
Flaws of Termination and Optimality in ADOPT-based Algorithms

Koji Noshiro and Koji Hasebe
University of Tsukuba

noshiro@mas.cs.tsukuba.ac.jp, hasebe@cs.tsukuba.ac.jp

Abstract
A distributed constraint optimization problem
(DCOP) is a framework to model multi-agent co-
ordination problems. Asynchronous distributed
optimization (ADOPT) is a well-known complete
DCOP algorithm, and owing to its superior char-
acteristics, many variants have been proposed over
the last decade. It is considered proven that
ADOPT-based algorithms have the key properties
of termination and optimality, which guarantee that
the algorithms terminate in a finite time and obtain
an optimal solution, respectively. In this paper, we
present counterexamples to the termination and op-
timality of ADOPT-based algorithms. The flaws
are classified into three types, at least one of which
exists in each of ADOPT and seven of its variants
that we analyzed. In other words, the algorithms
may potentially not terminate or terminate with a
suboptimal solution. We also propose an amended
version of ADOPT that avoids the flaws in existing
algorithms and prove that it has the properties of
termination and optimality.

1 Introduction
Distributed constraint optimization problems (DCOPs) [Modi
et al., 2005; Weiss, 2013; Fioretto et al., 2018] involve agents
in a network that must coordinate the values of their variables.
Many multi-agent coordination problems, such as meeting
scheduling [Maheswaran et al., 2004], sensor network op-
eration [Jain et al., 2009], and disaster management prob-
lems [Lass et al., 2008], are modeled as DCOPs. Owing to
this wide range of applications, various algorithms to solve
DCOPs have been proposed over the decades.

Asynchronous distributed optimization (ADOPT) [Modi
et al., 2005] is a well-known DCOP algorithm. The ma-
jor advantages of ADOPT are asynchrony and complete-
ness. Asynchrony allows agents to process their computa-
tions without waiting for other agents, which enables the al-
gorithm to use agent resources efficiently, while complete-
ness guarantees that the algorithm finds an optimal solution.
Although complete algorithms require exponential time or
space, they are still desirable, especially from a theoretical
point of view.

Many researchers have worked on improving the per-
formance of ADOPT. While the original version could
handle only binary constraints, the extension ADOPT-
N [Pecora et al., 2006] is able to deal with n-ary ones.
ADOPT+ [Gutierrez and Meseguer, 2010] saves redun-
dant messages exchanged in ADOPT. IDB-ADOPT [Yeoh
et al., 2009] executes ADOPT iteratively to change the
search strategy from best-first to depth-first. The same au-
thors of IDB-ADOPT proposed BnB-ADOPT [Yeoh et al.,
2010], which employs depth-first branch-and-bound search.
BnB-ADOPT+ [Gutierrez and Meseguer, 2010] reduces the
number of redundant messages in BnB-ADOPT. Other vari-
ants include ADOPT(k) [Gutierrez et al., 2011], which gener-
alizes ADOPT and BnB-ADOPT, and BD-ADOPT [Chen et
al., 2018], which combines best-first and depth-first search.
ADOPT-ing [Silaghi and Yokoo, 2009] introduces nogood,
which is used in asynchronous backtrack (ABT) [Yokoo et
al., 1998] to solve distributed constraint satisfaction prob-
lems.

For a DCOP algorithm to be complete, it must have two
important properties: termination and optimality. Termina-
tion guarantees that an algorithm terminates in a finite time,
while optimality guarantees that an optimal solution is ob-
tained at termination. Each study of ADOPT and its variant
algorithms claims that the algorithm has both of these prop-
erties. However, many of the theorems in these studies are
invalid or inappropriate to derive termination or optimality.

The objectives of this paper are threefold: to show the flaws
in ADOPT and its variant algorithms, to propose an amended
version of ADOPT, and to prove its termination and optimal-
ity. First, we provide counterexamples to the termination and
optimality of ADOPT and show that similar flaws also ex-
ist in many of the variants. Table 1 summarizes the flaws in
ADOPT and seven of its variants. They are classified into
three types by their properties and causes: failure of termina-
tion, failure of optimality caused by algorithm initialization,
and failure of optimality caused by messages sent at termina-
tion. As the table shows, at least one flaw exists in each of
the ADOPT-based algorithms that we analyzed. In particular,
ADOPT itself has all three flaws, that is, it may potentially
not terminate or terminate with a suboptimal solution. More-
over, most of the variants have the third type of flaw.

Second, we propose three amendments to ADOPT, each of
which corresponds to a type of flaw. The first amendment

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1996



Flaw ADOPT N + IDB BnB BnB+ (k) BD

(1) ✓ ✓ ✓ - - - - -
(2) ✓ ✓ ✓ ✓ - - - -
(3) ✓ ✓ - ✓ ✓ ✓ ✓ ✓

Table 1: Flaws in ADOPT and seven variant algorithms, where N,
+, IDB, BnB, BnB+, (k), and BD stand for ADOPT-N, ADOPT+,
IDB-ADOPT, BnB-ADOPT, BnB-ADOPT+, ADOPT(k), and BD-
ADOPT, respectively. The flaws are classified into three types: (1)
failure of termination; (2) failure of optimality caused by initializa-
tion; (3) failure of optimality caused by TERMINATE messages.

modifies the update rules for lower and upper bounds since
the counterexample to termination is caused by the nonmono-
tonicity of the bounds. The second deals with the initializa-
tion of a current context. Additionally, the third modifies ter-
mination messages and their receiving procedure.

Finally, we prove the termination and optimality properties
of our amended version of ADOPT.

This paper is organized as follows. Section 2 defines
DCOPs and summarizes ADOPT. Section 3 presents the
flaws of ADOPT and its variants in detail. Section 4 describes
the amended version of ADOPT, and Section 5 proves its ter-
mination and optimality. Finally, Section 6 concludes this
work.

2 Preliminaries
In this section, we define DCOPs and provide a summary of
ADOPT.

2.1 DCOP
A DCOP is defined as a tuple ⟨A,X,D, F ⟩. A =
{a1, . . . , an} is a finite set of agents, and X = {x1, . . . , xn}
is a finite set of variables, where xi is the variable assigned
to agent ai. An agent can control only the value of the vari-
able assigned to it. Following the studies of ADOPT and its
variants, we assume that each agent ai has only one variable,
denoted by xi. Additionally, we use the terms “agent” and
“variable” interchangeably. Here, D = {D1, . . . , Dn} is a
set of domains of variables, where Di is the finite domain of
variable xi. Furthermore, F is a finite set of binary cost func-
tions. A cost function for two variables xi and xj is defined as
fi,j : Di ×Dj → N. Each cost function is known only to the
agents involved. Agents aim to find an assignment d∗ for all
variables such that it minimizes the global objective function,
which is the sum of the cost functions in F . This assignment
is a solution to a DCOP and is expressed as follows:

d∗ := arg min
d∈

∏
k Dk

∑
fi,j∈F

fi,j(di, dj).

A DCOP can be expressed as a constraint graph. The nodes
correspond to variables in a DCOP, and each edge indicates
that the two connected variables share a cost function. A
depth-first search (DFS) pseudo-tree extends a spanning tree
of a constraint graph. Here, the edges are classified into tree
edges and back edges. Tree edges exist in the spanning tree
and establish parent/child relationships, while back edges do

not exist in the spanning tree but exist in the constraint graph
and establish pseudo-parent/pseudo-child relationships.

2.2 ADOPT
ADOPT [Modi et al., 2005] is an asynchronous and com-
plete algorithm for solving DCOPs. In ADOPT, agents are
arranged in a DFS pseudo-tree and exchange four types of
messages, namely VALUE, COST, THRESHOLD, and TER-
MINATE. Agents update their variable values and compute
the bounds of costs through messages. Here, we only intro-
duce some notations used in subsequent sections and review
the properties of termination and optimality in the original
study. A detailed description of the algorithm is presented in
Appendix A1.

The notations concerning the states of agent xi in this study
are as follows: di denotes the current value of xi; CXi de-
notes the current context of xi; δi(d, CX) denotes the local
cost of xi when xi takes value d and its higher neighbors
(i.e., its parent and pseudo-parents) take the values given in
context CX; LBi(d) and UBi(d) denote the lower and up-
per bounds of xi for value d; LBi and UBi denote the lower
and upper bounds of xi; THi denotes the threshold of xi;
cxi(d, xc), lbi(d, xc), and ubi(d, xc) denote the context, the
lower bound, and the upper bound, respectively, stored by xi

when it receives a COST message in which the context con-
tains assignment (xi, d) from child xc; thi(d, xc) denotes the
threshold allocated to child xc when xi takes value d. Addi-
tionally, γi(d, CX) and γi(CX) denote the optimal costs for
the subtree rooted at xi given context CX .

The original study of ADOPT provides three properties (as
theorems in the paper) in terms of its termination and opti-
mality; Property 2 implies the termination, while Property 3
implies the optimality.

Property 1. ∀xi ∈ X,LBi ≤ γi(CXi) ≤ UBi.

Property 2. ∀xi ∈ X , if the current context CXi is fixed,
then THi = UBi will eventually occur.

Property 3. ∀xi ∈ X , xi’s final threshold value THi is equal
to γi(CXi).

There are counterexamples to these properties. We de-
scribe them in the next section.

3 Flaws in ADOPT-based Algorithms
We present counterexamples to the theorems for termina-
tion and optimality in the original study of ADOPT, which
means that the proofs presented in the study are incorrect.
We also show that similar flaws exist in seven variant algo-
rithms: ADOPT-N, ADOPT+, IDB-ADOPT, BnB-ADOPT,
BnB-ADOPT+, ADOPT(k), and BD-ADOPT. These flaws
exist because the studies attempt to prove the desired proper-
ties relying on ADOPT’s invalid theorems or introduce theo-
rems that are not strong enough to derive the properties.

As mentioned above, counterexamples are classified into
three types by their properties and causes. The first is
the counterexample to termination, described in Section 3.1,

1Appendices and other supplemental materials are available at
https://mas.cs.tsukuba.ac.jp/∼noshiro.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1997

https://mas.cs.tsukuba.ac.jp/~noshiro


(a) DFS pseudo-tree

d1 d4 f1,4

0 0 5
1 0 6

d1 d6 f1,6

0 0 2
1 0 3

d2 d8 f2,8

0 0 5
1 0 6

d2 d10 f2,10

0 0 2
1 0 3

(b) Cost functions

Figure 1: DFS pseudo-tree and cost functions of a DCOP for the
counterexample to termination. The solid lines indicate parent/child
relationships, and the dashed lines indicate pseudo-parent/pseudo-
child relationships.

which is caused by the nonmonotonicity of the bounds. The
second and third are counterexamples to optimality, described
in Sections 3.2 and 3.3, respectively; the second is due to ini-
tialization, while the third is due to TERMINATE messages.

In these counterexamples, we make some assumptions in
terms of message transfer. First, a finite random delay exists
between sending a message and receiving it. Second, mes-
sages exchanged between a pair of agents are received in the
order they were sent, while an agent receives messages from
different agents in any order. Finally, agents send messages
after processing all received messages, which is called a cy-
cle [Modi et al., 2005]. These assumptions are adopted in the
studies of ADOPT and its variants.

In this section, we show the counterexamples with several
figures that indicate crucial points. More detailed traces are
presented in Appendix B.

3.1 Counterexample to Termination
Figure 1 shows the DFS pseudo-tree and cost functions of a
DCOP in which the counterexample to termination occurs.
The cost functions not specified in Figure 1(b) are defined as
the constant functions whose values are 0. In the DCOP, only
two agents x1 and x2 have the domain {0, 1}, and the other
agents always take the same value, 0.

Trace of the Counterexample
In the trace of this counterexample, agents repeat the transi-
tion of their states; in particular, agents x1 and x2 change their
variable values infinitely, which results in nontermination and
contradicts Property 2 in the original study of ADOPT. Here,
the states of some agents at the initial step of the iteration (and
the trace itself) are shown in Figure 2.

In the following description, we only focus on the variable
values, contexts, lower bounds, and thresholds, which are di-
rectly related to this trace, and ignore the rest unless otherwise
noted.

Figure 2: States of agents at the initial step of the iteration in the
counterexample to termination. The states in Step 0 are shown inside
parentheses.

Step 0. As the initial state, we assume that agents x1 and
x2 set their values (i.e., d1 and d2) to 0. In the initialization,
the thresholds allocated to the children of x0 (i.e., th0(0, x1)
and th0(0, x2)) are set to 0; the lower bounds of x1 and x2

(i.e., LB1(0), LB1(1), LB2(0), and LB2(1)) are set to 0; and
the thresholds of x1 and x2 (i.e., TH1 and TH2) are set to
0. The states of agents at this point are presented inside the
parentheses in Figure 2.

Step 1. Let us begin with the process in the subtree rooted
at x1. First, x1 sends VALUE messages to its children and
pseudo-children x3, x4, x5, and x6. Afterwards, x4 receives
the VALUE message and computes the lower bound using the
updated context CX4 ∋ (x1, 0), and thus LB4 = 5. Then x4

reports the lower bound to x3 by sending a COST message.
Subsequently, x3 receives the VALUE message from x1 and
the COST message from x4 and computes the lower bound
as LB3 = 5. Then x3 sends a COST message with CX3 ∋
(x1, 0) and LB3 = 5 to x1. After x1 receives the COST
message, x1 updates LB1(0) to 5. Since LB1(0) = 5 >
TH1 = 0, x1 changes its value d1 to 1 and sends VALUE
messages to its children and pseudo-children.

Step 2. Next, x5 receives the VALUE messages from x1

and sends a COST message to x1, but this COST message
does not affect the bounds of x1 because LB5 = 0 and
UB5 = ∞, which are the initial bounds. This message
is necessary for sending the reinitialized bounds of x5 to
x1 in the second or subsequent iteration. Similar to the
procedure in Step 1, x1, x3, and x4 receive and send mes-
sages, and then x1 updates the lower bound as LB1(1) =
6. Additionally, the threshold of x1 increases as TH1 =
LB1 = min{LB1(0), LB1(1)} = 5 because of Threshold-
Invariant (for more information on the invariants concerning
thresholds, see Appendix A or [Modi et al., 2005]). Since
LB1(1) = 6 > TH1 = 5, x1 changes its value d1 back to 0.

Step 3. Subsequently, similar cost calculations and value
changes are performed between x1, x5, and x6, and the re-
sults are summarized as follows. First, x1 computes the lower
bound as LB1(0) = lb1(0, x3) + lb1(0, x5) = 5 + 2 = 7
and then changes its value d1 from 0 to 1. Next, x1 also com-
putes the lower bound as LB1(1) = lb1(1, x3)+ lb1(1, x5) =
6 + 3 = 9, and then the value d1 returns to 0. After the
cost calculation, x1 sends VALUE messages with the cur-
rent value d1 = 0 to the lower neighbors and a COST mes-
sage with LB1 = 7 to x0. Afterwards, x0 receives the
COST message and then increases LB0, TH0, and th0(0, x1)

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1998



to 7 (the thresholds change due to ThresholdInvariant and
ChildThresholdInvariant). As the result of processes from
Step 0 to Step 3, the current contexts of the lower neighbors
of x1 (i.e., x3, x4, x5, and x6) contain assignment (x1, 1).
Note that the lower neighbors of x1 still do not receive the
last VALUE messages with d1 = 0 from x1; in particular, x3

and x4 still do not receive the VALUE messages that x1 sent
during the processes of x5 and x6 after x3 had sent a COST
message to x1 in Step 2.

Step 4. Here, x3 receives the three VALUE messages from
x1, in which the values are d1 = 0, d1 = 1, and d1 = 0,
in the order of sending. When x3 processes the first VALUE
message, the lower bound of x3 is reinitialized as LB3 =
LB3(0) = lb3(0, x4) = 0 since context cx3(0, x4) ∋ (x1, 1),
received from x4 through the COST message, is incompat-
ible with the updated context CX3 ∋ (x1, 0). After x3

processes the remaining messages, x3 sends two types of
COST messages to x1, i.e., the message with LB3 = 0
and CX3 = {(x1, 0)} and the message with LB3 = 0 and
CX3 = {(x1, 1)}. Similarly, x5 receives the VALUE mes-
sage with d1 = 0 from x1 and reinitializes the bounds. Ad-
ditionally, x5 sends a COST message with LB5 = 0 and
CX5 = {(x1, 0)} to x1.

Step 5. Next, x1 receives the COST messages from x3 and
x5 and updates the lower bounds as LB1(0) = lb1(0, x3) +
lb1(0, x5) = 0, LB1(1) = lb1(1, x3) + lb1(1, x5) = 3.
Thus, x1 obtains the lower bound as LB1 = 0 and keeps
the value d1 = 0. After x1 sends a COST message with
LB1 = 0 to x0, x0 receives it and updates the lower bound as
LB0 = LB0(0) = lb0(0, x1) + lb0(0, x2) = 0. Although
LB0 decreases, the thresholds for the children are kept as
th0(0, x1) = 7 and th0(0, x2) = 0.

Step 6. After the procedures are completed in the subtree
rooted at x1, the same process is performed in the subtree
rooted at x2. The states of agents after performing the pro-
cess are presented in Figure 2 (outside the parentheses). In
this process, x2 changes its value d2 repeatedly, and even-
tually the lower bounds of x2 are obtained as LB2(0) = 0
and LB2(1) = 3, and thus LB2 = 0. Here, the thresh-
olds of x0 are crucial. Since x2 once increased LB2 to 7, x0

also increased th0(0, x2) to 7. However, the threshold TH0

has not been changed from 7 because LB0 = lb0(0, x1) +
lb0(0, x2) = 0 + 7 = 7. Thus, x0 decreases th0(0, x1) to
0 by AllocationInvariant. Hence, x0 does not satisfy the ter-
mination condition since TH0 = 7 < UB0 = ∞ (as x0

received the reinitialized upper bound UB1 = ∞ from x1).
Thus, no agent terminates at this point.

Subsequent Steps. Afterwards, the subtrees rooted at x1

and x2 alternately repeat the same process as described from
Step 1 to Step 6. This causes x1 and x2 to change their values
(i.e., d1 and d2) infinitely; ADOPT never terminates because
the root agent x0 never satisfies the termination condition.
This result contradicts Property 2.

Cause of the Counterexample
The cause of this counterexample is the nonmonotonicity of
lower bounds. In the trace demonstrated above, the lower
bounds of x1 and x2 (i.e., LB1 and LB2) increase from 0 to 7

d0 d2 f0,2

0 0 100
0 1 100
1 0 100
1 1 0

(a) DFS pseudo-tree (b) Cost function

Figure 3: DFS pseudo-tree and the cost function of a DCOP for the
counterexample to optimality caused by initialization.

and then decrease to 0. This transition causes x0 to repeatedly
change the thresholds allocated to x1 and x2 (i.e., th0(0, x1)
and th0(0, x2)) without altering TH0. Thus, x1 and x2 keep
changing their values, and x0 does not satisfy the termination
condition.

Occurrence in Variants
Similar counterexamples to termination appear in the vari-
ants ADOPT-N and ADOPT+. ADOPT-N is equivalent to
the original ADOPT if the given DCOP does not contain n-
ary (n > 2) cost functions. Since the problem consists of
only binary functions, ADOPT-N has this flaw. ADOPT+ is
a variant of ADOPT that saves its redundant messages. Al-
though the trace above contains redundant messages, a simi-
lar trace can be performed without such messages. Therefore,
this flaw can appear in ADOPT+.

On the other hand, the counterexample does not occur
in IDB-ADOPT. The algorithm repeats the execution of
ADOPT, decreasing the initial threshold of the root agent,
and eventually, the initial threshold becomes less than the op-
timal cost by 1. In the DCOP shown in Figure 1, the initial
threshold of the root agent at the final execution is 13, and
hence the threshold of x1 or x2 must be equal to or greater
than 7. Therefore, the agents cannot change their variable val-
ues repeatedly, that is, the counterexample does not appear in
IDB-ADOPT. Additionally, BnB-ADOPT, BnB-ADOPT+,
ADOPT(k), and BD-ADOPT do not have the flaw because
the bounds are updated monotonically in these algorithms.

3.2 Counterexample to Optimality Caused by
Initialization

The DFS pseudo-tree and cost function of a DCOP for the
second counterexample are shown in Figure 3. The domains
of agents x0 and x2 are {0, 1}, and that of agent x1 is {0}.
The cost between x0 and x2 is 0 when the two variable val-
ues are 1, otherwise, it is 100. Similar to the DCOP for the
counterexample to termination, the other cost functions are
the constant functions whose values are 0. Thus, the optimal
solution of this DCOP is (x0, x1, x2) = (1, 0, 1), whose cost
is 0.

Trace of the Counterexample
In this counterexample, a delay of a VALUE message causes
termination with a suboptimal solution. The states of agents
when x0 terminates (in Step 2) are shown in Figure 4.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

1999



Figure 4: States of agents in Step 2 in the counterexample to op-
timality caused by initialization. The terminated agent is indicated
with a double circle.

Step 0. We assume that all agents set their variable values
to 0 in the initialization. At this point, their current contexts
are initialized to be empty.

Step 1. First, agents send VALUE messages to their chil-
dren and pseudo-children. Then x2 receives the VALUE mes-
sage only from its parent x1, which means that the messages
from the pseudo-parent x0 are delayed. Here, x2 updates
the current context as CX2 = {(x1, 0)}. From the defini-
tion of the local cost δi(d, CX) (see Appendix A), x2 com-
putes the local costs as δ2(0, {(x1, 0)}) = f1,2(0, 0) = 0 and
δ2(1, {(x1, 0)}) = f1,2(0, 1) = 0. Thus, the bounds of x2

are obtained as LB2 = UB2 = 0. Then x2 sends a COST
message with LB2 = UB2 = 0 to x1.

Step 2. After x1 receives the VALUE message from x0

and the COST message from x2, x1 computes the bounds
as LB1 = UB1 = 0. Similarly, x0 updates the bounds as
LB0(0) = UB0(0) = 0 through the COST message sent
from x1. Since LB0 = TH0 = UB0 = UB0(0) = 0 due
to ThresholdInvariant, x0 keeps its value as d0 = 0 and sat-
isfies the termination condition. However, the variable value
d0 = 0 is suboptimal. This is a contradiction to Property 3.

Cause of the Counterexample
This counterexample occurs due to the initialization of the
current context CXi of agent xi. Since CXi is initialized
as an empty set, it may not contain the assignments of some
higher neighbors, resulting in an underestimation of the local
cost δi(d, CX) and the bounds of xi’s ancestors. This fact
contradicts Property 1. Moreover, the underestimation results
in premature termination.

Occurrence in Variants
This counterexample can occur in ADOPT-N and ADOPT+

since the DCOP contains only binary cost functions and no
redundant messages exist in the trace. IDB-ADOPT also en-
counters this flaw because the initial threshold of the root
agent at the final iteration is less than (or essentially equal
to) that in ADOPT.

In BnB-ADOPT, BnB-ADOPT+, ADOPT(k), and BD-
ADOPT, the counterexample does not occur since a current
context is initialized to contain the assignments of all of the
higher neighbors.

3.3 Counterexample to Optimality Caused by
TERMINATE Messages

The third counterexample occurs in a DCOP whose DFS
pseudo-tree and cost functions are shown in Figure 5. In this
DCOP, three agents x0, x2, and x3 have the domain {0, 1},
while the other agents only take values 0. As shown in Fig-
ure 5(c), the cost functions f0,3 and f2,3 involved by x3 can
be considered as one cost function f0,2 between x0 and x2

since x3 chooses its variable value to minimize the sum of
the cost functions, that is, x3 chooses the same value as x0.
Note that f0,2 is calculated by x3 and depends on the assign-
ments of x0 and x2 in the current context of x3. Similar to the
counterexamples previously shown in this section, the cost
functions not specified in Figure 5(b) are the constant func-
tions whose values are 0. The optimal solution of the DCOP
is (x0, x1, x2, x3, x4) = (0, 0, 0, 0, 0), whose cost is 1.

Trace of the Counterexample
In the DCOP, agent x2 can terminate with a suboptimal value
because the termination condition is satisfied despite an in-
correct threshold. The states of agents in Step 6, where x2

terminates, are shown in Figure 6.

Step 0. Similar to the other counterexamples, let us assume
that all agents set the variable values to 0 as the initial states.
First, agents calculate the cost in the case where x0 takes the
value 0. We omit this procedure, which is presented in Ap-
pendix B. The calculation of the cost results in the follow-
ing: LB0(0) = UB0(0) = 1; LB0(1) = 0; UB0(1) = ∞;
TH0 = 0; TH1 = 1; LB2 = UB2 = 1; TH2 = 1;
and d2 = 0. Furthermore, the contexts of the agents except
x0 contain assignment (x0, 0). After the calculation, since
LB0(0) = 1 > TH0 = 0, x0 changes its value d0 to 1 and
sends VALUE messages to x1, x3, and x4.

Step 1. Next, x3 and x4 receive the VALUE messages from
x0. At this moment, x3 updates the context and bounds as
CX3 = {(x0, 1), (x2, 0)} and LB3 = UB3 = 200, and
x4 also updates them as CX4 = {(x0, 1)} and LB4 =
UB4 = 1000. Then they send COST messages to their par-
ents: from x3 to x2 and from x4 to x0. After x0 receives
the COST message from x4, x0 changes its value d0 back
to 0 since the bounds are obtained as LB0(1) = 1000 and
LB0 = TH0 = UB0 = UB0(0) = 1 due to Thresh-
oldInvariant. Therefore, x0 satisfies the termination condi-
tion and then terminates. Here, x0 sends VALUE messages
with d0 = 0 to its lower neighbors (i.e., x1, x3, and x4) and
THRESHOLD and TERMINATE messages to its children
(i.e., x1 and x4) in this order, and then x0 executes termi-
nation.

Step 2. Afterwards, x1 receives the VALUE messages from
x0, including the message that x0 sent when d0 = 1, in the
order of sending. Then x1 changes CX1 from {(x0, 0)} into
{(x0, 1)} and returns it to {(x0, 0)}. Since {(x0, 1)} is in-
compatible with cx1(0, x2) = {(x0, 0)}, x1 reinitializes the
bounds as LB1 = 0 and UB1 = ∞. By contrast, TH1 is not
changed from 1. Furthermore, x1 receives the THRESHOLD
and TERMINATE messages from x0, and then x1 records
receiving the TERMINATE message but does not terminate

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2000



d0 d3 f0,3

0 0 1
0 1 1000
1 0 1000
1 1 100

d2 d3 f2,3

0 0 0
0 1 100
1 0 10
1 1 0

d0 d4 f0,4

0 0 0
1 0 1000

d0 d2 f0,2

0 0 1
0 1 11
1 0 200
1 1 100

(a) DFS pseudo-tree (b) Cost functions (c) Cost function induced by f0,3, f2,3

Figure 5: DFS pseudo-tree and the cost functions of a DCOP for the counterexample to optimality caused by TERMINATE messages.

Figure 6: States of agents in Step 6 in the counterexample to opti-
mality caused by TERMINATE message.

because TH1 = 1 < UB1 = ∞. Subsequently, x1 sends a
VALUE message to x2.

Step 3. Afterwards, x2 receives only the message from
x1, not from x3, which means that the messages from x3

are delayed. Then x2 sends a COST message to x1 with
CX2 = {(x0, 0), (x1, 0)} and LB2 = UB2 = 1, which are
the same states as in Step 0.

Step 4. Next, x2 receives the COST message from x3

with CX3 = {(x0, 1), (x2, 0)} and LB3 = UB3 = 200.
Since x2 is not a neighbor of x0, x2 updates CX2 from
{(x0, 0), (x1, 0)} to {(x0, 1), (x1, 0)}. Then the bounds of
x2 are reinitialized and updated by the bounds in the message:
LB2(0) = UB2(0) = 200, LB2(1) = 0, and UB2(1) = ∞.
x2 also changes its value d2 to 1 because LB2(0) > TH2 =
1, and sends a VALUE message to x3. After x3 receives
only the VALUE message from x2 but not the messages
from x1, x3 updates the current context and the bounds as
CX3 = {(x0, 1), (x2, 1)} and LB3 = UB3 = 100. Next, x3

sends a COST message to x2 again, and x2 receives it. Then
x2 computes the bounds as LB2(1) = UB2(1) = 100 and
updates the threshold as TH2 = 100 because of Threshold-
Invariant.

Step 5. Here, x1 receives the COST message with CX2 =
{(x0, 0), (x1, 0)} and LB2 = UB2 = 1, sent from x2

in Step 3. Since this context is compatible with CX1 =
{(x0, 0)}, x1 updates the bounds as LB1 = UB1 = 1.
At this moment, the termination condition is satisfied be-

cause TH1 = UB1 = 1. Thus, x1 sends two mes-
sages to x2: a THRESHOLD message with th1(0, x2) = 1
and CX1 = {(x0, 0)} and a TERMINATE message with
CX1 ∪ {(x1, 0)} = {(x0, 0), (x1, 0)}. Then x1 terminates.

Step 6. When x2 receives the THRESHOLD message from
x1, x2 does not update TH2 since context {(x0, 0)} in the
message is incompatible with CX2 = {(x0, 1), (x1, 0)}, and
therefore retains its threshold as TH2 = 100. Next, x2 re-
ceives the TERMINATE message from x1. Although CX2

is changed to {(x0, 0), (x1, 0)}, the bounds of x2 are not
changed since reinitialization is not performed when an agent
receives a TERMINATE message. Therefore, x2 terminates
with the suboptimal value d2 = 1 because x2 has already
satisfied the termination condition with UB2 = UB2(1) =
TH2 = 100 and received the TERMINATE message. This
result contradicts Property 3.

Cause of the Counterexample
The counterexample presented above is attributed to the fol-
lowing two factors. The first cause is that an agent does not
reinitialize its bounds when it receives a TERMINATE mes-
sage whose context is incompatible with the current context.

However, as shown below, termination with a suboptimal
solution can occur even if reinitialization was performed.
To demonstrate this fact, let us consider a scenario that the
bounds of x2 are reinitialized when x2 receives the TER-
MINATE message from x1 in Step 6. In this case, the
bounds of x2 are obtained as LB2(0) = LB2(1) = 0 and
UB2(0) = UB2(1) = ∞; and the threshold of x2 is main-
tained as TH2 = 100. After x3 receives the VALUE mes-
sage with the value d0 = 0 from x0, x3 updates the cur-
rent context as CX3 = {(x0, 0), (x2, 1)} and the bounds
as LB3 = UB3 = 11. Then x3 sends a COST mes-
sage to x2, and x2 receives it. At this point, x2 computes
the bounds as LB2(1) = UB2(1) = 11 because context
{(x0, 0), (x2, 1)} in the COST message is compatible with
CX2 = {(x0, 0), (x1, 0)}. Then x2 updates the threshold
as TH2 = 11 due to ThresholdInvariant. Since UB2 =
UB2(1) = TH2, x2 does not change its variable value d2
from 1. Therefore, x2 satisfies the termination condition and
terminates with the suboptimal value d2 = 1.

The second cause of the counterexample is an incorrect
threshold at termination. Even if the threshold of an agent
differs from that in the THRESHOLD message sent just be-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2001



fore a TERMINATE message, the termination condition of
the agent can be satisfied. Therefore, the agent can terminate
with a suboptimal value.

Occurrence in Variants
In ADOPT-N and IDB-ADOPT, this counterexample occurs
for the same reasons as the flaws previously shown. More-
over, BnB-ADOPT, BnB-ADOPT+, ADOPT(k), and BD-
ADOPT all have similar flaws. The causes of them are that
agents do not send their current contexts in VALUE mes-
sages, which include thresholds, or TERMINATE messages.
Thus, they can terminate with incorrect contexts.

The incorrectness of contexts means that the statements of
the proofs in the studies of ADOPT(k) and BD-ADOPT are
not appropriate. They imply that agents obtain the optimal
costs for each of the current contexts, which may be incorrect
at termination. The study of BnB-ADOPT also presents an
inappropriate statement. It implies that only the root agent
obtains the optimal cost at termination, however, the other
agents can terminate with incorrect contexts, resulting in a
suboptimal solution.

By contrast, ADOPT+ does not have this flaw because it is
obtained by fixing the causes of the flaw in ADOPT. Specif-
ically, in ADOPT+, a VALUE message contains the current
context and threshold of the agent, and furthermore, a time
stamp for a variable value is introduced. These modifications
guarantee the correct context and threshold at termination,
and agents can reinitialize the bounds if the current context
is changed.

4 Amendment to ADOPT
In this section, we propose an amended version of ADOPT to
avoid the flaws. The amendment consists of three parts, each
of which corresponds to one of the causes described in Sec-
tion 3. The pseudocode of our version of ADOPT is presented
in Appendix C.

First, we modify the update rules for the lower and upper
bounds lbi(d, xc) and ubi(d, xc) for a child so as to change
monotonically. In the amended version, when agent xi re-
ceives a COST message from child xc with bounds LBc and
UBc and context CXc ∋ (xi, d), xi updates the lower and
upper bounds for d and xc by the following:

lbi(d, xc) :=max{lbi(d, xc), LBc}, (1)
ubi(d, xc) :=min{ubi(d, xc), UBc}. (2)

The other calculations of the lower and upper bounds (i.e.,
LBi(d), UBi(d), LBi, and UBi) are not changed from the
original definitions.

Second, we modify the initialization of a current context so
as to store the assignments of all higher neighbors. Agent xi

initializes the current context as follows:

CXi := {(xp, V alInit(xp)) | xp ∈ SCP (xi)} ,

where V alInit(xp) ∈ Dp is the initial value for xp and
SCP (xi) is a set of the ancestors of xi that are parents or
pseudo-parents of agents (including xi) in the subtree rooted
at xi. Note that for xi to avoid flaws, it is sufficient to initial-
ize the current context with the assignments of the parent and

pseudo-parents of xi. However, our amended version uses
the assignments of all agents in SCP (xi) since the current
context CXi eventually stores their assignments. The two
aforementioned amendments have been introduced in BnB-
ADOPT, BnB-ADOPT+, ADOPT(k), and BD-ADOPT.

Finally, we modify TERMINATE messages and their re-
ceiving procedure. The amended procedure when agent xi

receives a TERMINATE message from the parent xp is as
follows: if the context cxi(d, xc) for value d and child xc is
incompatible with the current context CXi updated by the
TERMINATE message, xi reinitializes the lower and upper
bounds lbi(d, xc) and ubi(d, xc), threshold thi(d, xc), and
context cxi(d, xc). Additionally, we introduce the thresh-
old thi(di, xc) for the current value di and child xc into the
TERMINATE message sent to xc. The amendment to TER-
MINATE messages guarantees the threshold of an agent af-
ter receiving a TERMINATE message to be correct, which is
proven by a theorem in the next section. Therefore, the ter-
mination condition is satisfied with the correct threshold and
optimal value.

5 Proof of Termination and Optimality
Our amended algorithm guarantees termination and optimal-
ity, which are stated as Theorems 1 and 2 below, and the full
proofs and lemmata are shown in Appendix D. The arguments
of the proofs are based on the study of BnB-ADOPT. How-
ever, the statements of the theorems are modified to derive
our aimed properties.

For the theorem of optimality, we define the correctness of
the current context of an agent.

Definition 1. The current context CXi of agent xi is correct
iff CXi contains the assignments of all agents in SCP (xi),
and the values of all agents in CXi are equal to the values of
the agents.

The theorems for the amended version of ADOPT are as
follows:

Theorem 1. The amended version of ADOPT terminates af-
ter a finite amount of time.

Theorem 2. For any agent xi ∈ X when the amended ver-
sion of ADOPT terminates, the current context CXi is cor-
rect, and THi = γi(di, CXi) = γi(CXi).

6 Conclusion
We presented flaws in ADOPT and its variants with respect
to termination and optimality, which have been believed to be
correct. The flaws are classified into three types, one of which
is related to termination, while the other two of which are re-
lated to optimality. The causes of the flaws are the update
rules for the bounds, the initialization of a current context,
and TERMINATE messages and their receiving procedure.
Additionally, we proposed an amended version of ADOPT
that avoids these flaws, whose amendment corresponds to
the causes of the flaws. Furthermore, we proved termination
and optimality in the amended version of ADOPT. For future
work, we plan to verify the properties of ADOPT-ing, which
was not analyzed in this work.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2002



References
[Chen et al., 2018] Ziyu Chen, Chen He, Zhen He, and

Minyou Chen. BD-ADOPT: A hybrid DCOP algorithm
with best-first and depth-first search strategies. Artificial
Intelligence Review, 50(2):161–199, August 2018.

[Fioretto et al., 2018] Ferdinando Fioretto, Enrico Pontelli,
and William Yeoh. Distributed constraint optimization
problems and applications: A survey. Journal of Artificial
Intelligence Research, 61:623–698, March 2018.

[Gutierrez and Meseguer, 2010] Patricia Gutierrez and Pe-
dro Meseguer. Saving messages in ADOPT-based algo-
rithms. In AAMAS 2010 Workshop: Distributed Constraint
Reasoning, pages 53–64, Toronto, Canada, 2010.

[Gutierrez et al., 2011] Patricia Gutierrez, Pedro Meseguer,
and William Yeoh. Generalizing ADOPT and BnB-
ADOPT. In Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, pages 554–559,
Barcelona, Catalonia, Spain, 2011.

[Jain et al., 2009] Manish Jain, Matthew E. Taylor, Milind
Tambe, and Makoto Yokoo. DCOPs meet the real world:
Exploring unknown reward matrices with applications to
mobile sensor networks. In Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence, pages
181–186, Pasadena, California, USA, 2009.

[Lass et al., 2008] Robert N. Lass, Joseph B. Kopena,
Evan A. Sultanik, Duc N. Nguyen, Christopher P. Dugan,
Pragnesh J. Modi, and William C. Regli. Coordination of
first responders under communication and resource con-
straints. In Proceedings of the 7th International Joint Con-
ference on Autonomous Agents and Multiagent Systems,
volume 3, pages 1409–1412, Richland, SC, 2008. Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems.

[Maheswaran et al., 2004] Rajiv T. Maheswaran, Milind
Tambe, Emma Bowring, Jonathan P. Pearce, and Pradeep
Varakantham. Taking DCOP to the real world: Efficient
complete solutions for distributed multi-event scheduling.
In Proceedings of the Third International Joint Conference
on Autonomous Agents and Multiagent Systems, volume 1
of AAMAS ’04, pages 310–317, USA, 2004. IEEE Com-
puter Society.

[Modi et al., 2005] Pragnesh Jay Modi, Wei-Min Shen,
Milind Tambe, and Makoto Yokoo. Adopt: Asynchronous
distributed constraint optimization with quality guaran-
tees. Artificial Intelligence, 161(1-2):149–180, January
2005.

[Pecora et al., 2006] Federico Pecora, Pragnesh Jay Modi,
and Paul Scerri. Reasoning about and dynamically posting
n-ary constraints in ADOPT. In Proceedings of Seventh
Workshop on Distributed Constraint Reasoning, pages 57–
71, 2006.

[Silaghi and Yokoo, 2009] Marius C. Silaghi and Makoto
Yokoo. ADOPT-ing: Unifying asynchronous distributed
optimization with asynchronous backtracking. Au-
tonomous Agents and Multi-Agent Systems, 19(2):89–123,
2009.

[Weiss, 2013] Gerhard Weiss. Multiagent Systems. EBSCO
Ebook Academic Collection. MIT Press, second edition,
2013.

[Yeoh et al., 2009] William Yeoh, Ariel Felner, and Sven
Koenig. IDB-ADOPT: A depth-first search DCOP algo-
rithm. In Recent Advances in Constraints, volume 5655
of Lecture Notes in Artificial Intelligence, pages 132–146,
Rome, Italy, 2009. Springer.

[Yeoh et al., 2010] William Yeoh, Ariel Felner, and Sven
Koenig. BnB-ADOPT: An asynchronous branch-and-
bound DCOP algorithm. Journal of Artificial Intelligence
Research, 38:85–133, 2010.

[Yokoo et al., 1998] Makoto Yokoo, Edmund H. Durfee,
Toru Ishida, and Kazuhiro Kuwabara. The distributed
constraint satisfaction problem: Formalization and algo-
rithms. IEEE Transactions on Knowledge and Data Engi-
neering, 10(5):673–685, 1998.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2003


	Introduction
	Preliminaries
	DCOP
	ADOPT

	Flaws in ADOPT-based Algorithms
	Counterexample to Termination
	Trace of the Counterexample
	Cause of the Counterexample
	Occurrence in Variants

	Counterexample to Optimality Caused by Initialization
	Trace of the Counterexample
	Cause of the Counterexample
	Occurrence in Variants

	Counterexample to Optimality Caused by TERMINATE Messages
	Trace of the Counterexample
	Cause of the Counterexample
	Occurrence in Variants


	Amendment to ADOPT
	Proof of Termination and Optimality
	Conclusion

