2 until no vertex can be
removed.

We see that R1 works slightly better than R0 in terms of
number of reduced instances (# RI) and average percentage
of reduction (% RV) for these reduced instances. Overall, we
observe a great improvement due to the iterative procedure.
The computational time required to perform the different re-
ductions remains reasonable in average in comparison with
rule R0 (see column 7).

We will only consider the reduced instances in the experi-
ments described in the rest of the paper. Note that using the
reduced instances allows to greatly improve the results com-
pared to the original ones (see supplementary material).

5.2 Bounds on Number of Colors and Score
Table 2 shows lower and upper bounds on the score and the
number of colors required for an optimal solution given by
Theorem 1 or coming from previous studies.

Columns 1-4 show the different characteristics of the in-
stances. Column 4 introduces a measure of weight hetero-
geneity defined by hW = |W |

|V | . Column 5 reports the value
∆ + 1 (∆ denotes the maximum vertex degree in the graph)

# RI # RV avg # RV max %RV avg %RV max t(s) avg

R0 82 34.2 469 13.4 65 2.6
R1 84 39.5 574 14.7 66.4 3.8

R1+R2 85 41.7 596 15.4 69 4.1
Iterative 85 54.3 683 23.3 80.9 9.8

Table 1: Impact of the reduction procedures. # RI: number of
reduced instances (out of 188 instances), #RV : number of reduced
vertices, %RV : percentage of reduction and time t(s) in seconds.

which is a baseline upper bound on the number of colors re-
quired to obtain an optimal solution [Demange et al., 2007].
Column 6 reports a lower bound on the number of colors
which corresponds to the maximum size of a clique in G
found with the clique extraction procedure applied during the
first reduction pre-processing step (see Section 2.2). Column
7 corresponds to the upper bound on the number of colors
given by Theorem 1. This bound was obtained by solving
|W | GCP sub-problems with decreasing number of colors us-
ing the C++ implementation of the TabuCol algorithm [Hertz
and de Werra, 1987] proposed in [Moalic and Gondran, 2018]
with a limit of 1000 iterations without improvement for each
graph k-coloring sub-problem. It does not take more than 0.1
second per instance to compute the global upper bound with
this method. This upper bound is written in bold when it is
better than the bound ∆ + 1, which happens almost all the
time, except for specific instances such as r30 characterized
with a high weight heterogeneity hW . Column 8 is a lower
bound on the score computed with the method proposed by
[Wang et al., 2020] (see Proposition 1) and using the set of
maximum weighted cliques computed with the FastWClq al-
gorithm. Column 9 reports the upper bound on the score com-
puted according to Theorem 1.

5.3 Impact of Color and Score Bounds
Table 3 shows the impact on the primal model of the upper
bound on the number of colors (see Theorem 1) as well as
the impact of introducing simultaneously all the bounds pre-
sented in the last section. The impact of the other bounds each
taken separately is presented in the supplementary material.

Column 1 is the name of the instance. Column 2 reports
the best-known score (BKS) obtained in the literature. Some
of these BKS were obtained under specific and relaxed condi-
tions, such as one day of computation in parallel on Graphic
Processing Device (GPU) in [Goudet et al., 2022], and are
therefore very difficult to reach. When a star is added to
this score, it means that it has been proven optimal. Most of
these proofs of optimality were obtained with the MIP formu-
lation of [Cornaz et al., 2017] solved during 10h using CPLEX
[Nogueira et al., 2021].

A score is written in bold in columns 3-8 when it corre-
sponds to the BKS. When the instance is solved to optimal-
ity, a star is added and the time in seconds required to prove
optimality is reported. Otherwise “tl” is indicated meaning
that the time limit of 1 hour has been reached. The score is

colors bounds score bounds
Instance |V ′| density hW ∆ + 1 lb ub lb ub

DSJC125.1g 125 0.1 0.04 24 4 14 19 42
DSJC125.5g 125 0.5 0.04 76 10 34 42 105
DSJC125.9g 125 0.9 0.04 121 32 72 124 220
DSJR500.1 244 0.03 0.08 26 12 26 166 477
GEOM110 87 0.11 0.11 20 9 20 65 151
inithx.i.1 181 0.05 0.1 169 54 78 569 800
le450 15a 420 0.08 0.05 99 15 61 206 628
le450 25b 345 0.08 0.06 108 25 73 307 735
mulsol.i.5 104 0.23 0.18 88 31 58 367 574
queen10 10 100 0.59 0.19 36 10 36 153 420
p42 135 0.12 0.46 25 14 25 2466 8108
r30 301 0.09 0.76 35 19 35 9816 104285

Table 2: Lower and upper bounds on the score and colors.
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primal primal ub color primal all bounds
instance BKS score time(s) score time(s) score time(s)

DSJC125.1g 23 23* 862 23* 435 23* 451
DSJC125.5gb 240 270 tl 270 tl 270 tl
DSJC125.5g 71 78 tl 78 tl 78 tl
DSJC125.9g 169* 176 tl 176 tl 176 tl
DSJR500.1 169 187 tl 177 tl 169 tl
GEOM110 68* 69 tl 68* 1893 68* 1729
inithx.i.1 569* 569 tl 569 tl 569* 54
le450 15a 212 245 tl 234 tl 234 tl
le450 25b 307 307 tl 307 tl 307* 322
mulsol.i.5 367* 367 tl 367 tl 367* 31
queen10 10 162 170 tl 169 tl 169 tl
p42 2466* 2480 tl 2466 tl 2466* 2908
r30 9816* 9831 tl 9831 tl 9831 tl

nb bks reached 101/188 105/188 107/188
nb optim 72/188 75/188 95/188

Table 3: Impacts of pre-computed bounds on the primal model.

underlined if this optimality has never been proved before in
the literature.

We see that the upper bound on the number of colors
(Columns 5-6) deriving from Theorem 1 can significantly re-
duce the time spent by the solver on each instance, because it
reduces the domain of available colors for each vertex.

Columns 7-8 correspond to the results when all the lower
and upper bounds presented in Table 2 are simultaneously ac-
tivated, which allows to increase the number of BKS reached
(107 out of 188), as well as the number of optimality proofs
(95 out of 188) for the whole set of instances.

5.4 Comparison of CP Models
Table 4 compares the results obtained by the three CP mod-
els described in Section 4 (primal, dual and, joint) on the
same set of reduced instances, without using pre-computed
bounds. Columns 3-4 report the results of the primal model
(P1-P10) and Columns 5-6 correspond to the results of the
primal model extended with compactness constraints (P11)
and decomposed using constraints (M1-M4). When enforc-
ing compactness, the number of instances solved to optimal-
ity goes from 72 to 76, indicating that dynamically reduc-
ing the color domain of each vertex during the search can
be beneficial. Columns 7-8 report the results of the dual
model presented in Section 4.2 (D1-D10). We observe that
the primal and dual models obtain different results depend-
ing on the density of the instance. Unsurprisingly, the primal
model is better for instances characterized by a low graph
density (in particular it can reach a new optimality proof for

primal primal + P11 dual joint + J4
instance BKS score time(s) score time(s) score time(s) score time(s)

DSJC125.1g 23 23* 862 23* 628 26 tl 24 tl
DSJC125.5g 71 78 tl 78 tl 84 tl 78 tl
DSJC125.9g 169* 176 tl 176 tl 169* 56 169* 380
DSJR500.1 169 187 tl 173 tl 187 tl 186 tl
GEOM110 68* 69 tl 68* 53 73 tl 68* 741
inithx.i.1 569* 569 tl 569 tl 569 tl 569* 1923
le450 15a 212 245 tl 235 tl 250 tl - tl
le450 25b 307 307 tl 310 tl 314 tl - tl
mulsol.i.5 367* 367 tl 367 tl 367 tl 367* 203
queen10 10 162 170 tl 170 tl 177 tl 172 tl
p42 2466* 2480 tl 2480 tl 2517 tl 2466* 673
r30 9816* 9831 tl 9831 tl 9831 tl 9831 tl

nb BKS reached 101/188 102/188 79/188 112/188
nb optim 72/188 76/188 68/188 100/188

Table 4: Results of the different CP models.

instance |V | BKS score time(s) instance |V | BKS score time(s)

DSJC125.1gb 125 90 90* 25 myciel7gb 191 109 109* 69
DSJC125.1g 125 23 23* 11 myciel7g 191 29 29* 241
DSJR500.1 500 169 169* 66 queen9 9g 81 41 41* 509
myciel6gb 95 94 94* 17 queen10 10g 100 43 43* 820
myciel6g 95 26 26* 17 le450 25b 450 307 307* 322

Table 5: New optimality proofs for difficult benchmark instances.

instance DSJC125.1.g), while the dual is better for instances
with high-density graphs such as DSJC125.9.g. In Columns
9-10, we observe that the joint model coupling the primal and
dual models (P1-P10, D1-D10 and J1-J4), performs well on
both low and high density instances, as it can take advan-
tage of both models. It solves 100 instances over 188 to op-
timality, which is the highest number. Moreover, results on
some instances such as inithx.i.1, mulsol.i.5 and p42, which
go beyond the results obtained by the primal and dual mod-
els alone, show that it can benefit from a synergy of the two
representations.

5.5 New Optimality Proofs
We launched the primal, dual, and joint models with compact-
ness constraints and using pre-computed bounds on a server
with 10 threads and a time limit of 1 hour. Table 5 reports
all the new optimality proofs obtained for difficult instances
during all our experiments (see supplementary material for
complete tables).

6 Conclusion
We proposed an iterative reduction procedure and established
new upper bounds on the score and the number of colors
needed to optimally solve WVCP. We highlighted their prac-
tical value in reducing the search space through experiments
carried out on benchmark instances. Three CP models were
also investigated together with global constraints to break
symmetries. We provided empirical evidence to shed light
on their advantages and limits. The results showed that the
models are competitive for most of the small- and medium-
size instances, leading in particular to solving some instances
to optimality. In our future work, we would like to investigate
possible hybridizations of the CP models with metaheuristics
based in particular on the proposed compactness algorithm.
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