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Abstract
The graph width-measure twin-width recently at-
tracted great attention because of its solving power
and generality. Many prominent NP-hard problems
are tractable on graphs of bounded twin-width if
a certificate for the twin-width bound is provided
as an input. Bounded twin-width subsumes other
prominent structural restrictions such as bounded
treewidth and bounded rank-width. Computing
such a certificate is NP-hard itself, already for twin-
width 4, and the only known implemented algo-
rithm for twin-width computation is based on a
SAT encoding.
In this paper, we propose two new algorithmic
approaches for computing twin-width that signifi-
cantly improve the state of the art. Firstly, we de-
velop a SAT encoding that is far more compact than
the known encoding and consequently scales to
larger graphs. Secondly, we propose a new Branch
& Bound algorithm for twin-width that, on many
graphs, is significantly faster than the SAT encod-
ing. It utilizes a sophisticated caching system for
partial solutions. Both algorithmic approaches are
based on new conceptual insights into twin-width
computation, including the reordering of contrac-
tions.

1 Introduction
Recently, Bonnet et al. [Bonnet et al., 2020] discovered the
fundamental graph width measure twin-width based on a
novel graph decomposition based on sequences of vertex con-
tractions. They showed that bounded twin-width generalizes
many previously known graph classes for which important
problems are tractable, including first-order model checking
(an important meta-problem in computational logic). The
notion of twin-width is also helpful for problems beyond
NP, like bounded-ones weighted model counting [Ganian
et al., 2022]. Most notably, graphs of bounded treewidth,
bounded clique-width, and planar graphs all have bounded
twin-width [Bonnet et al., 2020]; hence twin-width provides
a common generalization of other diverse notions. Due to
its appealing properties, twin-width has already become the
topic of extensive research [Bonnet et al., 2022f; Bonnet et

al., 2021a; Bonnet et al., 2021b; Bonnet et al., 2022c; Bon-
net et al., 2022c; Bonnet et al., 2022d; Bonnet et al., 2022e;
Bonnet et al., 2022a; Bonnet et al., 2022b; Dreier et al., 2022;
Bergé et al., 2022; Gajarský et al., 2022; Pilipczuk et al.,
2022; Balabán et al., 2022; Balabán and Hlinený, 2021;
Jacob and Pilipczuk, 2022; Ahn et al., 2022].

All the mentioned algorithmic results for graphs of
bounded twin-width require a certificate that the input graph’s
twin-width is bounded. So far, twin-width has been mainly
studied from a theoretical and asymptotic perspective and
very little is known about the computational aspects of twin-
width. An exception are the SAT encodings proposed by
Schidler and Szeider [2022], which have been utilized for
experiments on twin-width of model counting instances [Ga-
nian et al., 2022] but still only scale to relatively small in-
stances. The SAT encoding provided experimental insights
and gave rise to the conjecture that Paley graphs of order n
have twin-width (n−1)/2, later verified by Ahn et al. [2022].
Because of the great interest in the practical computation of
twin-width, the organizers of the 2023 PACE competition1

have chosen twin-width as the target problem.
This paper aims to advance our knowledge about the com-

putational aspects of twin-width. In particular, we ask (1)
whether the SAT encodings can be improved to admit bet-
ter scalability and (2) whether algorithmic approaches differ-
ent from SAT encodings are feasible and effective. We also
ask for (3) structural results that allow us to prune the search
space for twin-width decompositions explored.

Indeed, we could make considerable progress in all three
points and provide an empirical evaluation..

1. We propose a new SAT encoding that is significantly
more compact than the known SAT encodings and al-
lows faster solving times. The encoding’s small size re-
sults in improved scalability and the encoding’s ability
to find upper bounds for larger graphs.

2. We propose a new Branch & Bound algorithm BB-CCH
that incorporates several new methods proposed in this
paper. The caching and re-using of previous computa-
tions is a key contributor to BB-CCH’s outstanding per-
formance. BB-CCH is considerably faster than the SAT

1Parameterized Algorithms and Computational Experiments
Challenge (PACE), https://pacechallenge.org/2023/
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encodings and can compute reasonable upper bounds for
large graphs far out of reach for the SAT encodings.

3. We establish several results that can help to speed up the
search for twin-width decompositions. The results in-
clude pre-and inprocessing techniques based on the new
notion of a tri-twin and a result that allows us to assume
a specific order of contractions (the elementary steps of
twin-width decompositions) without losing optimality.
Both help to significantly reduce the search space and
speed up the twin-width computation.

4. We evaluate our algorithms on two classes of benchmark
graphs, structured graphs and graphs from the treewidth
lib benchmark suite. The results show that our new SAT
encoding scales better than the previous encodings, par-
ticularly for structured graphs. Furthermore, BB-CCH
solves more instances in a shorter amount of time than
any of the SAT encodings.

2 Preliminaries
A trigraph is an undirected graph G with vertex set V (G)
whose edge set E(G) is partitioned into a set B(G) of black
edges and a set R(G) of red edges. We consider an ordinary
graph a trigraph with all its edges black. W.l.o.g., we assume
that V (G) is lexicographically ordered. The set NG(v) of
neighbors of a vertex v in a trigraph G consists of all the ver-
tices adjacent to v by a black or red edge. We call u ∈ NG(v)
a black neighbor of v if uv ∈ B(G), we call it a red neighbor
if uv ∈ R(G), and denote the set of black and red neighbor-
hoods of v by NG,B(v) and NG,R(v) respectively. Whenever
G is clear from context, we drop G from the subscript. The
red degree of a vertex v ∈ V (G) of a trigraph G is |NG,R(v)|.
A d-trigraph is a trigraph where each vertex has red degree at
most d, denoted by r(G) = d.

A bijection π:V (G) → V (H) between the vertex sets of
trigraphs G and H is an isomorphism if for all u, v ∈ V (G)
it holds that uv ∈ X(G) iff π(u)π(v) ∈ X(G), for X ∈
{B,R}. If an isomorphism between G and H exists, the tri-
graphs are isomorphic. If G = H then π is an automorphism.
V (G) is partitioned into orbits where u, v ∈ V (G) belong to
the same orbit if π(u) = v for some automorphism π of G.

A trigraph G′ is derived from a trigraph G by a contrac-
tion u → v, where u is being merged into v, as follows:
V (G′) = V (G) \ {u} and every vertex in the symmetric dif-
ference NG(u)△NG(v) is made a red neighbor of v. If a
vertex x ∈ NG(u) ∩ NG(v) is a black neighbor of both u
and v, then v is made a black neighbor of x; otherwise, v is
made a red neighbor of x. The other edges (not incident with
u or v) remain unchanged. We denote a trigraph obtained
from trigraph G by contracting u and v as Gu→v , and in the
contraction u → v, u is the contracted vertex, and v is the
contraction vertex. Gu→v is isomorphic to Gv→u, as only
the name of the contraction vertex changes.
Twin-Width via d-Elimination Sequences. We give here a
definition of twin-width via d-elimination sequences, slightly
modifying the definition given by Schidler and Szeider
[2022], as this definition is better suited for our purposes.

Let G be a trigraph, T a rooted forest—every tree in T is
a rooted tree—with V (T ) ⊆ V (G), set of non-roots N(T ),
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Figure 1: A graph G with eight vertices and a twin-width decompo-
sition (T,≺) of width 2. Figure 2 shows the 2-elimination sequence
induced by (T,≺).

and ≺ a linear ordering of N(T ), where u ≺ v holds for
any two vertices u, v ∈ N(T ) such that v is the parent of u
in T . We call T a contraction forest, ≺ an elimination or-
dering, and the pair D = (T,≺) a twin-width decomposition
of G. Let V ′ = V (G) \ N(T ), k = |N(T )|, when we write
V (G) = {v1,D, . . . , vk,D}∪V ′ such that v1,D ≺ · · · ≺ vk,D,
then T and G define a sequence of trigraphs G0, . . . , Gk with
V (Gi) = {vi+1,D, . . . , vk,D} ∪ V ′. We denote by pi,D the
parent of vi,D in T . We define Gi recursively as follows.
For i = 0, we set G0 = G, and for 1 ≤ i ≤ k we set
Gi = G

vi→pi,D

i−1 .
We call the sequence G = G0, . . . , Gk the elimination

sequence for G defined by the twin-width decomposition
(T,≺); if for an integer d, all the Gi have a maximum red de-
gree≤ d, we call G = G0, . . . , Gk a d-elimination sequence.
The width of the twin-width decomposition (T,≺) of G is the
smallest integer d such that (T,≺) defines a d-elimination se-
quence.

Whenever k = |V (G)| − 1, we call (T,≺) a full twin-
width decomposition, and consequently ≺ a full elimination
ordering, G0, . . . , Gk a full elimination sequence, and T a
full contraction forest. Observe that, in this case, T is a tree
rooted at a single vertex. The twin-width of a trigraph G,
denoted tww(G), is the minimum width over all See Figures 1
and 2 for examples. Recognizing graphs of twin-width 4 is
NP-complete [Bergé et al., 2022].

Partitions. The contractions of a graph G induce a parti-
tion on V (G) as follows. We view every vertex v ∈ V (G)
as labeled by the singleton LG(v) = {v}. After contract-
ing two vertices u → v, we label the contraction vertex v as
LGu→v (v) = LG(u)∪LG(v), and all other labels remain the
same. Hence, the labels of a trigraph G = G0, . . . , Gk de-
rived from a graph G are always a partition of V (G). For
0 ≤ i ≤ k we refer to the partition of Gi as P (Gi) =
{LGi(v) | v ∈ V (Gi) }.

3 Theory

For a graph with n vertices exist n!·(n−1)!
2n many possible se-

quences of contractions, each of them corresponding to a full
twin-width decomposition. In this section, we discuss how
we can reduce the number of twin-width decompositions we
have to consider and speed up the twin-width computation for
a given trigraph. We will use these results for our algorithms
SAT-CPT and BB-CCH.

We first state two facts, let G be a trigraph, u, v ∈ V (G).
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Figure 2: 2-elimination sequence induced by the twin-width decomposition from Figure 1.

Fact 3.1. The red degree of any vertex w ∈ V (G) \ {u, v}
can increase at most by one in Gu→v .
Fact 3.2. The red degree of any vertex w ∈ V (G) \ {u} can
decrease at most by one in Gu→v .

3.1 Isomorphic Trigraphs
Trigraph isomorphisms can be used to eliminate many pos-
sible twin-width decompositions from consideration. When-
ever we have a twin-width decomposition D = (T,≺) in-
ducing a d-elimination sequence G = G0, . . . , Gk and we
have a full d-elimination sequence G = G′

0, . . . , G
′
n−1,

such that Gk and G′
k are isomorphic, then, G =

G0, . . . , Gk, G
′
k+1, G

′
n−1 is a full d-elimination sequence.

Hence, we complete T and ≺ using the full twin-width de-
composition, and we do not have to go through all possible
contractions to complete D. Furthermore, whenever we can-
not complete D to a full twin-width decomposition of width
d, we know that no d-elimination sequence G = G′

0, . . . , G
′
j ,

where, for any i ∈ {1, . . . , j}, G′
i is isomorphic to Gi, can be

extended to a full d-elimination sequence.
Since checking if trigraphs are isomorphic can be compu-

tationally expensive, We give an easy sufficient criterion with
the following theorem:
Theorem 1. Given twin-width decompositions D = (T,≺)
and D′ = (T ′,≺′) inducing the d-elimination sequences
G = G0, . . . , Gk and G′

0, . . . , G
′
k respectively. Whenever

P (Gk) = P (G′
k), then Gk and G′

k are isomorphic.
The theorem follows from the definition of partition coars-

ening introduced by Bonnet et al. [2020]. Hence, whenever
two trigraphs represent the same partition, they are isomor-
phic. The opposite is not necessarily true, different partitions
may represent the same trigraph. The following observations
lead to complementary isomorphism checks:
Observation 3.1. Consider a trigraph G, vertices u, v, w ∈
V (G), and let A = R(Gu→w)△R(G) and B =
R(Gv→w)△R(G). If either A = {vw} and B = {uw} or
A = B = ∅, the trigraphs Gu→w and Gv→w are isomorphic.
Observation 3.2. If two vertices u, v ∈ V (G) belong to the
same orbit, then for each u′ ∈ V (G) there exists a v′ ∈ V (G)

such that Gu→u′
and Gv→v′

are isomorphic.

3.2 Twin Pre- and In-processing
We propose a new pre- and inprocessing method and extend
the definition of twins from graphs to trigraphs.
Definition 1. Two different vertices u, v ∈ V (G) of a tri-
graph G are tri-twins if the following two properties hold: (i)
(NB(u)△NB(v)) \ {u, v} = ∅, and (ii) NR(u) \ {v} ⊆
NR(v) or NR(v) \ {u} ⊆ NR(u).

Observation 3.3. Contracting tri-twins u, v does not in-
crease the red degree of any vertex, and the red degree of
the contraction vertex is at most the red degree of u or v.

Tri-twins have another interesting property, as the follow-
ing theorem shows.

Theorem 2. Let Gj be a trigraph derived from some graph
G via contractions, and u, v be tri-twins in Gj . Then,
tww(Gj) ≥ tww(Gu→v

j ).

The proof proceeds by showing that a full d-elimination
sequence G = G0, . . . , Gj , . . . Gn−1 can be modified such
that u and v are contracted at position j + 1, which yields a
d-elimination sequence Gu→v

j = G′
j+1, . . . , G

′
n−1. Because

contraction and contracted vertex are interchangeable, we can
assume that V (Gn−1) = V (G′

n−1) = {v}.
Theorem 2 allows us to apply the following pre- and in-

processing: whenever we have a partial elimination sequence
up to Gj that we are trying to extend to Gj+1 and find tri-
twins in Gj , we can immediately contract them and disregard
all other contractions. This can considerably reduce the num-
ber of elimination sequences we need to explore.

3.3 Ordering of Contractions
In general, the ordering of the contractions in an elimination
sequence matters. Therefore, given a twin-decomposition
(T,≺) of width d, changing ≺ may cause the width to in-
crease. While generally true, the ordering of the contractions
often does not matter, and reordering of many contractions
still maintains the same width. This is important, as only hav-
ing to consider different sets of contractions is less complex
than also considering their ordering. Therefore, criteria that
help us distinguish between cases where the ordering matters
and does not matter, can significantly reduce the search space.

We give some intuition, before formalizing our criterion.
Consider a twin-decomposition D = (T,≺) inducing a
d-elimination sequence G = G0, . . . , Gk−1. The key to this
idea is Theorem 1: the maximum red degree of any vertex in
Gk−1 only depends on the partition induced by the contrac-
tions. In particular, the order of the contractions does not mat-
ter, as reordering the contractions will still induce the same
partition.

We can view the red degree of a vertex v ∈ V (Gk−1) by
looking at Σk−1

j=1 |NGj ,R(v)| − |NGj−1,R(v)|, i.e., the change
of red degree from contraction to contraction. This allows
us to incrementally maintain the red degrees: when adding
one summand after the other, the intermediate result never
exceeds d. Further, as long as this invariant holds for all ver-
tices, we can freely move around the contractions.
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In our criterion, we consider the contraction u → v to ex-
tend our elimination sequence G = G0, . . . , Gk−1 to Gk =
Gu→v

k−1 . Let d′ = max{r(Gk), r(G
u→v
k )}. The question we

want to answer is: are there any vi,D ∈ (V (G)\V (Gk))\{u}
such that there exists a twin-width decomposition D′ =
(T ′,≺′) of Gi−1 that has width d′ and vi,D′ = u?

We give a general condition in the following theorem, but
first, we introduce some necessary notations. Let D = (T,≺)
be a twin-width decomposition that induces a d-elimination
sequence G = G0, . . . , Gk. For all 1 ≤ i ≤ k we define

Ri = (NGi,B(vk,D)△NGi,B(pk,D)) \ {vk,D, pk,D},
Ni = (NGi,R(vk,D) ∪NGi,R(pk,D)) \ {vk,D, pk,D}.

Ri is the set of new red neighbors created when contracting
vk,D and pk,D in Gi. Ni is the set of existing red neighbors
of the two vertices. We can now formulate our theorem.

Theorem 3. Let G = G0, . . . , Gk be the d-elimination se-
quence induced by a twin-width decomposition D = (T,≺)
for trigraph G, and let j0 ∈ {0, . . . , k − 1} be the largest
index such that at least one of the following conditions holds:

1. For some w ∈ (Rj0 \Nj0) ∪ {vj0} it holds that:

(a) |NGj0−1,R(w)| = d, and
(b) w = vj0 or |NGj0

,R(w)| = d− 1,

2. |Rj0 ∪Nj0 | > d,

3. j0 = 0.

Then, for all j0 < j < k, there exists a twin-width de-
composition Dj of G of width d where vj,Dj = vk,D and
pi,Dj = pk,D.

Proof. We define for all 1 ≤ j ≤ k a twin-width decomposi-
tion Dj = (Tj ,≺j) as follows:

vi,Dj =


vk,D i = j,

vi,D i < j,

vi−1,D i > j

pi,Dj =


pk,D i = j,

pi,D i < j,

pk,D pi−1,D = vk,D
pi−1,D otherwise.

It can be verified that Dj is a twin-width decomposition of G
of width d.

Intuitively, we need to ensure that the reordering does
not lead to any vertices red degree exceeding d. Condi-
tion 1 states that any vertex whose red degree is increased
by vk,D → pk,D cannot have red degree d or is eliminated.
Condition 2 ensures that vk,D → pk,D does not cause the
red degree of pk,D to exceed d. The following corollary is a
special case.

Corollary 1. Let D = (T,≺) be a twin-width decomposi-
tion inducing a d-elimination sequence G = G0, . . . , Gk.
Whenever G

vk,D→pk,D

k−2 is a d-trigraph and for all vertices
v ∈ V (Gk) holds that either (i) |NGk,R(v)| < d, or (ii)
|NGk−1,R(v)| = d, or (iii) |NGk−2,R(v)| ≤ |NGk−1,R(v)|,
then Dk−1 is a d-elimination sequence.

This already gives us a strong criterion for finding equiv-
alent reorderings of the given contractions. While it is easy
to state a canonical criterion, such as that the contractions

should occur in lexicographical order, except if it is neces-
sary to execute them in a specific order. This can then be
rather easily verified using Theorem 3. Converting a given
elimination ordering into such a canonical ordering, on the
other hand, is difficult, as each change in ordering requires
re-evaluating the effects and which other vertices can then be
reordered.

4 SAT Encoding
In this section, we propose our new compact SAT encoding
SAT-CPT for determining the twin-width of a given graph G
with n = |V (G)| many vertices. Schidler and Szeider [2022]
proposed two SAT encodings, a relative (SAT-SSZ) and an
absolute encoding. While their absolute encoding was com-
paratively succinct, using only O(n3) many clauses, it cannot
solve any non-trivial instances. The relative encoding uses
O(n4) many clauses, which makes it considerably larger, but
outperforms the absolute encoding. Our encoding SAT-CPT
implements the basic idea of the absolute encoding in a way
that is even more succinct and performs much better. Our en-
coding uses O(n3) many clauses, which makes it more suc-
cinct than the relative encoding, and the different cardinality
encoding, discussed in Section 4, makes SAT-CPT also sig-
nificantly more succinct than the absolute encoding.

In the remainder of this section, we present SAT-CPT by,
given a graph G and an integer d, constructing a propositional
formula F (G, d) that is satisfiable if and only if tww(G) ≤
d. For this purpose, we encode a twin-width decomposition
D = (T,≺) and ensure that the induced elimination sequence
G = G0, . . . , Gn−1 is a d-elimination sequence. We start
with our representation of D, followed by our representation
of G0, . . . , Gn−1, and finish the encoding with our handling
of cardinality constraints. In the last part, we discuss optional
techniques to speed up the solving process.

Encoding the Twin-Width Decomposition. We represent
D by using for each u ∈ V (G) the variables vu,t and pu,t,
where vu,t is true if and only if vt,D = u and pu,t is true if and
only if pt,D = u. Since the maximum red degree of a trigraph
with k vertices is k−1, we can limit t to 1 ≤ t < n−d−1 and
eliminate the last d + 2 vertices in any order. Therefore, en-
coding D takes asymptotically O(n2) many variables, where
the actual number depends on d.

Both sets of variables pv,t and vv,t, v ∈ V (G), 1 ≤ t <
n − d − 1, are constrained such that exactly one vertex is
eliminated at once and that vt,D ≺ pt,D holds.

This way of encoding D splits the definition of T between
the variables vu,t, and pu,t, as pt,D can only be determined
using both sets of variables. This is a significant difference to
both the absolute and relative encoding by Schidler and Szei-
der [2022]: both encodings use variables that directly rep-
resent pu,t. Our way of encoding T allows us to use only
cubically many clauses, as we will discuss next.

Red Edges. Before we can constrain the red degrees of the
vertices, we have to encode G1, . . . , Gn−d−2. We use vari-
ables rt,u,w for all 1 ≤ t < n− d− 1 and u,w ∈ V (G) such
that u is lexicographically smaller than w. A variable rt,u,w
is true if and only if uw ∈ R(Gt).
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The asymptotic succinctness of SAT-CPT is due to how the
semantics of rt,u,v is encoded. The red edges of a trigraph Gt

with 1 ≤ t < n− d− 1 are encoded in three steps. First, we
maintain all red edges from Gt−1, which is straightforward.
Next, we encode the new red edges between pt,D and ver-
tices u ∈ ((NG,B(vt,D)△NG,B(pt,D)) ∩ V (Gt)) \ {pt,D}.
The constraints are straightforward, as we can easily compute
NG,B(vt,D)△NG,B(pt,D) when creating the encoding, and
add the condition that u must not yet have been eliminated.

Finally, we encode that for all u ∈ NGt−1,R(vt,D) it must
hold that u = pt,D or u ∈ NGt,R(pt,D), i.e., red neighbors
get transferred from the contracted to the contraction vertex.
Here, splitting the encoding of the contraction and the con-
tracted vertex pays off. We use auxiliary variables mt,u for
all 1 < t < n− d− 1 and u ∈ V (G) that are true if and only
if uvt,D ∈ R(Gt−1). The desired property can then be easily
encoded while maintaining the number of clauses in O(n3);
here, SAT-SSZ requires O(n4) many clauses for encoding the
elimination sequence.

Cardinality Constraints. We ensure that the red degree of
any vertex never exceeds d using cardinality constraints that
encode conditions of the form |NGt,R(u)| ≤ d.

SAT-SSZ uses one cardinality constraint for each vertex in
each trigraph of the elimination sequence. Hence, the en-
coding uses n2 many cardinality constraints. Since a car-
dinality constraint on its own adds O(n · log n) many vari-
ables and O(n2) many clauses [Bailleux and Boufkhad, 2003;
Sinz, 2005], this adds O(n4) many clauses in total.

We use Facts 3.1 and 3.2 for a much more succinct so-
lution. Since only the red degree of the contraction vertex
can increase by more than one in a single contraction, we
use the following trick. First, we constrain the red degree of
the contraction vertex in each trigraph using totalizer cardi-
nality constraints [Bailleux and Boufkhad, 2003]. This adds
n− d− 2 many cardinality constraints.

Next, we constrain each vertex using an adapted sequence
counter [Sinz, 2005]. This sequence counter uses the fact that
all vertices other than the contraction vertex can change their
red degree by at most one during a single contraction. Hence,
for each v ∈ V (G) and 1 ≤ t < n − d − 1, the counter
changes as follows from t − 1 to t: (i) whenever v = pt,D,
the counter uses the corresponding totalizer constraint to de-
termine the red degree, (ii) whenever v has a red edge to both
the contraction and contracted vertex in Gt−1, the counter de-
creases by one, (iii) whenever v has a red edge to either the
contraction or contracted vertex in Gt−1, the counter stays
the same, and (iv) whenever v has neither a red edge to the
contraction nor the contracted vertex in Gt−1, but a red edge
to the contraction vertex in Gt, the counter increases by one.

In total, we use only 2 · |V | − d− 2 many cardinality con-
straints, each adding O(n2) many clauses, which are signifi-
cantly fewer variables and clauses compared to SAT-SSZ.

Symmetry Breaking. We use two ideas from Section 3 for
symmetry breaking, often speeding up the solving process.
First, we use Observation 3.2 to restrict the choices for vu,1
to a single vertex per orbit. Further, we encode Corollary 1
for more symmetry breaking.

For encoding Corollary 1, we require the definition of

a critical vertex: let t ∈ {2, . . . , n − d − 2} and u ∈
V (G), then u is a critical vertex in Gt, if |NGt,R(u)| = d,
|NGt−1,R(u)| = d−1, and |NGt−2,R(u)| = d. We use this for
vertices u,w ∈ V (G) where u is lexicographically smaller
than w. Whenever vt,D = u and vt−1,D = w it must also
hold that either |NGt,R(pt,D)| = d and |NGt−1,R(pt,D)| < d,
or any vertex u ∈ V (Gt) is critical. This enforces a lexi-
cographical ordering and thereby eliminates equivalent twin-
width decompositions. We can express this with O(n2) many
variables cu,t, 2 ≤ t < n− d− 1 and u ∈ V (G), where cu,t
is true if and only if u is critical in Gt.

It seems that encoding Theorem 3 would improve the per-
formance even further. Unfortunately, this doubles the encod-
ing size, while the performance gains do not compensate for
the increase in size.

5 Branch & Bound
In this section, we propose our branch & bound algorithm
BB-CCH, shown in Algorithm 1. The algorithm incremen-
tally constructs a twin-width decomposition, adding one con-
traction in each recursive call and thereby constructing the
elimination sequence. In each recursive call, whenever we
find tri-twins, we immediately contract them (Theorem 2),
and skip all other contractions (Line 5). Otherwise, the algo-
rithm considers all possible contractions, and prioritizes those
contractions that minimize the maximum red degree.

Central to the algorithm is the contraction filtering in
Line 9. We can remove any contraction from consideration,
where a rule applies. The given order ensures that computa-
tionally more expensive rules are applied later.

The simplest rule is that no trigraph should reach or exceed
the upper bound, which is verified first. The orbit rule states
that only the contractions of one vertex per orbit are consid-
ered; as stated in Observation 3.2. The quick isomorphism
rule states that, given two contractions u → v and u′ → v′

with u ̸= u′ that derive isomorphic trigraphs according to
Observation 3.1, we only perform one and filter the other. Fi-
nally, we reuse previous results from a cache.

Caching for Isomorphisms. The algorithm’s core idea is
based on the idea to cache the results for partial elimination
sequences. Whenever we have computed all possible exten-
sions of Gi to a full elimination sequence, we know the lowest
integer best such that there exists a best-elimination sequence
Gi, . . . , Gn−1. In case, every possible extension reaches or
exceeds the upper bound ub, we use best = ub. We then
store (Gi, best) in our cache, where Gi is the key used to
access the result (Line 20). In later iterations, whenever the
current trigraph is isomorphic to a trigraph in a cache entry,
we can use the cached result instead of computing all exten-
sions (Line 9).

Instead of the trigraph itself, we use the partition of the tri-
graph as the key due to Theorem 1. This requires less memory
and comparing two partitions is faster than comparing two tri-
graphs. The potential downside of using the partition is that
a trigraph can be represented by multiple partitions. Con-
sequently, using the trigraph as the key would increase the
chance for a successful lookup. In our experiments, using the
trigraph over the partition as the key could increase the num-
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Algorithm 1 Branch & Bound Algorithm for Twin-Width
Input: A graph G
Output: The twin-width of the graph.

1: Let ub = |V (G)| − 1
2: return TWW RECURSION(G, 0)
3: function TWW RECURSION(Gi, d)
4: if |V (Gi)| = 1 then return 0
5: if any u, v ∈ V (Gi) are tri-twins (Theorem 2) then
6: return TWW RECURSION(Gu→v

i , d)
d← max(d, r(Gi))

▷ Add all possible contractions to queue.
7: Q← { (u, v) | u, v ∈ V (Gi), u lex smaller v }

▷ Filter queue entries.
8: for all (u, v) ∈ Q where

9:

Maximum red degree of Gu→v
i reaches ub, or

(i = 0 and automorphism (Observation 3.2)), or
Quick isomorphism check (Observation 3.1), or
Gu→v

i is in partition cache (Theorem 1), or
Reordering succeeds (Theorem 3), or
Gu→v

i is in graph isomorphism cache
do

10: Q← Q \ (u, v)
▷ Process queue and recurse.

11: best← ub
12: while |Q| > 0 do
13: Select (u, v) ∈ Q minimizing r(Gu→v

i )
14: Q← Q \ (u, v)
15: r ←TWW RECURSION(Gu→v , d)
16: if r < best then
17: Clear caches.
18: best← r
19: ub← max(best, d)

20: Store best in the two caches.
21: return max(d, best)

ber of successful cache lookups by less than 1%, which does
not compensate for the decreased performance. We name this
cache the partition cache.

We sometimes use a second cache, the graph isomorphism
cache, where we use the canonical trigraph as the key: if two
trigraphs are isomorphic than they have the same canonical
trigraph. Hence, using the canonical trigraph increases the
chances for a successful cache lookup. The canonical trigraph
is found using the graph automorphism tool nauty [McKay
and Piperno, 2014]. Unfortunately, computing the canonical
trigraph takes very long compared to all other operations in a
recursive call, and storing the whole trigraph takes up consid-
erable memory. Therefore, we use it only for instance specific
parts of the elimination sequence, where successful lookups
are most likely.

Contraction Reordering. Let G = G0, . . . , Gk be the cur-
rent d-elimination sequence in our recursive call and we con-
sider extending it to Gk+1 = Gu→v

k . Before we perform
the contraction, we compute j0 from Theorem 3. Hence, we
check if there is a twin-width decomposition, where u ≺ vk,D
and the same contractions are performed, just in a different

order, such that the twin-width decomposition still induces a
d-elimination sequence.

We perform the following partition cache lookups, when-
ever j0 < k − 1. For all j0 < j ≤ k, we check whether
P (Gu→v

j ) is in our partition cache; if so, and the cached result
is larger than d, we know that we cannot extend our current
elimination sequence to a full d-elimination sequence.

This concludes the description of BB-CCH. Next, we dis-
cuss our experimental evaluation of our new methods.

6 Experiments
We implemented SAT-CPT and BB-CCH in C++ compiled
with GCC 7.5.02. We used nauty 2.8.6 [McKay and Piperno,
2014]3 as a libary for detecting trigraph isomorphisms and
automorphisms, as well as Cadical [Biere et al., 2020]4 as
a SAT solver. We use standard hash maps as caches and a
simple least recently used rule to manage a cache’s memory
consumption. We compare our methods to the relative SAT
encoding (SAT-SSZ) by Schidler and Szeider [2022]5. We
ran the experiments on servers with two AMD EPYC 7402
CPUs, each with 24 cores running at 2.8 GHz, and using
Ubuntu 18.04.

Structured Graphs. We start our experiments by look-
ing at graph families where the number of vertices can be
adapted. We choose from each family a graph whose size
makes determining the twin-width difficult but possible. We
examine the results for 5 different graphs: The Paley-73, Grid
8 × 6, and Rook 6 × 6 graphs as they were used by Schidler
and Szeider [2022], as well as the line graph for the com-
plete graph K10, and the Queen 7 × 7 graph. Table 1 shows
that SAT-CPT is indeed much more succinct than the previ-
ous encoding. This succinctness reflects itself in the runtime,
where SAT-SSZ consistently required much more time than
SAT-CPT. In Table 1, we omit the data for BB-CCH, as it
solved all five instances within a second. Indeed, BB-CCH
could solve the Rook 20× 20, Queen 13× 13, Line K25, and
Paley-421 graphs within a minute. Unfortunately, we could
not determine the twin-width of larger grid graphs.

Treewidth Lib. We expand our comparison to the
Treewidth Lib6 instances. These instances are used as bench-
marks for computing treewidth, a related width measure, and
give a wider variety of graphs. We used all instances with 20
to 200 vertices and tested them using a 6-hour time limit and
32 GB memory limit. All three methods were most effective
for graphs of up to 50 vertices. Out of these 25 instances,
only one remained unsolved. Many of the remaining 217 in-
stances were too difficult for any method. Nonetheless, the
largest solved instance had 197 vertices.

2The source code is available under https://doi.org/10.5281/
zenodo.7944399 and https://github.com/ASchidler/tww-bb. Exper-
imental results are available under https://doi.org/10.5281/zenodo.
7944391

3https://pallini.di.uniroma1.it/
4https://github.com/arminbiere/cadical
5https://github.com/ASchidler/twin width
6http://www.cs.uu.nl/research/projects/treewidthlib/
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SAT-SSZ / SAT-CPT
Instance tww Vars Clauses t [s]

Grid 8× 6 3 396 K/ 79 K 3.4 M/1.3 M 33655/1200
Paley-73 36 2.4 M/0.2 M 26 M/5.6 M 42910/ 789
Rook 6× 6 10 209 K/ 35 K 1.4 M/0.6 M 855/ 9

Line K10 14 479 K/ 65 K 3.0 M/1.3 M 29071/ 374
Queen 7× 7 16 631 K/ 83 K 4.6 M/1.7 M 19947/9842

Table 1: Comparison of the SAT encodings on difficult structured
graphs. M denotes million and K thousand.

Table 2 shows how many instances the different methods
solved, how often an upper bound could be found, and how
comparatively good this upper bound was. BB-CCH solved
by far the most instances and was also much faster than the
other methods: on all instances solved by both BB-CCH and
SAT-SSZ (on average in 802 seconds), BB-CCH was faster
(on average 107 in seconds). Interestingly, BB-CCH also pro-
duced upper bounds for all instances that were as good, and
mostly better, than those obtained by the SAT encodings.

The comparison between the two SAT encodings suggests
that SAT-SSZ performed better than SAT-CPT, as the for-
mer solved more instances. On closer look, SAT-CPT found
more and better twin-width decompositions than SAT-SSZ.
Furthermore, SAT-CPT also found more optimal twin-width
decompositions but failed to show optimality. Hence, SAT-
CPT is the better encoding for obtaining good twin-width de-
compositions, particularly for structured graphs. SAT-SSZ
performed better for finding provably optimal twin-width de-
compositions on unstructured graphs. Finally, the scalability
of SAT-SSZ is restricted by its size, while SAT-CPT can be
used for larger graphs.
Difficult Instances. In the last part, we examine instances
that were difficult for BB-CCH and how well the different
methods proposed in Section 3 performed in practice. Table 3
shows the results. By far, most contractions are filtered due
to reaching the upper bound (Exceeded). Interestingly, the
ratio between recursive calls and successful partition cache
lookups (PCache) is roughly equal for all instances, while the
other methods performed very instance specific. This shows
how effective caching is and that each method is important to
adapt to different instances, as each method performed well
for at least one instance in Table 3.

Method Solved Unique Found Better Optimal

BB-CCH 44 26 242 204 48
SAT-CPT 12 0 151 63 29

SAT-SSZ 20 4 129 19 28

Table 2: Results for Treewidth Lib instances. Solved shows the num-
ber of optimal solutions and Unique how many could only be found
by this method. Found shows the number of instances for which
an upper bound could be found, and Optimal how often this upper
bound happened to be the optimal solution. For BB-CCH and SAT-
CPT, Better shows the number of times the upper bound was better
than SAT-SSZ, and for SAT-SSZ, Better shows how often the upper
bound was better than the one found by BB-CCH or SAT-CPT.

7 Conclusion

We have advanced our knowledge about the computational
aspects of twin-width in several ways. We proposed two ap-
proaches for computing the twin-width of graphs, SAT-CPT
and BB-CCH, utilizing new theoretical results on twin-width
decompositions. These theoretical results are of independent
interest as they might be helpful for other twin-width algo-
rithms developed in the future.

SAT-CPT’s advantage over its predecessor SAT-SSZ lies
in being significantly more compact and scalable to larger in-
stances. BB-CCH’s advantages include being significantly
faster than the SAT approaches and being able to compute
good upper bounds for the twin-width of graphs much larger
than SAT encodings can handle.

We hope that our results bring the compelling theoretical
concept of twin-width a step closer to some practical use in
the future. Further, as practical solvers can often help to ver-
ify theoretical results, we hope that computing the twin-width
or good upper bounds for twin-width can provide new in-
sights for researchers working on twin-width.

Future work can build upon and extend our theoretical re-
sults to improve the performance of BB-CCH and SAT-CPT,
which could benefit from external symmetry-breaking tools.

Filters

Instance |V (G)| |E(G)| tww t[s] Calls Tri-twins Exceeded Orbit Quick PCache Reorder

Bcs01 48 176 7 17019 201 M 7.6 M 129 G 34 4 1.1 G 31 M
BN 113 50 719 8 12039 93 M 88 K 70 G 0 9 653 M 5.6 M
1brf 49 412 8 6521 61 M 1.2 M 36 G 0 6 412 M 2.5 M
Queen 10× 10 100 1470 28 1415 1.8 M 30 2.8 G 85 0 5.2 M 134 K
Huck 74 301 3 973 8.3 M 1.8 M 3.3 G 0 680 K 40 M 12 M

Oesoca 39 67 ≤ 3 > 21600 466 M 134 M 116 G 2 39 M 2.1 G 529 M

Table 3: Difficult instances for BB-CCH and how much which technique helped. The first five instances could not be solved using a SAT
encoding, the last instance could only be solved using a SAT encoding. We use K for thousand, M for million, and G for billion.
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Lopes, and Stéphan Thomassé. Twin-width VIII: delin-
eation and win-wins. In Holger Dell and Jesper Nederlof,
editors, 17th International Symposium on Parameter-
ized and Exact Computation, IPEC 2022, September
7-9, 2022, Potsdam, Germany, volume 249 of LIPIcs,
pages 9:1–9:18. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022.

[Bonnet et al., 2022b] Édouard Bonnet, Dibyayan
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