
A Bitwise GAC Algorithm for Alldifferent Constraints

Zhe Li1 , Yaohua Wang1∗ , Zhanshan Li2∗
1National University of Defense Technology, Changsha, China

2Jilin University, Changchun, China
leezear@163.com, nudtyh@foxmail.com, lizs@jlu.edu.cn

Abstract
The generalized arc consistency (GAC) algorithm
is the prevailing solution for alldifferent constraint
problems. The core part of GAC for alldiffer-
ent constraints is excavating and enumerating all
the strongly connected components (SCCs) of the
graph model. This causes a large amount of com-
plex data structures to maintain the node informa-
tion, leading to a large overhead both in time and
memory space. More critically, the complexity of
the data structures further precludes the coordina-
tion of different optimization schemes for GAC. To
solve this problem, the key observation of this pa-
per is that the GAC algorithm only cares whether
a node of the graph model is in an SCC or not,
rather than which SCCs it belongs to. Based on this
observation, we propose Alldiffbit, which employs
bitwise data structures and operations to efficiently
determine if a node is in an SCC. This greatly re-
duces the corresponding overhead, and enhances
the ability to incorporate existing optimizations to
work in a synergistic way. Our experiments show
that Alldiffbit outperforms the state-of-the-art GAC
algorithms over 60%.

1 Introduction
In constraint programming (CP), many problems can be mod-
eled using the alldifferent constraint. This constraint forces
every constrained variable to take distinct values [Lauriere,
1978; Bessiere et al., 2009]. Constraint propagation is a
core process for filtering fruitless search space to solve CP
problems. At present, there are many filtering algorithms
for propagating alldifferent constraint. They can be classified
into bound consistency (BC) [López-Ortiz et al., 2003], range
consistency (RC) [Leconte, 1996] and generalized arc consis-
tency (GAC) [Régin, 1994] according to their pruning ability
(consistency) from weak to strong. Among them, GAC is
more more suitable for solving hard problem instances due to
its stronger pruning ability via more complex inference.

The classic GAC filtering algorithm for the alldifferent
constraint was presented by Régin [Régin, 1994] (hereinafter,

∗Corresponding authors

called Régin algorithm). It computes a maximum matching,
enumerates strongly connected components (SCCs), and then
removes the unmatched edges between independent SCCs
(i.e., redundant edges) in the residual graph of the constraint,
which is based on a corollary of Berge [Berge, 1973]. The
most time-consuming part of the this algorithm is the exca-
vation and enumeration of SCCs, which is commonly solved
via the Tarjan algorithm [Tarjan, 1972].

To improve the performance of the Tarjan algorithm, many
studies have been carried out to reduce the number of SCCs
that need to be computed. Examples include: 1) SCC-
splitting [Gent et al., 2008], which only computes an SCC
where the domain of its variable has been changed during
the backtracking search, thus reducing the range of variables
required to compute SCCs. 2) Bitwise operation [Van Kessel
and Quimper, 2012], which employs a bitwise approach to ac-
celerate propagation based on the WordRam model and have
always been an important means of accelerating consistency
algorithms [Lecoutre and Vion, 2008; Wang et al., 2016;
Demeulenaere et al., 2016; Li et al., 2021]. 3) Matching op-
timization [Zhang et al., 2018], which proves that redundant
edges can be divided into two classes, one of them can be re-
moved directly without computing the corresponding SCCs.
4) Early detection [Zhang et al., 2020], which avoids the com-
putation of the unimportant edges whose deletion will not
split the current SCCs.

However, all of the optimizations mentioned above involve
excavating all strongly connected components (SCCs) and
maintaining corresponding information using complex data
structures such as queues, stacks, traversal orders, and SCC
IDs for each node. The GAC algorithm is embedded in the
entire backtracking search solution framework and is invoked
iteratively, frequently updating and resetting these complex
data structures. This causes a significant overhead in both
execution time and memory space. Furthermore, due to the
complexity of the data structures, it is difficult to integrate
different optimization schemes in a synergistic way, resulting
in lower overall efficiency.

In fact, our analysis shows that the essential task of the
GAC algorithm is to delete inconsistent nodes. Therefore,
it only cares whether a node in the graph is in an SCC or
not, rather than which SCC it belongs to. Based on this key
observation, we transform a ’which’ problem into a ’yes-
or-no’ one. This enables us to propose a bitwise GAC al-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1988

gorithm called Alldiffbit. Alldiffbit employs complete bit-
wise data structures and performs the ’yes-or-no’ problem
via simple bitwise ’OR’ operations during the traversal of the
bit-adjacency matrix of the graph model. Additionally, the
bitwise data structures and operations also enable Alldiffbit

to easily incorporate existing optimizations, including: 1)
SCC-Splitting by improving the SCC partition representation
mechanism; 2) matching optimization via bit-BFS of adja-
cency bit-matrix; and 3) early detection by prioritizing the
checking of the connectivity of deleted edges. These exist-
ing optimizations can work organically when integrated into
Alldiffbit.

Our experiments on large numbers of constraint problems
(CPs) show that Alldiffbit is both efficient and stable. Com-
pared to the GAC algorithms implemented by state-of-the-art
CP solver [Prud’homme et al., 2017], Alldiffbit achieves an
average performance speedup of 60.65% per group across 18
series instances. We believe that Alldiffbit is a powerful con-
tender against existing algorithms.

2 Background and Preliminaries
A constraint satisfaction problem (CSP) P is a triple P = ⟨X ,
D, C⟩, in which X is a set of n variables X = {x1, x2, ..., xn},
D is a set of domains D = {D(x1), D(x2), ..., D(xn)}, where
D(xi) is a finite set of possible values for variable xi, and C
is a set of e constraints C = {c1, c2, ..., ce}. A constraint c re-
stricts an ordered set of variables X(c) = {x1, x2, ..., xr}, and
also restricts a subset of the Cartesian product D(x1)×D(x2)
× ... × D(xr), which specifies the allowed combinations of
values for X(c). The domain of c is the union of domain,
which is denoted by D(c) =

⋃
x∈X(c) D(x). In addition, we

use Bc(a) to denote the set of variables in X(c) whose do-
main contains a (i.e., Bc(a) = {x | x ∈ X(c), a ∈ D(x)}).
A solution to a CSP is an assignment of a value to each vari-
able, so that all the constraints are satisfied.

Definition 1 (Generalized Arc Consistency, GAC). Given a
constraint network P = ⟨X , D, C⟩:
• A constraint c is GAC iff ∀ x ∈ X(c) and ∀ a ∈ D(x),

there exists a support for (x, a) on c.
• A constraint network P is GAC iff all constraints in C are

GAC.

An alldifferent constraint c: {x1, ..., xr} (r > 1) is an r-
arity constraint that ensures that the values assigned to con-
strained variables are all distinct. The GAC algorithms are
based on Berge’s graph theory, particularly on maximum
matching and strongly connected components. A matching
is a set of edges that do not have common vertices. In this
paper, if variable x is matched to value a, it can be written
as x = M(a) and a = M(x), otherwise M(a) = ⊥ and
M(x) = ⊥. A maximum matching is one that has maximum
cardinality. If a node is connected with a matched edge, it
is called a matched node; otherwise, it is called a free node.
An alternating path is a path whose edges alternate between
matched and unmatched nodes. An augmenting path is a path
whose starting and ending nodes are both free nodes.

Definition 2 (Residual Graph). The residual digraph is de-
fined as R = ⟨VR, ER⟩, where VR = X(c) ∪ D(c) ∪ {t}, t

Figure 1: Illustration of arc consistency filtering algorithms.

is a sink node linked to D(c), ER = EM ∪ EU ∪ Et1 ∪ Et2 .
Specifically, the matching edges EM connect variables to
their respective matching values: EM = {x 7→ a | x ∈
X(c), a = M(x)}. The unmatched edges EU connect values
to their respective unmatching variables: EU = {a 7→ x |
a ∈ D(c), x ∈ Bc(a) \ {M(a)}}. The edges in Et1 connect
matching value nodes to t: Et1 = {a 7→ t | M(a) ∈ X(c)}.
The edges in Et2 connect t to unmatching value nodes (i.e.,
free nodes): Et2 = {t 7→ a |M(a) /∈ X(c)}.

Each edge e ∈ EM∪EU represents a variable-value pair in
constraint c. A redundant edge is one that does not appear in
any maximum matching. An allowed edge is one belonging
to some but not all maximum matchings. A node is allowed,
iff, for an arbitrary maximum matching M , it can be reached
by an even alternating path that begins at a free node [Zhang
et al., 2017]. The set of variable nodes in alternating paths is
denoted by Γ , and its value nodes set is denoted by A.

Definition 3 (Redundant Edge). For an arbitrary maximum
matching, an unmatching edge ea 7→x is redundant iff (1) x ∈
Γ and a ∈ D(c) − A, or (2) x ∈ X(c) − Γ , a ∈ D(c) − A
and ea 7→x does not belong to any alternating cycle [Zhang et
al., 2018].

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1989

In this paper, we call these two type of redundant edges as
”type I” and ”type II” redundant edges, respectively. Zhang18
algorithm (as shown in Figure 1(b)) develops the graph the-
ory of Régin algorithm (as shown in Figure 1(a)) by remov-
ing type I redundant edge without computing SCCs. For a
residual graph R = ⟨VR, ER⟩ and a set of (deleted) edges
DE = e1, e2, ..., ek, where ei ∈ EM ∪ EU ,(1 ≤ i ≤ k),
R′ = ⟨VR, ER \ DE⟩ is consistent, iff, for every start-end
node pair (xi, yi) of ei in DE, there exists at least two arc-
disjoint alternating paths connecting xi and yi [Zhang et al.,
2020]. These edges are called unimportant edges. To be
specific, Zhang18’s algorithm develops Régin’s algorithm by
adding the following steps 3 and 4: (1) Find a maximum
matching M from variables to distinct values. If it fails1, the
constraint is inconsistent. (2) Construct the residual graph R
(see Definition 2). (3) Find all alternating paths from all free
nodes in R, and put the variable (resp. value) nodes of the
alternating paths into Γ (resp. A). (4) Remove all type I re-
dundant edges without finding SCCs. (5) Find all SCCs of
R and remove all redundant edges. If R does not have free
nodes, steps 3 and 4 will not be executed, and this algorithm
will be degraded to Régin’s algorithm. Zhang20’s algorithm
improves step 5 by detecting whether each deleted edge e is
surrounded by a cycle during the DFS for finding SCCs. If
so, it is an unimportant edge. If all edges are unimportant,
this propagation can be exited early.

3 The AllDiffbit Algorithm
In this section, we propose the Alldiffbit algorithm. Instead
of enumerating SCCs to check whether the variable val-
ues satisfy GAC, Alldiffbit directly checks their connectiv-
ity in the adjacency bit-matrix of the graph. This simpli-
fies the data structures and comprehensively bit-vectorizes
them. Furthermore, it enables the synergistic integration of
existing optimizations. Specifically, Alldiffbit first reduces
the graph model by merging matched nodes and uses the
adjacency bit-matrix to represent the merged graph (as de-
picted in Figure 1(c) and Table 1). Then, it checks the con-
sistency of each variable-value by checking the connectiv-
ity of its corresponding edge in a bit-BFS manner. Further-
more, we extend Alldiffbit to accommodate various existing
improvements. For SCC Splitting [Gent et al., 2008], our
algorithm gives priority to checking the edges that are mu-
tually connected by using a new edge checking order. This
order ensures that a complete traversal of an entire SCC is
performed when the traversal stops. For matching optimiza-
tion [Zhang et al., 2018], we also bitwise vectorize the A and
Γ sets and quickly calculate them by bit-BFS. For early de-
tection [Zhang et al., 2020], we preferentially traverse the
deleted edges, and the propagation can quit early if they all
pass the connectivity check.

Bitwise representation of merged graph. When comput-
ing SCCs of the reduced residual graph R, the existing algo-
rithms alternately traverse matching and unmatching edges.
To eliminate matching edges, the variables and values that are

1This means that there is a variable node without a matching
value node.

x1...x6

B[a] 110000
B[b] 011000
B[c] 101111
B[d] 000111
B[e] 000010
B[f] 000011
B[g] 000001

(a) B

x1...x4 x5 x6

G[x1] 0100 00
G[x2] 0010 00
G[x3] 1001 11
G[x4] 0000 11
G[x5] 0000 00
G[x6] 0000 10

(b) G

Table 1: Bitwise representation of Figure 1(c).

matched can be merged. This results in a merged node that in-
herits all incoming edges of the original variable node and all
outgoing edges of its matched value node. As a result, we ob-
tain a smaller directed graph G = ⟨V,E⟩, where V = X(c),
E = {x 7→ y | x ∈ X(c), y ∈ Bc(M(x)) \ {x}} (see Fig-
ure 1(c)). This reduction helps to decrease the size and order
of the graph. Based on the above, we introduce the adjacency
bit-matrix G to represent the merged graph2. If node x can
reach node y in the merged graph, then G[x][y] = 1b, other-
wise G[x][y] = 0b. The adjacency bit-matrix GF represents
the frontier nodes to be expanded during BFS. If x needs to
extend y then GF [x][y] = 1b, otherwise GF [x][y] = 0b.
If a value (x, a) is valid (i.e., a ∈ D(x) and x ∈ Bc(a)),
then B[a][x] = 1b, otherwise B[a][x] = 0b. Table 1 gives
the bitwise representation of Figure 1(c). Method merge-
MatchedNodes of algorithm 1 initializes the above fields.

Proposition 1. (Correctness of Merging Nodes) After merg-
ing matched nodes, a reduced residual graph R = ⟨VR, ER⟩
can be transformed to a directed graph G = ⟨V,E⟩, where
V = X(c), E = {x 7→ y | x ∈ X(c), y ∈ Bc(M(x))\{x}}.

Proof. For reduced residual graph R of an alldifferent con-
straint c, the matching is a mapping from X(c) to D(c), de-
noted as f: X(c) 7→ D(c), and the unmatching is a mapping
from D(c) to X(c), denoted as g: D(c) 7→ X(c). Trivially,
f ̸= g. We combine f and g to eliminate V to get the com-
posite mapping g ◦ f: X(c) 7→ X(c), which means x ∈ X(c)
gets its neighbor from variables whose domain contains the
matching of x. Hence, it corresponds to the directed graph
G = ⟨V,E⟩, V = X(c), E = g ◦ f = {x 7→ y | x ∈
X(c), y ∈ Bc(M(x)) \ {x}}.

Check the connectivity of edges. Our algorithm differs
from Tarjan’s algorithm in that it does not compute all SCCs
at once. Instead, it is driven by the connectivity of edges
in the reduced graph, and only checks variable values of an
SCC when needed. As described in Definition 3, checking
whether an unmatching edge ea 7→x is redundant is equiva-
lent to checking whether eM(a)7→x belongs to any alternating
cycle. If there exists a path from x to M(a), then the path
x 7→ M(a) and edge eM(a)7→x can form a cycle. For a valid
variable value (x, a), its corresponding node M(a) can be
connected to node x. Checking whether it is in an SCC re-
quires checking the connectivity from node x to node M(a).
Method check(x,a) in Algorithm 1 checks the connectivity

2All of the bitwise data structures are represented in bold font in
this paper.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1990

Algorithm 1: FIND SCCS

Input: s: current SCC; DE: deleted edges in s
1 Method findSCCs(s, DE):
2 mergeMatchedNodes(s)
3 if ¬ matchingOpt(s) ∧ ¬ earlyDetect(s, DE) then
4 filterDomains(s)

5 Method mergeMatchedNodes(s):
6 Initial B s.t. B[a][x] = 1b iff x ∈ Bc(a)
7 foreach matched variable x ∈ s do
8 G[x]← B[M(x)]
9 G[x][x]← 0b

10 GF [x]← G[x]

11 Method matchingOpt(s):
12 Γ ← 0; A← ∅
13 foreach free node a do
14 Γ ← Γ |B[a]; Γ F ← Γ F |B[a]; A[a]← 1b

15 while x ∈ s s.t. Γ F [x] = 1b do
16 Γ F ← Γ F | (B[M(x)]& ∼ Γ); Γ F [x]← 0b
17 Γ ← Γ | B[M(x)]; A[M(x)]← 1b

18 Remove Type I redundant edges
19 Remove Γ from s; add Γ as an independent SCC
20 return |s| = |Γ |
21 Method earlyDetect(s,DE):
22 foreach (x, a) ∈ DE do
23 if ¬(check(x, a)∧check(M(a),M(x))) then
24 return false

25 return true
26 Method check(x, a):
27 while y ∈ s s.t. GF [x][y] = 1b do
28 GF [x]← GF [x] | (G[y]& ∼ G[x])
29 GF [x][y]← 0b
30 G[x]← G[x] | G[y]
31 if G[x][M(a)] = 1b then
32 return true;

33 return false
34 Method filterDomains(s):
35 su ← s; s′ ← s; sc ← ∅; sm ← ∅
36 while s′ ̸= ∅ do
37 pop x′ from s′

38 if sc ̸= ∅ then
39 add sc as a independent SCC
40 sc = {x′}; su = (su ∪ sm) \ {x′}; sm = ∅
41 foreach x ∈ sc do
42 foreach unmatched value a ∈ D(x) do
43 if M(a) ∈ su then
44 if check(x, a) then
45 move M(a) to s′ and sc
46 else
47 remove a from D(x); move

M(a) to sm

48 else if M(a) ∈ sm ∨M(a) /∈ s then
49 remove a from D(x);

of node x to node a. It uses the bit-BFS method proposed
in [Cheriyan and Mehlhorn, 1996]. The method takes an ex-
tendable node y of GF [x] (line 27). The connectable nodes
of y that have not been visited by x (i.e., G[y]& ∼ G[x]) are
added to the frontier GF [x] by bitwise operations (line 28),
and then GF [x] clears the bit of extended node y (line 29).
Next, all the nodes connected to x are recorded by bitwise
anding G[y] to G[x] (line 30). The method continues travers-
ing and returns true until G[x][M(a)] = 1b is detected, which
means that x can connect to M(a). If G[x][M(a)] = 0b
when the BFS is completed, the method returns false. All
search information is stored in G[x] and GF [x] for future
calls.

The aforementioned improvements are the core idea of
Alldiffbit. Additionally, our algorithm is highly scalable and
can be easily extended and integrated to optimize all the re-
lated improvements for alldifferent constraints. We will de-
scribe these implementations in the following subsections.

Integration of SCC splitting. Since our algorithm does not
directly compute SCCs, the mechanism of SCC Splitting in
Gent algorithm needs to be slightly modified. Suppose s is
the current variables partition that needs to compute SCC. We
divide it into three subsets: connected, unknown and moved,
denoted by sc, su and sm, respectively, where sc denotes the
set of nodes (i.e., variables) that are explicitly in the same
SCC, sm denotes the set of nodes that are explicitly not in
current SCC with sc, the rest of the nodes which need to be
checked the connectivity are stored in su, and s′ is a queue of
variables to be extended during iteration in method filterDo-
mains. This method initializes su and s′ to s. It also resets
both sc and sm to empty set, indicating that the connectivity
of all nodes is initially unknown. The method then pushes
them into queue s′ to wait for checking if they are in SCC.
The outer loop (line 36) iteratively checks the connectivity of
each node in s′. The main loop (lines 41-49) gives priority
to traversing the connected node in sc. It moves newly con-
nected nodes to sc and unconnected ones to sm. Since new
connected nodes may be added to sc, the main loop continues
until all nodes of the current SCC have been fully explored.
Once the traversal of the main loop is completed, sc is trans-
formed independently into a new SCC (line 39). This results
in the previously traversed sm becoming outdated and reclas-
sified into su (line 40). Then, the outer loop pops a new node
x′ from s′ to continue the traversal (line 37). Lines 43 to 49
are the core part for checking connectivity. For a variable-
value pair (x, a), the method check(x,a) is invoked only if
M(a) ∈ su. If M(a) is in the moved sub-partition or does
not belong to the current SCC s, it can be deleted directly
(lines 48-49).

Integration of matching optimizing. Differing from DFS
in Zhang18 algorithm, method matchingOpt(s) perform a
traversal starting from free nodes in bit-BFS fashion. As G
and GF , the method uses Γ to denoted the set Γ and Γ F to
denoted the set of nodes which needs to be traversed. The
procedure for computing set Γ and A similarly to comput-
ing SCC as described above. It first iterates over each free
node to initialize Γ and Γ F by bitwise or, and adds the free
nodes to A in lines 13 to 14. Then, it iteratively traverses

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1991

each node x from Γ F and adds new untraversed nodes of x
(i.e., B[M(x)]& ∼ Γ) to Γ F for further traversal. Next, the
method extends Γ and clears the newly traversed node x at
statement Γ F [x] ← 0b. Please note that the same traversal
method is used to extend G and GF in method check(x, a).
Finally, M(x) is added to A at statement A[M(x)] ← 1b
(lines 15-17). After bit-BFS, the type I redundant edges is
directly delete in line 18. Γ is removed from current SCC s
and added as a independent SCC. According to [Zhang et al.,
2018], if Γ = s, all variables in s do not need to be filtered,
method filterDomains can be skipped directly.

Integration of early detection. Our algorithm uses value-
driven SCC detection, which makes it more naturally com-
patible with early detection than the Zhang20 algorithm. As
described in [Zhang et al., 2020], the earlyDetect method
checks whether the two paths from x to M(a) and M(a) to
x exist (line 23) to detect whether a deleted edge (x, a) is
an unimportant edge. If (x, a) is in the current SCC s, then
¬(check(x, a)∧ check(M(a),M(x))) returns true, indicat-
ing that (x, a) is an unimportant edge. If a deletion is detected
to be important, the algorithm skips the detection and directly
calls the filterDomains(s) method. Conversely, if all edges in
DE pass the detection, the call of method filterDomains can
be skipped.

In summary, the algorithm executes the filterDomains
method only if the matchingOpt and earlyDetect methods
pass, indicating that there are still variables to be filtered.
Otherwise, the method is skipped (lines 3-4).

Proposition 2. (Soundness) If (x, a) corresponds to a type II
redundant edge on the reduced graph, it cannot pass method
check(x, a).

Proof. Suppose (x, a) corresponds to a type II redundant
edges. So its corresponding edge is eM(a)7→x. If it can pass
method check(x, a). i.e., we get G[x][M(a)] = 1b after BFS
at line 41. This means that there exists a path from x to
M(a), and this path and eM(a) 7→x make up a alternating cy-
cle. eM(a)7→x clearly does not satisfy Definition 3, i.e., (x, a)
is not a type II redundant edge. This contradicts the hypoth-
esis, so check(x, a) returns false (i.e., G[x][M(a)] = 0b) if
(x, a) is a type II redundant edge.

Proposition 3. (Completeness) All redundant edges can be
removed in filterDomains().

Proof. All unmatched nodes need to iteratively check
whether they are redundant edges at lines 24-25 in Algo-
rithm 1. We know from [Zhang et al., 2018] that Γ and A
are correctly partitioned after matching optimizing. Hence
all type I redundant edges can be removed at line 14 in Algo-
rithm 1. And all the type II redundant edges can be removed
at line 37 and line 39 in Algorithm 1. Therefore, all redundant
edges can be removed in findSCC().

Proposition 4. (Correctness) Our filtering algorithm is cor-
rect on the reduced graph.

Proof. Correctness immediately follows from Propositions 1,
2 and 3.

Complexity. In this paper, we use a bit version FF-
BFS [Ford and Fulkerson, 1956; Van Kessel and Quimper,
2012] to perform incremental matching in O(km), where
k and m are the numbers of unmatched and total edges in
the variable–value graph, respectively. Although our lazy-
computing SCCs mechanism does not change algorithm’s
complexity, it significantly reduces the size of the graph after
node merging. The time complexity of computing SCCs via
Régin’s algorithm is O(|VR|+ |ER|) = O(r+2d+1+dr) =
O(dr). That of Zhang18’s algorithm is O(|VR| + |ER|) =
O(r + d + dr) = O(dr), and it can be reduced to O(r2)
with matching optimizing. And that of our algorithm is
O(|V | + |E|) = O(r + r2) = O(r2). Apparently, for alld-
ifferent constraint, we have r ≤ d, so our algorithm has a
lower time complexity than Régin’s algorithm. Although our
algorithm has the same complexity as Zhang18’s algorithm, it
requires less computational cost in practice due to the reduced
digraph. In addition, using bit representation can further re-
duce memory consumption.

4 Experimental Results
We evaluated the performance of our algorithm by compar-
ing it to backtracking search algorithm that embed arc consis-
tency algorithms: Gent, WordRam, Zhang18 and Zhang20.3
WordRam algorithm uses bitwise FF-BFS and bitwise Tarjan
algorithm to compute maximum matching and SCCs, respec-
tively. The default incremental matching algorithm for GAC
algorithms are FF-BFS for non bit algorithms and bit FF-
BFS for WordRam and our algorithm. We evaluate the per-
formance of these embedded GAC algorithms by comparing
search resolution algorithms. To conduct a comprehensive
evaluation, we used various alldifferent CP instances from the
XCSP3 website [Boussemart et al., 2016]4. All series names
are listed in Table 2 and we tested over 800 instances. Our
experiments were conducted on a PC with an AMD Ryzen
9 7950X CPU @ 4.5GHz, 32 GB RAM, and 64-bit Win-
dows 11. The timeout was set to 1200 seconds for each in-
stance. The number of non-timeout instances (and total in-
stances) for each series is given below the series name after
”#=”. All the algorithms were implemented in the Java-based
CP solver, Choco [Prud’homme et al., 2017]5 using Open-
JDK 19. To ensure fairness, We used binary branching search
with DOM [Dechter and Meiri, 1994] as the variable order-
ing heuristic, and ”min value” as the value ordering heuris-
tic. This ensured that all algorithms generated the same shape
of search trees when solving, avoiding interference with ex-
perimental results due to differences in their shapes. For a
straightforward impression of the algorithms’ efficacy, we
first compared the solving time per series. While most CPs
contain alldifferent constraints, they may also contain other
types of constraints. To provide a microscopic observation,

3The source code and dataset are available at
https://github.com/leezear2022/alldiff-choco. Our testing in-
cludes many academic and practical instances that require hashing
of domains during propagation. However, this may decrease the
efficiency of WordRAM and Alldiffbit.

4http://xcsp.org/
5https://choco-solver.org/

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1992

http://xcsp.org/
https://choco-solver.org/

Gent WordRam Zhang18 Zhang20 Alldiffbit

AllInterval S 10.5646 9.4971 17.0013 19.5266 5.1543
#=22(22) F 7.9763 4.0751 11.216 11.3596 2.3148
ColouredQueens S 0.0281 0.023 0.0284 0.0285 0.0144
#=5(5) F 0.0138 0.0095 0.0185 0.0148 0.0037
CostasArray S 50.4423 54.3546 61.5451 61.9975 28.7757
#=9(9) F 22.3688 18.2497 30.6049 26.0048 4.1603
CryptoPuzzle S 0.0043 0.0024 0.0022 0.0024 0.0020
#=10(10) F 0.0007 0.0005 0.0005 0.0006 0.0003
GolombRuler S 44.9784 60.2597 42.3241 43.4504 16.5973
#=12(15) F 28.6827 33.3267 19.091 21.3516 2.0128
GracefulGraph S 129.2112 134.6306 162.6763 156.2065 103.2885
#=6(12) F 30.5368 20.3289 57.2696 48.0534 8.984
Kakuro S 5.4934 5.4074 5.9387 7.2000 3.4506
#=535(551) F 2.2918 1.7664 2.7593 2.9282 0.2988
LatinSquare S 8.7373 9.8025 13.378 9.4055 4.7786
#=215(248) F 3.4382 3.793 7.9452 4.2036 1.1698
MagicSquare S 2.5444 2.6016 3.9199 2.9171 1.7404
#=1(7) F 1.0565 0.7561 2.333 1.2975 0.3958
NumberPartitioning S 36.2312 35.9082 41.8748 36.0007 30.7444
#=25(27) F 5.1889 4.1094 10.9782 5.3246 2.5597
OpenStacks S 0.789 0.7997 0.8142 0.774 0.7515
#=74(77) F 0.0204 0.0192 0.0479 0.0243 0.0061
Ortholatin S 5.1972 5.3861 6.6632 5.814 2.8006
#=5(6) F 2.5924 2.2569 4.1145 2.7694 0.5722
QuadraticAssignment S 0.0728 0.0677 0.0714 0.0662 0.0602
#=23(120) F 0.0042 0.003 0.0081 0.0044 0.0011
QuasiGroups S 11.1594 11.1074 11.9626 11.6889 10.3804
#=6(6) F 0.8937 0.6984 1.6201 1.1269 0.255
Scheduling S 0.0174 0.0164 0.0164 0.0172 0.0158
#=22(41) F 0.0001 0.0001 0.0002 0.0002 0.0002
SchurrLemma S 28.4222 28.7055 39.8903 47.2946 18.4717
#=6(6) F 13.8733 11.583 23.0209 21.6662 2.9145
SportsScheduling S 80.0827 71.7606 74.1604 90.3811 53.6116
#=6(7) F 21.1234 15.3616 19.9731 20.2245 4.5165
Sudoku S 0.001 0.0006 0.0009 0.0008 0.0006
#=46(46) F 0.0002 0.0002 0.0006 0.0003 0.0002

Table 2: Results of comparing filtering algorithms on series instances

we also compared the filtering time for solved instances. Ad-
ditionally, we presented the proportion of different improve-
ment points in the propagation process.

Table 2 presents the efficiency of the algorithm for each in-
stance. Instances that timed out during testing are excluded
from statistical averaging. The average CPU time (in sec-
onds) for solving the problem and computing SCCs for the
remaining instances are presented in the ”S” and ”F” rows,
respectively. Gent serves as the baseline algorithm in Table 2.
The results of Alldiffbit with a 50% to 100% increase in ef-
ficiency are underlined, while those above 100% are bolded.
We first compare the average solving time of the instances.
Our algorithm solves the instances in the shortest time on all
18 groups of instances. This is because our algorithm in-
tegrates and improves all the improvement points. In par-
ticular, our algorithm achieves a lead of 50% to 100% on
7 series and even more than 100% on 3 series. In short,

our algorithm’s solving efficiency is improved by an aver-
age of 60.65% across all series. It is worth noting that our
algorithm also achieves the best results in instances where
Zhang18 or Zhang20 algorithm are better, such as CryptoP-
uzzle and GolombRuler for Zhang18 algorithm, and Kakuro,
Openstacks, and QuadraticAssignment for Zhang20 algo-
rithm. This is due to our algorithm’s integration and improve-
ment of these enhancements. We continue to compare the
time it takes for each algorithm to compute SCCs. To better
analyze the improvements, we are blocking out other distract-
ing factors, such as computation of matching, propagation of
other types of constraints, search algorithms, etc. Similar to
the trend of solving time, our algorithm is the most efficient in
calculating SCCs. Moreover, it achieves a higher acceleration
ratio compared to the other algorithms. In fact, our algorithm
won and achieved more than 100% acceleration in 16 series
of instances, and even more than 5 times acceleration in 2

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1993

series.

Figure 2: Runtime comparison of method findSCCs for bitwise GAC
algorithms.

To compare the performance of the core idea presented in
this paper with our integration algorithm – Alldiffbit – we
implemented a simple algorithm ”base” with bitwise repre-
sentation and ”Check the Connectivity of Edges”, which we
provisionally refer to as ”base.” Figure 2 shows a scatter plot
that allows us to compare the efficiency of three bitwise GAC
algorithms when executing the method findSCC for each in-
stance. The vertical and horizontal axes represent the CPU
time (in seconds) used by Alldiffbit and other bitwise GAC
algorithms to compute SCCs, respectively. In general, as the
time increases, most of the dots are located at the bottom right
of the diagonal. This indicates that Alldiffbit is more efficient
for easy to hard instances. It is worth noting that the main
difference between the two bit-based algorithms, WordRam
and Alldiffbit, is the traversal method.

The Wordram algorithm uses bit-DFS, which requires
maintaining a bit vector during traversal to record the nodes
to be extended at each propagation. Due to the need for com-
plex data structures to enumerate SCCs, they are difficult to
vectorize, which increases maintenance costs. In contrast, our
algorithm only retains G and GF for bit-BFS since no prior
enumeration of SCCs is required. As a result, their main-
tenance is lightweight, which significantly improves the ef-
ficiency of the overall method execution. As Alldiffbit is an
integrated algorithm, we observe that the dots of the base al-
gorithm cluster on an ”oblique line” below the diagonal. This
is because Alldiffbit is a direct improvement of the base al-
gorithm, implying that our algorithm has a more stable im-
provement. Nevertheless, the base algorithm is more efficient
than the WordRam algorithm. In summary, the solution ef-
ficiency of Alldiffbit improves by an average of 60.65% per
group across all series.

Finally, in order to observe the impact of the various im-
provement points, we counted the proportion of their occur-
rence in computing SCCs (referred to the propagation type)
during the solution process of the solved instances. If the type

Figure 3: The proportion of propagation types.

I (resp. II) redundant edges are deleted, we call it the type I
(resp. II) deletion, and denote it as ”P1” (resp. ”P2”). And
if it is skipped due to early detection, it is denoted as ”Skip,”
otherwise, it is denoted as ”None.” As shown in Figure 3, for
series CryptoPuzzle, GolumbRuler, and Kakuro, the type I
deletion occupies a particular proportion. This is consistent
with the results in Table 2, which show that the Zhang18 has
better performance on these series compared to the baseline
algorithm. While for other series, the type II deletion still
accounts for a large proportion. This is because if there are
no free nodes, no match optimization is performed on line 13
of algorithm 1. For other series, however, the type II dele-
tion still accounts for a large proportion. This is because if
there are no free nodes, no match optimization is performed
on line 13 of algorithm 1. The early detection identifies a
large amount of redundant propagation. While this may incur
additional overhead in some degree of presentation, it sub-
stantially reduces the number of computed SCCs on many se-
ries instances. Therefore, considering the overhead, Zhang20
performs better on some series with a higher proportion of
partial early detection than the baseline algorithm.

5 Conclusion
In this paper, we present Alldiffbit, an improved GAC filter-
ing algorithm for alldifferent constraints. Our main idea is
based on the observation that it is unnecessary to enumer-
ate strongly connected components (SCCs) in order to deter-
mine whether a variable-value satisfies GAC. Instead, only
the edges of the graph model need to be checked for strong
connectivity. This allows the data structures used by graph
traversal to be simplified as fully bit vectorized, thus substan-
tially reducing the overhead of graph traversal. Additionally,
Alldiffbit integrates the SCC splitting of Gent, the matching
optimization of Zhang18, and the early detection method of
Zhang20 algorithm, making it strongly extensible. Our al-
gorithm further improves upon these algorithms. Extensive
experiments show that Alldiffbit significantly outperforms ex-
isting GAC algorithms. All of these results illustrate that
Alldiffbit completes a staged integration and optimization of
the GAC algorithm for alldifferent constraints.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1994

Acknowledgments
The authors would like to thank the anonymous reviewers for
their helpful comments. This work is supported by the NSF
of Hunan Province No.2022JJ10066, the National Nature Sci-
ence Foundation of China No.62272477 and 62276060.

References
[Berge, 1973] Claude Berge. Graphs and Hypergraphs.

North-Holland Publishing Company, 1973.
[Bessiere et al., 2009] Christian Bessiere, George Katsire-

los, Nina Narodytska, Claude-Guy Quimper, and Toby
Walsh. Decompositions of all different, global cardinality
and related constraints. In International Joint Conference
on Artificial Intelligence, pages 419–424, 2009.

[Boussemart et al., 2016] Frédéric Boussemart, Christophe
Lecoutre, Gilles Audemard, and Cédric Piette. Xcsp3:
an integrated format for benchmarking combinatorial con-
strained problems. arXiv preprint arXiv:1611.03398,
2016.

[Cheriyan and Mehlhorn, 1996] Joseph Cheriyan and Kurt
Mehlhorn. Algorithms for dense graphs and networks on
the random access computer. Algorithmica, 15(6):521–
549, 1996.

[Dechter and Meiri, 1994] Rina Dechter and Itay Meiri. Ex-
perimental evaluation of preprocessing algorithms for
constraint satisfaction problems. Artificial Intelligence,
68(2):211–241, 1994.

[Demeulenaere et al., 2016] Jordan Demeulenaere, Renaud
Hartert, Christophe Lecoutre, Guillaume Perez, Laurent
Perron, Jean-Charles Régin, and Pierre Schaus. Compact-
table: efficiently filtering table constraints with reversible
sparse bit-sets. In Principles and Practice of Constraint
Programming: 22nd International Conference, CP 2016,
Toulouse, France, September 5-9, 2016, Proceedings 22,
pages 207–223. Springer, 2016.

[Ford and Fulkerson, 1956] L. R. Ford and D. R. Fulkerson.
Maximal flow through a network. Canadian Journal of
Mathematics, 8:399–404, 1956.

[Gent et al., 2008] Ian P Gent, Ian Miguel, and Peter
Nightingale. Generalised arc consistency for the alldiffer-
ent constraint: An empirical survey. Artificial Intelligence,
172(18):1973–2000, 2008.

[Lauriere, 1978] Jena-Lonis Lauriere. A language and a pro-
gram for stating and solving combinatorial problems. Ar-
tificial intelligence, 10(1):29–127, 1978.

[Leconte, 1996] Michel Leconte. A bounds-based reduction
scheme for constraints of difference. In Proceedings of
the Constraint-96 International Workshop on Constraint-
Based Reasoning, pages 19–28, 1996.

[Lecoutre and Vion, 2008] Christophe Lecoutre and Julien
Vion. Enforcing arc consistency using bitwise operations.
Constraint Programming Letters (CPL), 2:21–35, 2008.

[Li et al., 2021] Zhe Li, Zhezhou Yu, Hongbo Li, Jinsong
Guo, and Zhanshan Li. Revisiting the efficacy of weak

consistencies: a study of forward checking. Science China
Information Sciences, 64:1–3, 2021.

[López-Ortiz et al., 2003] Alejandro López-Ortiz, Claude-
Guy Quimper, John Tromp, and Peter Van Beek. A fast
and simple algorithm for bounds consistency of the alld-
ifferent constraint. In International Joint Conference on
Artificial Intelligence, pages 245–250, 2003.

[Prud’homme et al., 2017] Charles Prud’homme, Jean-
Guillaume Fages, and Xavier Lorca. Choco Documenta-
tion. TASC - LS2N CNRS UMR 6241, COSLING S.A.S.,
2017.

[Régin, 1994] Jean-Charles Régin. A filtering algorithm for
constraints of difference in csps. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 94,
pages 362–367, 1994.

[Tarjan, 1972] Robert Tarjan. Depth-first search and linear
graph algorithms. SIAM journal on computing, 1(2):146–
160, 1972.

[Van Kessel and Quimper, 2012] Philippe Van Kessel and
Claude-Guy Quimper. Filtering algorithms based on the
word-ram model. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 26, 2012.

[Wang et al., 2016] Ruiwei Wang, Wei Xia, Roland HC Yap,
and Zhanshan Li. Optimizing simple tabular reduction
with a bitwise representation. In International Joint Con-
ference on Artificial Intelligence, pages 787–795, 2016.

[Zhang et al., 2017] Xizhe Zhang, Jianfei Han, and Weix-
iong Zhang. An efficient algorithm for finding all possible
input nodes for controlling complex networks. Scientific
Reports, 7(1):10677, 2017.

[Zhang et al., 2018] Xizhe Zhang, Qian Li, and Weixiong
Zhang. A fast algorithm for generalized arc consistency
of the alldifferent constraint. In International Joint Con-
ference on Artificial Intelligence, pages 1398–1403, 2018.

[Zhang et al., 2020] Xizhe Zhang, Jian Gao, Yizhi Lv, and
Weixiong Zhang. Early and efficient identification of use-
less constraint propagation for alldifferent constraints. In
International Joint Conference on Artificial Intelligence,
pages 1126–1133, 2020.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1995

	Introduction
	Background and Preliminaries
	The AllDiffbit Algorithm
	Experimental Results
	Conclusion

