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Abstract
We present fast algorithms for the general CNF sat-
isfiability problem (SAT) with running-time bound
O∗(cd

n), where cd is a function of the maximum
occurrence d of variables (d can also be the aver-
age occurrence when each variable appears at least
twice), and n is the number of variables in the in-
put formula. Similar to SAT with bounded clause
lengths, SAT with bounded occurrences of vari-
ables has also been extensively studied in the litera-
ture. Especially, the running-time bounds for small
values of d, such as d = 3 and d = 4, have become
bottlenecks for algorithms evaluated by the formula
length L and other algorithms. In this paper, we
show that SAT can be solved in time O∗(1.1238n)
for d = 3 and O∗(1.2628n) for d = 4, improving
the previous resultsO∗(1.1279n) andO∗(1.2721n)
obtained by Wahlström (SAT 2005) nearly 20 years
ago. For d ≥ 5, we obtain a running time bound of
O∗(1.0641dn), implying a bound of O∗(1.0641L)
with respect to the formula length L, which is also
a slight improvement over the previous bound.

1 Introduction
The Boolean Satisfiability Problem (SAT) is the problem of
testing propositional satisfiability for formulas in conjunctive
normal form (CNF). As the first proved NP-complete prob-
lem [Cook, 1971], it has become one of the most founda-
tional problems in computer science, AI, and math. SAT also
has great applications in engineering. For these reasons, SAT
and its variants are studied in a wide range of fields, such as
heuristic algorithms, randomized algorithms, approximation
algorithms, exact and parameterized algorithms, etc.

In exact algorithms, we are devoted to finding fast algo-
rithms in which the correctness and the worst-case running-
time bound are theoretically guaranteed. These running-time
bounds are beneficial to understand the computational com-
plexity of NP-complete problems and the limitation of solv-
ing these problems. Also, the methodology behind exact al-
gorithms can make an impact on practical solvers.

In this paper, we study exact algorithms for SAT, where
one is asked to decide the satisfiability of a given CNF with n
variables. For the general case where there are no restrictions

on the input CNF, the trivial algorithm to enumerate all pos-
sible assignments runs in time O∗(2n). The first non-trivial
bound O∗(2n(1−1/α)) where α =

√
n log n/2 was obtained

in [Dantsin et al., 2004]. Later better bounds were achieved
in [Schuler, 2005] and [Dantsin et al., 2006]. Despite decades
of research, no algorithm in time O∗(cn) for some constant
c < 2 was found. The Strong Exponential Time Hypothe-
sis (SETH) [Impagliazzo and Paturi, 2001] conjectures that
such an algorithm does not exist. There has also been con-
siderable research on two other natural measures: the number
of clauses in the formula m and the length of the formula
L. There is a series of improvements in the running-time
bounds measured by m and L, respectively. Recently, the re-
sults were improved to O∗(1.2226m) [Chu et al., 2021] and
O∗(1.0646L) [Peng and Xiao, 2021].

Better bounds of O∗(cn) with c < 2 can be achieved for
various restricted versions of SAT. One notable example is
k-SAT, where every clause in the CNF is restricted to con-
tain at most k literals. This problem is polynomial-time solv-
able for k = 2 and NP-complete for k ≥ 3. Regarding k-
SAT algorithms, two prevailing paradigms are local search
algorithms, exemplified by Schöning’s algorithm [Schöning,
1999], and random restriction algorithms, such as PPZ [Paturi
et al., 1999] and PPSZ [Paturi et al., 2005]. Both paradigms
have a running time of 2n(1−c/k+o(1/k)), where c is specific to
the algorithm. The study of 3-SAT is of independent interest
and has a rich history of improvements. Currently, the fastest
known algorithms for 3-SAT include a deterministic one with
time complexity O∗(1.32793n) [Liu, 2018] and a probabilis-
tic one with time complexity O∗(1.30698n) [Scheder, 2021].

Another restriction is limiting the occurrence of each vari-
able in the formula to at most d, which is the main focus of
this paper. This problem can be solved in linear time when
d = 2 and becomes NP-complete when d ≥ 3 [Tovey, 1984].
Oliver and Luckhardt [1997] obtained a non-trivial bound
O∗(3n/9) ⊆ O∗(1.1299n) for the case d = 3. Subsequently,
Wahlström [2005b] gave an improved O∗(1.1279(d−2)n)-
time algorithm for d ≥ 3. For d = 3 and 4, the algo-
rithm runs in O∗(1.1279n) and O∗(1.2721n) time, respec-
tively. These results are the best known for d = 3 and 4,
and they have been utilized as sub-algorithms in several algo-
rithms measured by the formula length L [Wahlström, 2005a;
Chen and Liu, 2009; Peng and Xiao, 2021]. Specifically, they
invoked Wahlström’s algorithm when the maximum occur-
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d = 3 d = 4 References
O∗(1.1299n) - [Oliver and Luckhardt, 1997]
O∗(1.1279n) O∗(1.2721n) [Wahlström, 2005b]
O∗(1.1238n) O∗(1.2628n) This paper

Table 1: A summary of known results for SAT with d = 3 or 4.

rence of variables is 3 or 4. Consequently, their focus narrows
down to scenarios where there is a variable with at least 5 oc-
currences. We also remark that the cases d = 3 and 4 have
become the bottleneck cases in these previous algorithms.

Our Contribution. In this paper, we show that SAT with
each variable appearing at least twice in the formula can be
solved in time O∗(1.1238(d−2)n) or O∗(1.0641dn), where
d can be the average occurrences of variables in the for-
mula. The first running-time bound implies the results of
O∗(1.1238n) for d = 3 and O∗(1.2628n) for d = 4, which
are the first improvements from Wahlström’s results. Note
that dn ≥ L. Our second running-time bound implies that
SAT can be solved in time O∗(1.0641L), slightly improving
the previous result O∗(1.0646L) [Peng and Xiao, 2021]. We
consider our results for the cases d = 3 and 4 as the major
contribution since our improvements for d ≥ 5 are also based
on those for the cases d = 3 and 4. We summarize the previ-
ous and our results for d = 3 and 4 in Table 1.

Our algorithms follow the branch-and-search approach,
similar to previous algorithms. In these algorithms, variables
are typically dealt in descending order of their degrees, where
the degree of a variable refers to the number of its occurrences
in the formula. When the degree of a variable is large enough,
we can get a good branch directly. On the other hand, a vari-
able with degree at most 2 can be easily handled by reduction
rules. The most challenging cases usually involve variables
with degrees 3 and 4. In the previous algorithm for d = 3
and 4 [Wahlström, 2005b], the worst branch will generate a
branching vector of (4, 8) (branching into two sub-branches:
one reduces 4 degree-3 variables and one reduces 8 degree-3
variables), the corresponding complexity factor is 1.1279. In
this paper, we improve the worst branching vector to (5, 7)
(the corresponding complexity factor is 1.1238) through sev-
eral techniques: (1) introducing new reduction rules, such as
R-Rule 8 and R-Rules 12-14; (2) replacing some degree-4
variables with degree-3 variables, simplifying the handling of
degree-4 case and avoiding one previous bottleneck; (3) using
refined analyses to avoid previous bottlenecks in dealing with
degree-3 variables and the remaining degree-4 variables.

For d ≥ 5, we adopt a general analytical framework to
simplify the analysis, where we assign varying weights for
variables based on their degrees to capture their contributions
to the complexity. A key technique in this framework is the
introduction of a tunable parameter in the weights, which al-
lows us to derive different running-time bounds for the same
algorithm by adjusting its value. Specifically, our dervied
bound takes the form of O∗(c(d−λ)nλ ), where λ is the tunable
parameter, and cλ is a constant related to λ. For d = 3 and 4,
the bound will be better by setting λ = 2, and for d ≥ 5, the
bound will be better by setting λ = 0.

Other Related Work. We also mention the maximum
satisfiability problem (MaxSAT), which is closely related to
SAT. In MaxSAT, the objective is to satisfy the maximum
number of clauses in a given CNF formula. The three pa-
rameters n, m, and L mentioned above were also consid-
ered for MaxSAT. For the number of variables n, the triv-
ial bound O∗(2n) is also unlikely to break under SETH. For
the number of clauses m and the length of the formula L,
the bounds were recently improved to O∗(1.2886m) [Xiao,
2022] and O∗(1.0926L) [Alferov and Bliznets, 2021], re-
spectively. There is also a series of results on the restricted
version that the occurrence of each variable in the input CNF
is at most d = 3. Since the first algorithm with running-time
bound O∗(1.732n) [Raman et al., 1998] was proposed, the
results were frequently improved: O∗(1.3248n) [Bansal and
Raman, 1999], O∗(1.27203n) [Kulikov and Kutskov, 2009],
O∗(1.2600n) [Bliznets, 2013], O∗(1.237n) [Xu et al., 2019],
O∗(1.194n) [Xu et al., 2021], and O∗(1.191n) [Belova and
Bliznets, 2020]. Very recently, Brilliantov et al. [2023] im-
proved the result to O∗(1.1749n). Based on this result, they
can improve the result evaluated by L to O∗(1.0911L).

The proofs of lemmas and theorems marked with ♣ can be
found in the full version of this paper.

2 Preliminaries
2.1 Notations
For a boolean variable x, it has two corresponding literals:
the positive literal x and the negative literal x. We use x to
denote the negation of a literal x and thus x = x. Given a
set of variables V , a clause on V is a subset of literals on V ,
and a formula is set of clauses. An assignment for V is a map
A : V → {0, 1}. A clause is satisfied by an assignment if at
least one literal in it gets value 1, and a formula is satisfied
by an assignment if all clauses in it are satisfied. A formula
is satisfiable if it can be satisfied by at least one assignment.

A clause containing a single literal xmay be simply written
as x. We use C1C2 to denote the clause containing all literals
in clauses C1 and C2. For a clause C, we use C to denote the
set of negations of literals in C, and use C = 1 (resp., C = 0)
to indicate that we assign 1 (resp., 0) to all literals in C. For a
formulaF , we denoteFC=1 as the resulting formula obtained
from F by removing all clauses containing some literal in C
and removing all literals in C from all clauses in F , and let
FC=0 = FC=1.

In a formulaF , a literal z is called an (i, j)-literal (resp., an
(i+, j)-literal or (i−, j)-literal) if z appears i (resp., at least i
or at most i) times and z appears j times in F . Similarly, we
can define (i, j+)-literal, (i, j−)-literal, etc. A literal z is pure
if z is an (1+, 0)-literal. A variable x appears in a formula or
a set of literals C if x or x is contained in C. For a variable or
a literal x in formula F , the degree of it, denoted by deg(x),
is the occurrences of x and x in F , i.e., deg(x) = i + j for
an (i, j)-literal x or x. A variable x is a d-variable (resp.,
d+-variable) if deg(x) = d (resp., deg(x) ≥ d). The degree
of a formula F , denoted by deg(F), is the maximum degree
of all variables in F . For a clause or a formula C, the set of
variables appearing in C is denoted by var(C). A formula F
is d-regular if all variables in F are d-variables.
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The length of a clause C, denoted by |C|, is the number of
literals in C. A clause is a k-clause (resp., k+-clause) if the
length of it is k (resp., at least k). A formula F is k-CNF if
each clause in F has a length of at most k. A clause is a P-
monotone (resp., N-monotone) clause if it contains only pos-
itive (resp., negative) literals. A clause is a monotone clause
if it is P-monotone or N-monotone. Otherwise, the clause is
non-monotone. A monotone formula is a formula where each
clause in it is monotone.

In a formula F , a literal x is called a neighbor of a literal
z if there is a clause containing both z and x. The set of
neighbors of a literal z in a formulaF is denoted byN(z,F).
We also use N (k)(x,F) (resp., N (k+)(z,F)) to denote the
neighbors of z in k-clauses (resp., k+-clauses) in F , i.e., for
any z′ ∈ N (k)(z,F) (resp., z′ ∈ N (k+)(z,F)), there exists a
k-clause (resp., k+-clause) containing both z and z′.

Resolution [Davis and Putnam, 1960] is a frequently used
technique for SAT. For two clauses xC and xD in formula
F , the resolvent of C and D by variable x is the clause CD.
The resolvent CD is trivial if it contains both v and v for
some literal v, or there is another clause E in F such that
E ⊆ CD. We assume that duplicate literals in a resolvent
are removed. A resolution on x in formula F is to construct a
new formula DPx(F) by adding all non-trivial resolvents by
x to F and removing all clauses containing variable x.

We assume that in the initial formula, each variable appears
at least twice, although 1-variables may be generated during
the algorithm. Note that 1-variables can be easily reduced but
they may affect the average degree of the formula.

2.2 Branch-and-Search Algorithms
Our algorithm is a classical branch-and-search algorithm,
which first applies reduction rules to reduce the instance and
then searches for a solution by branching. We need to use a
measure to evaluate the size of the search tree generated in the
algorithm. Let µ be the measure and T (µ) be an upper bound
on the size of the search tree generated by the algorithm on
any instance with the measure of at most µ. A branching op-
eration, which branches on the instance into l branches with
the measure decreasing by at least ai in the i-th branch, is
usually represented by a recurrence relation

T (µ) ≤ T (µ− a1) + T (µ− a2) + · · ·+ T (µ− al),

or simply by a branching vector [a1, a2, . . . , al]. The largest
root of the function f(x) = 1 −

∑l
i=1 x

−ai is called the
branching factor of the recurrence. If the maximum branch-
ing factor for all branching operations in the algorithm is at
most γ, then T (µ) = O(γµ). More details about analyzing
branching algorithms can be found in [Fomin and Kratsch,
2010]. We say that one branching vector is not worse than an-
other if its corresponding branching factor is not greater than
that of the latter. We need to find the worst branching vector
with the largest branching factor in the algorithm. We will
frequently use the following property, which can be obtained
from Lemmas 2.2 and 2.3 in [Fomin and Kratsch, 2010].

Lemma 1. The branching vector [∆0,∆1] is not worse than
[q, p− q] if ∆0 + ∆1 ≥ p and min(∆0,∆1) ≥ q.

2.3 The Measure
We use the measure-and-conquer method [Fomin et al., 2009]
to analyze the running-time bound. Specifically, we introduce
a weight to each variable according to its degree. Let w :
Z+ → R+. We adopt the following measure of a formula F :

µ(F) =
∑

v∈var(F)

wdeg(v).

Let ni be the number of variables with a degree of i in the
formula, L be the length of the formula, and d = L/n be
the average occurrence of variables in the formula. We also
introduce a tunable parameter λ ≥ 0 and restrict that wi ≤
i − λ for i > 1. The tunable parameter is important. For the
same algorithm, we will get different running-time bounds
under different values of the tunable parameter. Recalling our
assumption that there are no 1-variables in the initial formula,
thus n1 = 0 holds. For the initial formula F , we have

µ(F) =
∑
i

wini ≤
∑
i>1

(i− λ) · ni =
∑
i>1

i · ni − λ
∑
i>1

ni

= L− λn = (d− λ)n.

If we get a running-time bound of O∗(cµ(F)), then we also
get a bound of O∗(c(d−λ)n). When λ = 0, the running-time
bound will be O∗(cdn) = O∗(cL).

Let δi = wi − wi−1 for i > 1. To guarantee that the mea-
sure does not increase during the algorithm and to simplify
certain arguments, we impose some constraints on wi and λ:

wi−1 ≤ wi ≤ i− λ for i > 1, δi−1 ≥ δi for i > 3,

w1 = w2 = 0, w3 < 2, w4 = 2w3,

wi = i− λ for i ≥ 5, and λ ≤ 2.

(1)

Based on the above constraints, we have

2δ5 > w3 = δ3 = δ4 ≥ δ5 ≥ 1 = δi for i ≥ 6. (2)

With these constraints, we can see that once we determine the
value of λ and w3, then we can determine all weights.

3 Reduction Rules
We have 15 reduction rules. When we introduce one we as-
sume that all previous rules can not be applied.
R-Rule 1. F ′ ∧ xxC → F ′ ∧ xC.

R-Rule 2. F ′ ∧ C ∧ CD → F ′ ∧ C.

R-Rule 3. F ′ ∧ xxC → F ′.
R-Rule 4. If there is a 1-clause x or a (1+, 0)-literal x, then
F → Fx=1.

R-Rule 5. If there is a variable x with deg(x) ≤ 4 such that
the degree of each variable in DPx(F) is not greater than
that in F , then F → DPx(F).

When none of the above rules is applicable, all variables in
the formula are 3+-variables. R-Rules 6 to 9 are going to deal
with some pairs of clauses containing two common variables.
R-Rule 6 ([Chen and Liu, 2009]). If there is a 2-clause xy
and another clause xyC, thenF ′∧xy∧xyC → F ′∧xy∧xC.
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R-Rule 7 ([Peng and Xiao, 2021]). Let x be a (2+, 1)-literal.
If there are clauses xyC1 and xyC2, then F ′ ∧ xyC1 ∧
xyC2 → F ′ ∧ xC1 ∧ xyC2.
R-Rule 8 (♣). Let x be a (2+, 1)-literal. If there are clauses
xyC1 and xyC2, then F ′ ∧ xyC1 ∧ xyC2 → F ′ ∧ xyC2.
R-Rule 9 ([Chen and Liu, 2009]). If there are two clauses
CD1 and CD2 such that |C| ≥ 2 and |D1|, |D2| ≥ 1, then
F ′ ∧ CD1 ∧ CD2 → F ′ ∧ xC ∧ xD1 ∧ xD2, where x is a
new 3-variable.
R-Rule 10 ([Chen and Liu, 2009]). If there is a 2-clause xy
such that x and y are not both (1, 2)-literals and x is an
(1, 2+)-literal, then replace x with y and apply R-Rule 3.
R-Rule 11. If there is a (2, 2)-literal x and four clauses
xC1, xC2, xD1, and xD2, then F ′ ∧ xC1 ∧ xC2 ∧ xD1 ∧
xD2 → F ′ ∧ y1C1 ∧ y1C2 ∧ y2D1 ∧ y2D2 ∧ y1y2, where y1
and y2 are two new (2, 1)-literals.

R-Rule 11 is like the backward version of R-Rule 10. Note
that our setting can avoid endless loops between them.
R-Rule 12 (♣). Let x, y1, · · · , yk (k ≥ 2) be (2+, 1)-
literals. If there are clauses xy1C1, y1y2D1, · · · , yiyi+1Di,
· · · , yk−1ykDk−1, and xykC2, then remove clause xy1C1.
R-Rule 13 (♣). Let x be a (2, 1)-literal. If there are clauses
xyC1, xaC2, xC3, and D such that |C1| ≤ 1, and D = ya or
D = yaC4 and literal a is a (2, 1)-literal, then F ′ ∧ xyC1 ∧
xaC2 ∧D ∧ xC3 → F ′ ∧ aC1C2 ∧ yC1C3 ∧D.
R-Rule 14 (♣). Let x, y, z, and a be (2, 1)-literals. If there
are clauses xy, xa, yzb, zaC, and zD, then F ′ ∧ xy ∧ xa ∧
yzb ∧ zaC ∧ zD → F ′ ∧ abC ∧ xbD ∧ xa.
R-Rule 15. If there is a negative (2, 1)-literal x, then replace
x with x to make it a positive (2, 1)-literal.
Definition 1. A formula is reduced if none of R-Rules 1–15
is applicable. We use R(F) to denote the reduced formula
obtained by iteratively applying R-Rules 1–15 on F .
Lemma 2 (♣). For any formula F , applying any reduction
rule on it will not increase the measure µ. Moreover, it takes
polynomial time to obtain R(F) from F .
Lemma 3 (♣). In a reduced formula, there are no (i, 0)-
literals and all variables are 3+-variables.
Lemma 4 (♣). In a reduced formula, if there is a 2-clause
xy, then no other clause contains xy, xy, or xy. Moreover, if
x is a (2+, 1)-literal, then no other clause contains xy.
Lemma 5 (♣). In a reduced formula, any two clauses contain
at most one common 3-variable.
Lemma 6 (♣). In a reduced 3-regular formula, the two lit-
erals in any 2-clause are both negative (1, 2)-literals or both
positive (2, 1)-literals.
Lemma 7 (♣). Let C = xy be a 2-clause that contains
two negative (1, 2)-literals in a reduced 3-regular formula.
It holds that var(N(x,F)) ∩ var(N (2)(y,F)) = ∅.

4 Main Algorithm
After obtaining a reduced formula by applying reduction
rules, we apply branching rules. We have six branching steps.

Steps Branching vectors
Factors

λ = 2 λ = 0
w3 = 1 w3 = 1.87884

1 (w6 + 1, w6 + 11) 1.0795 1.0636

2.1 (w5 + 2w3, w5 + w3 + 7δ5) 1.0816 1.0604

2.2 (w5 + 2δ5, w5 + 2w3 + 6δ5) 1.0956 1.0635
(w5 + 4δ5, w5 + 6δ5) 1.0911 1.0641

2.3 (5w3, 7w3) 1.1238 1.0641

3 (5w3, 7w3) 1.1238 1.0641

4 (6w3, 6w3) 1.1224 1.0635

5.1 (6w3, 6w3) 1.1224 1.0635
5.2 (5w3, 7w3) 1.1238 1.0641

6 1.1092
1

w3 1.1092 1.0568

Table 2: The branching vector of each step in the algorithm and
the corresponding branching factors under λ = 0 & w3 = 1 and
λ = 2 & w3 = 1.87884.

The worst cases of the branching vectors in each step are
listed in Table 2. Recall that we have a tunable parameter
λ in the weights. We will use the results for λ = 2 and 0. The
responding branching factors are also given in Table 2.

Before going into the detailed branching steps, we first in-
troduce some lower bounds on the decrease of measure in two
frequently-used branchings. We use the following notations.
Definition 2. For a literal x in a formula F , we define

• pi(x) = |{y : y ∈ N(x,F) and deg(y) = i}| and

• qi(x) = |{y : y ∈ N (2)(x,F) and deg(y) = i}|.
In other words, pi(x) is the number of literals with a degree

of i in N(x,F), and qi(x) is the number of literals with a
degree of i in N (2)(x,F).

The following two lemmas can be easily obtained from
Lemmas 6 and 9 in [Peng and Xiao, 2021]. We remark that
the conditions of the two lemmas also hold in our algorithm.
Lemma 8 (♣). Let x be a literal of a d-variable in a reduced
formula F where deg(F) = d. It holds that ∆ = µ(F) −
µ(R(Fx=1)) ≥ wd +

∑d
i=3 pi(x)δd.

Lemma 9 (♣). Let x be a literal of a d-variable in a re-
duced formula F such that deg(F) = d, and ∆1 = µ(F) −
µ(R(Fx=1)) and ∆0 = µ(F) − µ(R(Fx=0)). It holds that
∆1 + ∆0 ≥ 2wd+ 2dδd+

∑d
i=3(qi(x) + qi(x))(2w3−2δd).

The following lemma will be frequently used.
Lemma 10 (♣). Let x be a (d − 1, 1)-literal in a reduced
formula F with d = deg(F) ≥ 4. Assume that the clauses
containing x or x are xC1, · · · , xCd−1 and xD. It is safe to
branch with (1) x = 1 ; (2) x = 0 and D = 0. Let ∆1 =
µ(F)− µ(R(Fx=1)) and ∆0 = µ(F)− µ(R(Fx=0&D=0)).
It holds that ∆1 + ∆0 ≥ 2wd + (2d − 3)δd + 3w3 and
min(∆1,∆0) ≥ wd + min((d− 1)δd, 2w3 + δd).

4.1 Step 1: 6+-variables
If there is a 6+-variable in the formula, we pick up a variable
x of maximum degree and branch with (1) x = 1; (2) x = 0.
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We show that the branching vector is not worse than (w6 +
1, w6+11). Let d = deg(x) ≥ 6, ∆1 = µ(F)−µ(R(Fx=1)),
and ∆0 = µ(F) − µ(R(Fx=0)). Note that δd = δ6 = 1
since d ≥ 6. By Lemma 9, we have ∆1 + ∆0 ≥ 2wd +
2dδd ≥ 2w6 + 12. By Lemma 8, we have ∆1 ≥ wd +∑d
i=3 pi(x)δd ≥ w6+1 since

∑d
i=3 pi(x) ≥ 1. Similarly, we

have ∆0 ≥ w6 + 1. Thus, min(∆1,∆0) ≥ w6 + 1. Together
with ∆1+∆0 ≥ 2w6+12, we know that the branching vector
is not worse than (w6 + 1, w6 + 11) by Lemma 1.

4.2 Step 2: 4-variables and 5-variables

In this step, we deal with 4-variables and 5-variables. Note
that all (2, 2)-literals are reduced by R-Rule 11.

Step 2.1: If there is a (4, 1)-literal x, where xD is assumed
to be the unique clause containing x, then branch with (1)
x = 0 andD = 0; (2) x = 1. Let ∆1 = µ(F)−µ(R(Fx=1))
and ∆0 = µ(F) − µ(R(Fx=0&D=0)). By Lemma 10, we
know that ∆1 + ∆0 ≥ 2w5 + 7δ5 + 3w3 and min(∆1,∆0) ≥
w5 +min(4δ5, 2w3 +δ5) ≥ w5 +2w3 since w3 < 2δ5. Thus,
the branching vector is not worse than (w5 + 2w3, w5 +w3 +
7δ5) by Lemma 1.

Step 2.2: If there is a (2, 3)-literal x, then branch with (1)
x = 1; (2) x = 0. Let ∆1 = µ(F) − µ(R(Fx=1)) and
∆0 = µ(F)− µ(R(Fx=0)). We consider two cases.

Case 1: There is at least one 2-clause containing x or
x, i.e.,

∑5
i=3(qi(x) + qi(x)) ≥ 1. By Lemma 9, we have

∆1+∆0 ≥ 2w5+10δ5+
∑5
i=3(qi(x)+qi(x))(2w3−2δ5) ≥

2w5 + 2w3 + 8δ5. By Lemma 8, we have ∆1 ≥ w5 +∑5
i=3 pi(x)δ5 ≥ w5 + 2δ5 and ∆0 ≥ w5 +

∑5
i=3 pi(x)δ5 ≥

w5 + 3δ5 since x is a (2, 3)-literal. Thus min(∆1,∆0) ≥
w5 + 2δ5. Together with ∆0 + ∆1 ≥ 2w5 + 2w3 + 8δ5,
we know that the branching vector is not worse than (w5 +
2δ5, w5 + 2w3 + 6δ5) by Lemma 1.

Case 2: All clauses containing x or x are 3+-clauses. Then
we have

∑5
i=3 pi(x) ≥ 4 and

∑5
i=3 pi(x) ≥ 6. It follows

that ∆1 ≥ w5 + 4δ5 and ∆0 ≥ w5 + 6δ5 by Lemma 8. Thus,
the branching vector is not worse than (w5 + 4δ5, w5 + 6δ5).

Step 2.3: If there is a (3, 1)-literal x, where xD is assumed
to be the unique clause containing x, then we branch with
(1) x = 0 and D = 0; (2) x = 1. The branching vector is
not worse than (5w3, 7w3). Let ∆1 = µ(F) − µ(R(Fx=1))
and ∆0 = µ(F) − µ(R(Fx=0&D=0)). By Lemma 10 we
know that ∆1 + ∆0 ≥ 2w4 + 5δ4 + 3w3 = 12w3 and
min(∆1,∆0) ≥ w4 + min(3δ4, 2w3 + δ4) = 5w3 since
w4 = 2w3 and δ4 = w3. Thus, the branching vector is not
worse than (5w3, 7w3) by Lemma 1.

4.3 3-regular Formula (Steps 3–6)

Now the formula is a reduced 3-regular formula. Moreover,
all positive literals appear twice and all negative literals ap-
pear once in the formula since R-Rule 15 is not applicable.
The removal of any literal of a 3-variable will make it a 2-
variable, and reduction rules will reduce the 2-variable. So
when a literal of a 3-variable is removed, we will regard this
variable as reduced. This property will be frequently used.
We have four steps to deal with different cases.

Step 3: Good N-monotone 2-clauses
Assume that there is an N-monotone 2-clause xy. There is no
other clause that contains both x and y by Lemma 5. Let the
four clauses containing x and y be xC1, xC2, yC3, and yC4,
where we also assume, w.l.o.g., that |C1| ≤ |C2|, |C3| ≤
|C4|, and |C1| ≤ |C3|.

An N-monotone 2-clause xy is called good if it holds at
least one of the following conditions: (i) |C1| ≥ 2; (ii) |C1| =
|C3| = 1; (iii) |C1| = 1 and |C2|, |C3| ≥ 2; (iv) |C1| =
|C2| = 1, |C3| = 2, and |C4| ≥ 3; (v) There is a negative
(1, 2)-literal in N(x,F) or N(y,F). Thus, if xy is not good,
then it holds that |C1| = |C2| = 1, |C3| = |C4| = 2, and all
clauses containing x or y are P-monotone.

This step is going to deal with good N-monotone 2-clauses
if they exist. Let xy be a good N-monotone 2-clause. We
branch with (1) x = 1 and y = 0; (2) x = 0 and y = 1.
Lemma 11. The branching vector generated by Step 3 is not
worse than (5w3, 7w3).

Proof. We denote ∆1 = µ(F) − µ(R(Fx=1&y=0)) and
∆0 = µ(F) − µ(R(Fx=0&y=1)). Let tx and ty be the
number of 2-clauses containing literal x and literal y, re-
spectively. In the branch x = 1 and y = 0, all vari-
ables in var(C1) and var(C2) are reduced, and all literals in
N (2)(y,F) will get assignment by R-Rule 4 since the clauses
containing them become 1-clauses. By Lemma 5, we have
{x, y} ∩ (var(C1C2) ∪ var(C3C4)) = ∅. By Lemma 7, we
know that var(C1C2) ∩ var(N (2)(y,F)) = ∅. So the num-
ber of reduced variables is at least |{x, y}|+ |var(C1C2)|+
|var(N (2)(y,F))| = 2 + |C1|+ |C2|+ ty , and then we have

∆1 ≥ (2 + |C1|+ |C2|+ ty)w3.

Similarly, in the branch x = 0 and y = 1, we have

∆0 ≥ (2 + |C3|+ |C4|+ tx)w3.

Thus, it holds that ∆0+∆1 ≥ (4+
∑4
i=1 |Ci|+tx+ty)w3 ≥

(4 +
∑4
i=1 max(|Ci|, 2))w3 ≥ (4 + 8)w3 = 12w3 since that

for each Ci, it contributes to ∆0 + ∆1 at least 2w3 when
|Ci| = 1 and at least |Ci|w3 when |Ci| ≥ 2.

We first claim that if at least one of conditions (i)–(iii) is
satisfied, then we have min(∆0,∆1) ≥ 5w3, which is suf-
ficient to get a branching vector not worse than (5w3, 7w3)
since ∆0 + ∆1 ≥ 12w3 by Lemma 1. If condition (i) is satis-
fied, we have |C2| ≥ |C1| ≥ 2 and |C4| ≥ |C3| ≥ |C1| ≥ 2.
It holds that ∆1 ≥ (2+|C1|+|C2|)w3 ≥ 6w3 and ∆0 ≥ (2+
|C3|+ |C4|)w3 ≥ 6w3. Thus, we have min(∆0,∆1) ≥ 6w3.
If condition (ii) is satisfied, we have tx ≥ 1 and ty ≥ 1.
It holds that ∆1 ≥ (2 + |C1| + |C2| + ty)w3 ≥ 5w3 and
∆0 ≥ (2 + |C3| + |C4| + tx)w3 ≥ 5w3. And then we have
min(∆0,∆1) ≥ 5w3. If condition (iii) is satisfied, we have
|C1| = 1, |C2| ≥ 2, and |C4| ≥ |C3| ≥ 2. It holds that
∆1 ≥ (2 + |C1| + |C2|)w3 ≥ 5w3 and ∆0 ≥ (2 + |C3| +
|C4|)w3 ≥ 6w3. Then we have min(∆0,∆1) ≥ 5w3.

If condition (iv) is satisfied, we have tx = 2. Then it holds
that ∆1 ≥ (2 + |C1| + |C2|)w3 = (2 + 1 + 1)w3 = 4w3

and ∆0 ≥ (2 + |C3|+ |C4|+ tx)w3 ≥ (2 + 2 + 3 + 2)w3 =
9w3. Thus the branching vector is not worse than (4w3, 9w3),
which is better than (5w3, 7w3).
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Next, we assume that only condition (v) is satisfied. This
will be the hardest case. We have |C1| = |C2| = 1, |C3| =
|C4| = 2, and tx = 2, and we show the branching vector is
not worse than (4w3, 9w3).

By Lemma 6 and |C1| = |C2| = 1, we know that both xC1

and xC2 are P-monotone, and thus we can assume, w.l.o.g,
that C3 = zα, where z is a negative (1, 2)-literal and α is an
(1, 2)/(2, 1)-literal by the condition (v). In the branch x = 1
and y = 0, we have ∆1 ≥ (2+ |C1|+ |C2|)w3 = 4w3. In the
branch x = 0 and y = 1, based on the previous analysis, we
can first get ∆0 ≥ (2 + |C3| + |C4| + tx)w3 = 8w3, where
only variables in S = {x, y}∪var(C1C2)∪var(C3C4) were
taken into consideration. We show that we can further reduce
one more variable besides S to get ∆0 ≥ 9w3.

After assigning x = 0 and y = 1, literal z becomes
pure. We can assign z = 1 by R-Rule 4 and further reduce
var(N(z,F)). Let zE1 and zE2 be the two clauses contain-
ing litearl z, i.e., N(z,F) = E1E2. By Lemma 7, we have
x /∈ E1E2. By Lemma 5, we have y /∈ E1E2 and var(E1E2)
∩var(C3) = ∅. Let v be a positive (2, 1)-literal in C1C2. We
can apply R-Rule 14 if v ∈ E1E2 and apply R-Rule 12 in
the case of k = 3 if v ∈ E1E2. So we have var(C1C2) ∩
var(E1E2) = ∅. If |var(E1E2)\var(C4)| ≥ 1, then we can
reduce at least |S ∪ var(Nz)| = |{x, y}| + |var(C1C2)| +
|var(C3C4)|+ |var(E1E2) \ var(C4)| ≥ 2 + 2 + 4 + 1 = 9
variables. Next, we assume var(E1E2) ⊆ var(C4) and show
that we still can further reduce one more variable besides S.

We have |E1| = |E2| = 1 since var(E1E2) ⊆ var(C4)
and |C4| = 2. Let var(C4) = {a, b} and assume, w.l.o.g.,
that E1 = a and E2 = b since that both zE1 and zE2 are
P-monotone by Lemma 6. If both literals in C4 are negative
(1, 2)-literals, then R-Rule 13 should be applicable. If there
is only one negative (1, 2)-literal in C4, say a, then DPa(F)
satisfies the requirement of R-Rule 5. Thus, both literals in
C4 are positive (2, 1)-literals, i.e., C4 = ab. Let aG1 and bG2

be the clauses containing a and b. We can reduce variables
in var(G1G2) by assigning a = b = 1 since they become
pure after assigning x = 0, y = 1, and z = 1. Recall that
C3 = zα and a is a positive (2, 1)-literal contained in za.
We can apply R-Rule 13 if α ∈ G1G2 and R-Rule 12 in
the case of k = 2 if α ∈ G1G2. With Lemma 5, we have
var(G1G2) ∩ ({x, y} ∪ var(C3C4)) = ∅. If |G1| = 1, then
aG1 is an N-monotone 2-clause by Lemma 6, and it satisfies
one of conditions (i)–(iv) since that there are clauses za and
yab. Thus, we have |G1| ≥ 2, and similarly, |G2| ≥ 2. This
together with Lemma 5 yields that |var(G1G2)| ≥ 3. So we
have |var(G1G2)\var(C1C2)| ≥ 1 since |var(C1C2)| = 2.
Therefore, in the case var(E1E2) ⊆ var(C3C4), we can
reduce at least |S∪var(G1G2)| ≥ |{x, y}|+ |var(C1C2)|+
|var(C3C4)|+var(G1G2)\var(C1C2) ≥ 2+2+4+1 = 9
variables. This completes the proof.

Step 4: Making the Formula Monotone
In this step, we pick up a positive literal x in a non-monotone
clause C (if it exists) and branch on x. We will show that the
branching vector is not worse than (6w3, 6w3).
Lemma 12 (♣). Let C be a non-monotone clause in a re-
duced formula after Step 3. If there is a positive literal y ∈ C,
then y is contained in a 3+-clause.

Lemma 13 (♣). Let F be a reduced formula after Step 3
and xD be a non-monotone clause in F containing a positive
literal x. Then it holds that ∆ = µ(F)−µ(R(Fx=1)) ≥ 6w3.
Lemma 14 (♣). Let F be a reduced formula after Step 3 and
xC ′ be a 3+-clause in F containing a negative literal x. It
holds that ∆ = µ(F)− µ(R(Fx=0&C′=0)) ≥ 6w3.

Let C = xD be a non-monotone clause containing pos-
itive literal x and xC ′ be the clause containing x. In this
step, we will branch with (1) x = 1; (2) x = 0 and C ′ = 0.
Equipped with Lemmas 13 and 14, we can show the branch-
ing vector is not worse than (6w3, 6w3). In the first branch,
we can reduce the measure by at least 6w3 by Lemma 13. In
the second branch, we have |C ′| ≥ 2 by Lemma 12 and then
we can also reduce the measure by at least 6w3 by Lemma 14.

Step 5: Making the Formula 3-CNF
Now, the formula is monotone. In this step, we are going to
deal with N-monotone clauses of length at least 4 and some
N-monotone clauses of length 3.

Step 5.1: If there is an N-monotone clauseC = v1v2 · · · vk
with k ≥ 4, then branch with (1) v1 = · · · = vdk/2e = 0; (2)
vdk/2e+1 = · · · = vk = 0. This branch is correct because all
the literals in C are (1, 2)-literals and we only need to let one
of them be 1 and all others 0. We show that the branching
vector is not worse that (6w3, 6w3). The proof is based on
the following property.
Lemma 15 (♣). Let C be an N-monotone 4+-clause in a
formulaF after Step 4, andC ′ = v1 · · · vr be any subset ofC
of r ≥ 2 literals. We have ∆ = µ(F)−µ(R(FC′=0)) ≥ 6w3.

Based on Lemma 15, we know that Step 5.1 can always
generate a branching vector not worse that (6w3, 6w3). Since
Step 5.1 deals with N-monotone 4+-clauses, next we assume
that each N-monotone clause in F is a 2-clause or 3-clause.
Lemma 16 (♣). Let C be an N-monotone 3-clause in a re-
duced formula F after Step 5.1. For any two negative literals
y and z in C, it holds that |var(N(y,F) ∪N(z,F))| ≥ 4.

Step 5.2: Assume there is an N-monotone 3-clause xyz
such that |C1| + |C2| ≥ 3 for the two clauses xC1 and xC2

containing x. In this step, we select a literal x such that |C1|+
|C2| is maximized, and branch with (1) x = 1; (2) x = 0 and
y = z = 1.
Lemma 17. The branching vector generated by Step 5.2 is
not worse than (5w3, 7w3).

Proof. Let ∆1 = µ(F) − µ(R(Fx=1)), ∆0 = µ(F) −
µ(R(Fx=0&y=z=1)), and Nyz = N(y,F) ∪N(z,F).

Case 1: |C1|+ |C2| ≥ 4. In the branch x = 1, all variables
in C1 and C2 are reduced. Together with x, we can reduce
at least 5 variables. In the branch x = 0 and y = z = 1, all
variables in var(Nyz) are reduced. By Lemma 16, we know
that |var(Nyz)| ≥ 4. Additionally, Lemma 5 guarantees that
var(Nyz) ∩ x, y, z = ∅. In this branch, we reduce at least
|{x, y, z}|+ |var(Nyz)| ≥ 7 variables in total. Thus, we can
branch with (5w3, 7w3) at least.

Case 2: |C1|+ |C2| = 3. W.l.o.g., we assume C1 = a and
C2 = bc. We show that the branching vector is not worse than
(4w3, 9w3), which is better than (5w3, 7w3). In the branch
x = 1, at least 4 variables a, b, c, and x are reduced.
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In the branch x = 0 and y = z = 1, we can further assign
a = 1. Let aD be the other one clause containing literal
a. Then D will also be reduced after we assign a = 1. To
sum up, we can reduce variables in {x, y, z, a}∪ var(Nyz)∪
var(D). We have {x, y, z}∩var(D) = ∅ and a /∈ Nyz since
R-Rule 13 is not applicable. Note that |var(Nyz)| ≥ 4, and
{x, y, z} ∩ var(Nyz) = ∅ by Lemma 5. We can reduce at
least |{x, y, z, a} ∪ var(Nyz) ∪ var(D)| = |{x, y, z, a}| +
|var(Nyz)|+|var(D)\var(Nyz)| ≥ 9 variables if |var(D)\
var(Nyz)| ≥ 1 or |var(Nyz)| ≥ 5, and thus ∆0 ≥ 9w3.
Next, we show that we can still reduce 9 variables at least if
|var(Nyz)| = 4 and var(D) ⊆ var(Nyz).

Let yE1, yE2, zE3, and zE4 be the four clauses contain-
ing literal y or z. According to the choice of x, we know that
|E1|+ |E2| ≤ |C1|+ |C2| = 3 and so |E1| = 1 or |E2| = 1.
Similarly, |E3| = 1 or |E4| = 1. W.l.o.g., we assume that
|E1| = |E3| = 1. It holds that var(E1) 6= var(E3) and
var(E1E3)∩var(E2E4) = ∅ otherwise R-Rule 13 would be
applicable. Since |var(E1E2E3E4)| = |var(Nyz)| = 4, we
have |var(E2E4)| = |var(E1E2E3E4)|−|var(E1E3)| = 2.
If |E2|, |E4| ≥ 2, then |var(E2E4)| ≥ 3 by Lemma 5, which
is a contradiction. So we can assume, w.l.o.g., that |E2| = 1
and 1 ≤ |E4| ≤ 2. If |E2| = 1 and |E4| = 2, then we have
var(E2) ∩ var(E4) = ∅, otherwise R-Rule 13 is applicable.
However, this implies a contradiction that |var(E2E4)| =
|E2| + |E4| ≥ 3. Thus, we have |E2| = |E4| = 1. Let u be
a literal in D. We know that u becomes pure after assigning
x = 0 and y = z = 1 since thatD andNyz only contain posi-
tive literals, and u appears in both of them. So we can further
assign u = 1 in this branch. Assume that the clause con-
taining literal u is uvw, variables v and w are also reduced by
u = 1. Since |Ei| = 1 for 1 ≤ i ≤ 4, we can apply R-Rule 13
if {v, w} ⊆ var(Nyz). So we have |{v, w} \ var(Nyz)| ≥ 1.
Clearly, {v, w} ∩ {x, y, z, a} = ∅. As a result, we can reduce
at least |{x, y, z, a} ∪ var(Nyz) ∪ {v, w}| = |{x, y, z, a}|+
|var(Nyz)| + |{v, w} \ var(Nyz)| ≥ 9 variables, and so we
have ∆1 ≥ 9w3 in this case. This completes the proof.

Lemma 18 (♣). After Step 5, all clauses have a length ≤ 3.
Lemma 18 implies that the formula after Step 5 is a 3-CNF.

Step 6: Fast Solving the Remaining Part
Next, we call a fast 3-SAT algorithm by Beigel and Eppstein
to solve our problem directly.
Lemma 19 ([Beigel and Eppstein, 2005]). 3-SAT can be
solved in time O∗(1.3645t) and polynomial space, where t
is the number of 3-clauses.

Lemma 20. Step 6 can be solved in O∗((1.1092
1

w3 )µ(F))
time and polynomial space.

Proof. Let m2 be the number of N-monotone 2-clauses, m3

be the number of N-monotone 3-clauses, and m3 be the num-
ber of P-monotone 3-clauses in the formula. Note that the
number of 3-clauses in F is m3 + m3. Since the formula is
monotone now and all negative literals appear once, we know
that the number of variables is n = 2m2 + 3m3.

For an N-monotone 3-clause inF , say xyz, all clauses con-
taining literal x/y/z are 2-clauses after Step 5.2. So, we can
know that for a P-monotone 3-clause, say abc, all clauses

containing literal a/b/c are 2-clauses. After Step 3, for an
N-monotone 2-clause xy in F , there are two P-monotone
2-clauses and two P-monotone 3-clauses containing x or y.
Thus, we can know that m3 = 2m2/3, and so we have

m3 +m3 =
2

3
m3 +m3 =

2m2 + 3m3

3
=
n

3
.

Then, by calling Beigel and Eppstein’s algorithm, we can
solve the problem in time O∗(1.3645

n
3 ) ⊆ O∗(1.1092n). Fi-

nally, since the formula is 3-regular, we have µ(F) = w3n

and O∗(1.1092n) ⊆ O∗((1.1092
1

w3 )µ(F)).

5 The Final Results
Now we present our main results. The algorithm will first
apply the reduction rules to get a reduced formula and then
apply the six branching steps in order. The worst branching
vectors for each branching step are summarized in Table 2.
Note that these worst branching vectors are not related to the
value of the tunable parameter λ as long as 0 ≤ λ ≤ 2.

By setting λ = 2 and w3 = 1, we have µ(F) ≤ (d − 2)n
and wi = i − 2 for i ≥ 3. The biggest branching factor for
the first five steps is 1.1238, which is corresponding to the
branching vector (5w3, 7w3) in Steps 2.3, 3, and 5.2. Since
w3 = 1, Step 6 can be solved in time O∗(1.1092µ(F)). Thus,
the whole instance can be solved in time O∗(1.1238(d−2)n).

Theorem 1. SAT without 1-variables can be solved in
O∗(1.1238(d−2)n) time and polynomial space.

By setting λ = 0 and w3 = 1.87884, we have µ(F) ≤ dn,
w4 = 3.75768, and wi = i for i ≥ 5. The biggest branching
vector for the first five steps is 1.0641, and the bottlenecks are
Steps 2.2, 2.3, 3, and 5.2. Under this setting, Step 6 can be
solved in time O∗(1.0568µ(F)), and the whole instance can
be solved in time O∗(1.0641dn). Since L = dn, we get that:

Theorem 2. SAT can be solved in O∗(1.0641dn) time (resp.,
O∗(1.0641L) time) and polynomial space.

6 Conclusion
In this paper, we study the running-time bounds for SAT with
the average occurrence of variables bounded by d. The results
for d = 3 and 4, which were frequently used in other algo-
rithms, have not been improved for a long time. One reason
why it is hard to improve is that several cases will lead to the
same bottleneck. In this paper, by using new reduction and
branching techniques, we successfully avoid all the previous
bottlenecks.

Another interesting technique is that we set a tunable pa-
rameter λ in our variable weights. By setting different val-
ues to the tunable parameter, we get different running-time
bounds for the same algorithm with the same analysis frame-
work. When the tunable parameter λ is smaller, more im-
provements for small d may propagate to that for large d.
When λ reaches the upper bound 2, we get the best results
for d = 3 and 4. When λ = 0, the running-time bound for
d ≥ 5 becomes better. This analysis technique may be able
to apply to more problems.
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