
Solving Quantum-Inspired Perfect Matching Problems via Tutte-Theorem-Based
Hybrid Boolean Constraints

Moshe Y. Vardi , Zhiwei Zhang
Rice University, Houston, TX, USA

{vardi, zhiwei}@rice.edu

Abstract

Determining the satisfiability of Boolean
constraint-satisfaction problems with different
types of constraints, that is hybrid constraints, is a
well-studied problem with important applications.
We study a new application of hybrid Boolean
constraints, which arises in quantum computing.
The problem relates to constrained perfect match-
ing in edge-colored graphs. While general-purpose
hybrid constraint solvers can be powerful, we show
that direct encodings of the constrained-matching
problem as hybrid constraints scale poorly and
special techniques are still needed. We propose
a novel encoding based on Tutte’s Theorem in
graph theory as well as optimization techniques.
Empirical results demonstrate that our encod-
ing, in suitable languages with advanced SAT
solvers, scales significantly better than a number
of competing approaches on constrained-matching
benchmarks. Our study identifies the necessity
of designing problem-specific encodings when
applying powerful general-purpose constraint
solvers.

1 Introduction
Constraint-satisfaction problems (CSPs) [Brailsford et al.,
1999] play a fundamental role in mathematics, physics,
and computer science. The Boolean SATisfiability problem
(SAT) [Biere et al., 2009] is a special class of CSPs, where
each variable takes value from {True, False}. Solving
SAT efficiently is of utmost significance in computer science,
both theoretically and practically [Vardi, 2014]. Though
most effort of the SAT community has been put into solv-
ing conjunctive-normal-form (CNF) constraints, Boolean sat-
isfiability that also allows hybrid (non-CNF) constraints is
used in numerous applications in various areas, e.g., XOR
constraints in cryptography [Bogdanov et al., 2011], pseudo-
Boolean constraints in discrete optimization [Costa et al.,
2009; Dinur et al., 2005; Kyrillidis et al., 2020], and more.
The combination of different types of constraints enhances
the expressive power of Boolean formulas [Feldman et al.,
2005].

Extensive research has been done for general-purpose hy-
brid Boolean constraints solving by a variety of techniques.
Given the remarkable success of modern CNF-SAT solvers
[Gong and Zhou, 2017; Eén and Sörensson, 2003; Liang,
2018; Froleyks et al., 2021], a natural approach is to en-
code hybrid constraints into CNF. Numerous types of encod-
ings with different properties have been developed [Prest-
wich, 2009]. Some high-level logic-modeling languages
such as Answer Set Programming (ASP) [Lifschitz, 2019;
Gebser et al., 2019] are also based on CNF encoding. A
different technique for hybrid constraints is to handle cer-
tain types of constraints natively by devising specialized
solvers, such as CNF + XOR [Soos et al., 2009] and pseudo-
Boolean solvers [Devriendt et al., 2021; Martins et al., 2014].
In addition, there also exist attempts for handling different
types of hybrid constraints uniformly [Kyrillidis et al., 2020;
Kyrillidis et al., 2021a; Kyrillidis et al., 2021b; Kyrillidis et
al., 2022].

In this paper, we study a new application of hybrid con-
straints that arises in quantum computing, through quantum-
inspired graph theoretical problems related to perfect match-
ing with vertex color constraints. Solving this problem effi-
ciently provides essential insights into how to design quan-
tum experiments [Jooya et al., 2016; Duncan et al., 2020;
Krenn et al., 2022] and advance the realization of large-scale
quantum computers [Pan et al., 2012] (see Section 4). Ex-
tant algorithmic work on this problem is far from developed,
providing no scalable tool to the quantum-computing com-
munity. Tackling this problem by solving hybrid constraints
is promising for several reasons. First, modern constraint
solvers have been well-developed to solve large-scale in-
stances. Second, additional properties of graph instances such
as symmetry can be easily integrated as extra constraints,
which can be difficult for pure graph theoretical algorithms.

Applying general-purpose hybrid-constraint techniques to
the problem above is, however, not trivial. A straightfor-
ward encoding of our constrained-matching problem leads
to a blow-up of the length of the formula, as also observed
in [Cervera-Lierta et al., 2021]. A more advanced encod-
ing based on exact-one constraints yields a considerably long
quantified Boolean formula (QBF) with poor scalability. To
address those issues, as the main technical contribution of this
work, we propose an encoding for the constrained-matching
problem based on Tutte’s Theorem in graph theory [Ander-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2039

son, 1971]. Tutte-Berge formula, as a generalized result
of Tutte’s Theorem, as well as related decompositions, are
widely used in computer science and graph theory [Schrijver
and others, 2003]. The efficiency of our encoding originates
from the short proof of the non-existence of perfect matchings
that this encoding offers.

In the experiment section, we evaluated our approach by
solving novel benchmark problems that represent important
tasks in quantum computing. For a comprehensive compari-
son, we also implemented a number of competing methods.
We demonstrate that our Tutte encoding does not scale well
without further optimizations and suitable languages. Specif-
ically, expressing our encodings in high-level languages, such
as Answer Set Programming (ASP) or pseudo-Boolean pro-
gramming (PB), is more convenient. The resulting perfor-
mance is, however, less than satisfactory. We discover that in
conjunctive normal form (CNF) with additional optimizations
and advanced SAT solvers, our encodings exponentially out-
perform other constraint-based and graph theoretical meth-
ods, significantly increasing the scalability of the state-of-
the-art. Our implementations provide helpful tools for test-
ing quantum properties efficiently. We conclude that in spite
of the progress in general-purpose hybrid constraint solving,
specialized encoding techniques are still required to obtain a
scalable approach for specific problems.

2 Preliminaries
This section includes a background in hybrid Boolean SAT
and definitions in graph theory which are needed for defining
the quantum-inspired problem related to perfect matching.
Definition 1. (Boolean satisfiability and hybrid constraints)
Let x = (x1, ..., xn) be a sequence of n Boolean variables.
A Boolean constraint f(x) is a mapping from a Boolean
vector {True,False}n to {True,False}. A formula
f = c1∧c2∧· · ·∧cm is the conjunction of Boolean constraints
{ci}i=1,··· ,n. There can be multiple types of constraints, e.g.:

• Disjunctive Constraints, e.g., (x1 ∨ x2 ∨ x3).

• Cardinality constraint, e.g., x1 + x2 + x3 ≥ 2, where
False and True are interpreted as 0 and 1 respec-
tively. If the constraint is in the form of

∑
x∈X x = k,

then it can be written as Exact-k(X).

• Pseudo-Boolean (linear) constraints, e.g., 3x1 − 4x2 +
5x3 ≥ 0.

• XOR constraints, e.g., x1 ⊕ x2 ⊕ x3.

A set of constraints is satisfiable if there exists a Boolean as-
signment (solution) that evaluates all constraints to True.

Next, we introduce concepts that relate to the quantum-
inspired graph theoretical problem.
Definition 2. (Bicolored Graphs [Gu et al., 2019a; Vardi and
Zhang, 2022]) In this paper, a “graph” refers to an undi-
rected, non-simple 1 graphs. A bicolored graph G is a tuple
(V,E, d), where V is the set of vertices with |V |, E is the
set of bicolored edges, and d is the number of colors. For

1Self-loops are prohibited but multiple edges between the same
pair of vertices are allowed.

Figure 1: Left: a graph G with bicolored edges. v3 and v4 are con-
nected by two edges with different colors. Right: all perfect match-
ings of G and their inherited vertex colorings [Vardi and Zhang,
2022].

each edge e ∈ E that connects u and v, there are two colors
ceu, c

e
v ∈ {1, · · · , d} that are associated with u and v, respec-

tively, i.e., e = {(u, ceu), (v, cev)}. If ceu = cev , we call the
edge e monochromatic, otherwise e is bicolored. See Figure
1 (left) as an example.

Definition 3. (Vertex coloring) A vertex coloring of graph
G = (V,E, d) is a mapping c from vertices to colors, i.e.,
c : V → {1, · · · , d}. Alternatively one can write c ∈
{1, · · · , d}V . For a coloring c and a color i ∈ {1, · · · , d},
we use count(c, i) to denote the number of appearances of
color i in c.
Definition 4. (Perfect matchings and their inherited vertex
colorings) [Krenn et al., 2019] A perfect matching P of a
graph G is a subset of edges, i.e., P ⊆ E, such that for each
vertex v ∈ V , exactly one edge in P is adjacent to v. For
a perfect matching P of a bicolored graph G, its inherited
vertex coloring, denoted by cP : V → {1, · · · , d} is defined
as follows: for each vertex v, let e be the unique edge that is
adjacent to v, then cP (v) = cev . See Figure 1 for examples.

3 Quantum-Inspired
Perfect-Matching-Related Problems

In this section, we introduce the graph-theoretical problem
that relates to vertex-color-constrained perfect matching, in-
spired by quantum computing. Roughly speaking, the prob-
lem asks whether for each vertex coloring in a set of “legal”
vertex colorings, a bicolored graph has at least one perfect
matching with this inherited vertex coloring.
Problem 1. (Perfect matchings exist for all legal vertex col-
orings, abbrv. FORALL-PMVC) Consider a bicolored graph
G and a set of C ⊆ {1, · · · , d}V “legal” vertex colorings.
Does G satisfy that, for each vertex coloring c ∈ C, G has at
least one perfect matching with inherited vertex coloring c?

The hardness of FORALL-PMVC depends heavily on the
set of legal vertex colorings C. C can be defined by enumer-
ating all members of the set or by constraints. Below, we list
several legal sets of vertex colorings with interest in quantum
computing [Gu et al., 2019a; Vardi and Zhang, 2022].

• GHZ State: the legal colorings are monochromatic, i.e.,
C = {(1, 1, · · · , 1), (2, 2 · · · , 2), · · · , (d, d, · · · , d)},
denoted as GHZ(|V |, d) = 1/

√
d ·

∑d
i=1 |i⟩

⊕|V |.
• W State: the graph has two colors (d = 2). C =
{c ∈ {1, · · · , d}V |count(c, 1) = 1}, i.e, there must
be exactly one vertex with color 1 and |V | − 1 ver-
tices with color 2, denoted as W(|V |) = 1/

√
|V | ·

Ŝ(|2⟩⊕(|V |−1) |1⟩⊕1
)

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2040

Figure 2: Left: A cycle satisfies the FORALL-PMVC condition of
GHZ(6,2). The graph contains perfect matchings for both of two
monochromatic vertex colorings. Right: A graph that satisfies the
FORALL-PMVC condition for Dicke(6,2). The graph contains
perfect matchings for all vertex colorings that have two red vertices.

• Dicke State: a generalization of W State. C = {c ∈
{1, · · · , d}V |count(c, 1) = k} (d = 2), denoted as

Dicke(|V |, k) = 1/
√(|V |

k

)
· Ŝ(|2⟩⊕(|V |−k) |1⟩⊕k

).

Complete bicolored graphs trivially satisfy the FORALL-
PMVC condition for an arbitrary legal coloring set. Never-
theless, graphs with interest in quantum computing are those
satisfying the FORALL-PMVC condition with as few edges
as possible. In Figure 2, we show examples of such graphs.

The problem of checking the existence of perfect match-
ing is well-known to be polynomial, via the Blossom algo-
rithm [Edmonds, 1965]. We now show that if the size of legal
colorings, i.e., |C|, is polynomially bounded, then FORALL-
PMVC is tractable. The idea is that one can enumerate all
legal colorings and verify the existence of perfect matching
individually, as formalized in the following proposition.
Definition 5. (Induced graph w.r.t. a vertex coloring) Given
a bicolored graph G = (V,E, d) and a vertex coloring c, let
Gc = (V,Ec, d) be the subgraph where Ec is a subset of E,
defined as follows:
Ec = {e|e = {(u, ceu), (v, cev)} ∈ E, ceu = c(u), cev = c(v)}.
In other words., in Gc, we keep only the edges whose colors
agree with the vertex coloring c.
Proposition 1. A bicolored graph G has a perfect matching
with inherited vertex coloring c iff Gc has a perfect matching.

With Proposition 1, we can design a polynomial algorithm
for FORALL-PMVC with polynomially many legal color-
ings, as shown in Algorithm 1. We assume Blossom(G) is
an algorithm that returns True iff. G has a perfect matching.

Algorithm 1: Enum-Blossom: An Enumeration-
Based Algorithm for FORALL-PMVC

Input : Bicolored graph G, set of legal colorings C.
Output: Whether G satisfies the FORALL-PMVC

condition w.r.t. C.
1 for c ∈ C do
2 Let Gc be the induced graph of G w.r.t. c.
3 if Blossom(GC)==False then return False;
4 return True

Algorithm 1 runs in O(|C| · |E| · |V |2). Therefore it pro-
vides an efficient algorithm for the FORALL-PMVC prob-
lem for GHZ State (|C| = d) and W State (|C| = |V |). The

challenging part of FORALL-PMVC is when |C| is exponen-
tial, such that it is infeasible to enumerate C. As an example,
Dicke(n, n/2) has

(
n

n/2

)
= Θ(2n/

√
n) legal colorings.

The lower bound of the computational complexity of
FORALL-PMVC for exponentially many legal colorings re-
mains open, though in [Vardi and Zhang, 2022] the complex-
ity of a related problem is addressed for some special cases. It
is not obvious how to reduce a well-known NP-hard or W[1]-
hard problem to FORALL-PMVC.

Open Question 1. Is FORALL-PMVC of Dicke State NP-
hard?

Open Question 2. Is FORALL-PMVC of Dicke(n, k) fixed-
parameter tractable (FPT) or W[1]-hard w.r.t. k? 2

As for the upper bound, the problem is in co-NP, provided
that checking if a coloring c is in C is in PTIME.

Proposition 2. FORALL-PMVC is in co-NP.

Proof. If a graph does not satisfy the condition of FORALL-
PMVC, then a witness can be obtained as a legal coloring
c ∈ C such that Gc has no perfect matching. Such a witness c
can be verified in polynomial time by the Blossom Algorithm.

If one views a coloring c as a witness, then the algorithm
for checking the witness can be relatively sophisticated, such
as the Blossom Algorithm. There exists, however, a more
powerful form of witness that allows a simpler checking al-
gorithm, which leads to our approach for solving FORALL-
PMVC, as shown in Section 5.

4 Quantum Motivation and Impact of
FORALL-PMVC

4.1 Perfect Matchings and Quantum Circuits
The motivation of PMVC from the perspective of quantum-
experiment design was originally introduced in [Vardi and
Zhang, 2022], which we recall here to make this paper self-
contained. An example of a (simplified) quantum optical cir-
cuit is shown in Figure 3 (left). A non-linear crystal (shaded
box in Figure 3) can emit a pair of entangled photons simul-
taneously if activated by a laser-pump power. Each photon
has a mode, encoded by an integer index. Photons emitted by
crystals travel on optical paths. A receiver, which detects the
arrival of a photon and identifies photon mode, is placed at
the end of each optical path. Each crystal is associated with
two optical paths [Gu et al., 2019b].

A coincidence of a quantum optical circuit happens when
each receiver detects exactly one photon, due to the activation
of some crystals. The quantum state of a coincidence is the
mode of photons caught by all receivers in the coincidence.
The quantum state of an optical circuit is the superposition
[Ballentine, 2014] of the quantum states of all coincidences.

The optical circuit in Figure 3 (left) has 7 nonlinear crys-
tals. A coincidence happens only when crystals in {I,II}, or
{I,III}, or {IV,VI} or {V,VII} are activated simultaneously.

2In [Gaspers et al., 2012], it is proven that deciding whether an
uncolored graph has a Tutte set of exactly k vertices is W[1]-hard.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2041

Figure 3: Left: a quantum optical circuit corresponding to the graph in Figure 1. Each crystal (shaded box) corresponds to an edge in the
graph. Each optical path is converted into a vertex in the graph. The modes of photons translate to edge colors. Right: all PMs in the graph
reflect the quantum state of the optical circuit as a superposition of coincidences. [Vardi and Zhang, 2022]

In [Gu et al., 2019b], a coincidence of an optical circuit is
shown to be equivalent to a perfect matching under vertex-
color constraints in an undirected graph G with bi-colored
edges, as described below.

1. Each optical path corresponds to a vertex in G.

2. Each crystal corresponds to an edge in G. This edge
connects two vertices corresponding to two optical paths
to which the crystal can emit photons.

3. The modes of photons emitted by crystals correspond to
edge colors. Since a crystal can emit two photons with
different modes, edges in G are bi-colored.

4. A coincidence of an optical circuit corresponds to a per-
fect matching P in G. The set of edges in P indicates
activated crystals. The quantum state of the coincidence
corresponds to the inherited vertex coloring of P .

5. Each crystal has an amplitude as a complex number, cor-
responding to the edge weight in the graph. The ampli-
tude of a coincidence is the product of the amplitudes of
all activated crystals. The weight of a perfect matching
is the product of the weights of all its edges.

4.2 Impact of FORALL-PMVC
It is shown in a series of work [Gu et al., 2019a; Gu et al.,
2019b] that designing quantum circuits can be done by con-
structing a graph with bi-colored edges. The ultimate goal of
this line of research is to automatically construct bi-colored
graphs by combinatorial approaches for arbitrary quantum
states, aiming to contribute to the development of large-scale
and reliable quantum computers.

The graphs proposed originally in [Gu et al., 2019b] al-
low complex edge weights, representing the amplitude and
phase of the optical components. A quantum state of an opti-
cal circuit (resp., graph) can be viewed as a superposition of
coincidences (resp., PMs) with predefined “legal” quantum
states. An optical circuit (resp., a graph) exhibits a quan-
tum state if 1) the total amplitude (resp., weight) of all co-
incidences (resp., PMs) of each legal state is 1, and 2) all
coincidences (resp., PMs) with an “illegal” state have total
amplitude (resp., weight) 0 [Krenn et al., 2017].

The original graph construction problem displays a contin-
uous nature, while in this paper (FORALL-PMVC) as well
as [Vardi and Zhang, 2022] (EXISTS-PMVC) we study two

simplified, discrete problems, which can be viewed as focus-
ing on the case where edge weights are real and positive. The
simplified, discrete setting is not only important in graph the-
ory but also of interest in quantum experiments. Graphs with
real, positive edge weights correspond to circuits with opti-
cal components with zero-phase. Such a circuit is efficient to
set up. Although the existence of graphs with real, positive
weights of GHZ states has been studied [Krenn et al., 2019],
the simplified setting still remains open and challenging for
many other quantum states, e.g., Dicke State. A key feature
of our approach is its generality in terms of algorithmically
accepting arbitrary user-defined quantum states. In the future,
we aim to extend our approach to allow complex weights.

FORALL-PMVC and EXISTS-PMVC test two conditions
of whether a graph can be a candidate for displaying a quan-
tum state, under the real-positive-weight-assumption. The
algorithms for solving those two decision problems can be
applied as building blocks for further developing the actual
graph constructors. For instance, a search-based graph con-
structor can use those algorithms as oracles for quickly prun-
ing unwanted structures in the space of all bi-colored graphs.

5 Boolean Encodings for FORALL-PMVC
In this section we introduce our hybrid-constraint-based ap-
proach for FORALL-PMVC. We show that a natural and
straightforward Exact-One encoding yields a non-scalable
QBF approach. Rather, we exploit the powerful witness of the
non-existence of perfect matching provided by Tutte’s Theo-
rem to design a novel encoding. We further propose opti-
mization techniques for our Tutte’s Theorem-based encoding
to enhance the performance.

5.1 The Exact-One Encoding for PM and QBF
Encoding for FORALL-PMVC

From the definition of perfect matching, it is natural to use
ExactOne constraints to encode perfect-matching-related
problems. For each e ∈ E, we introduce a variable edgee,
which is True iff e is in the perfect matching:

PM = {ExactOne({edgee}e∈adj(v))}v∈V .

PM is satisfiable iff the graph has a perfect matching. The
variables {edgee}e∈E in PM are existentially quantified. As
FORALL-PMVC requires that for each legal coloring the

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2042

graph has a perfect matching, one can add a universally quan-
tified layer corresponding to vertex colorings. For each vertex
v and color i, we define a variable vci

v , which is True iff.
vertex v has color i. Then FORALL-PMVC can be expressed
in the following ∀-∃ quantified Boolean formula (QBF):

∀{vci
v}v∈V,1≤i≤d∃{edgee}e∈E ,

(ValidColoring ∧ LegalColoring) → PM.
(1)

ValidColoring is satisfied if the assignment to the
vertex-color variables {vc} represents a valid vertex color-
ing, i.e. each vertex has exactly one color:

ValidColoring = {ExactOne({vci
v}1≤i≤d)}v∈V .

LegalColoring includes the constraints that define the set
C of legal coloring. For example, for Dicke(|V |, k), we have

LegalColoring = {
∑
v∈V

vc1
v = k}.

Therefore the QBF formula (1) is satisfiable iff. the graph sat-
isfies the FORALL-PMVC condition. Extant QBF solvers,
however, accept only problems in CNF format, which re-
quires encoding the implication and cardinality constraints in
(1) to CNF. Even using scalable encoding techniques such as
Tseytin encoding [Tseitin, 1983], the length of the CNF-QBF
formula increases rapidly as the graph scales, which makes
QBF solvers perform poorly, as demonstrated in Section 6.

5.2 A Tutte’s Theorem-Based Encoding
We show that it is possible to encode FORALL-PMVC with
only existential quantifiers, such that a broader set of solvers,
e.g., SAT solvers and hybrid Boolean solvers, can be applied.
It is enabled by the witness of the non-existence of perfect
matching given by Tutte’s Theorem.

Theorem 1. (Tutte’s Theorem) Let the number of odd con-
nected components (connected components having an odd
number of vertices) of a graph G be #odd(G). For a sub-
set V ′ ⊆ V of vertices, let G[V ′] be the induced subgraph of
G on V ′. A graph G has no perfect matching if and only if
there exists a set S ⊆ V of vertices such that

#odd(G[V \ S]) > |S|.

We call such a set S a Tutte set.

For example, consider the complete bipartite graph
Kn−2,n, where every vertex of the first set containing (n−2)
vertices is connected to every vertex of the second set includ-
ing n vertices. It is easy to see that Kn−2,n has no perfect
matching. All (n − 2) vertices in the first set form a unique
Tutte set, since removing those n−2 vertices yields n isolated
vertices, i.e., n odd connected components.

The idea is, with Tutte’s Theorem, we can convert the prob-
lem of “finding a legal coloring whose induced graph has no
perfect matching” to “finding a legal coloring that allows a
Tutte set”. If for all legal colorings, there exists no Tutte set,
then the graph satisfies the FORALL-PMVC condition. In
the following, we introduce the details of our encoding for
FORALL-PMVC based on Tutte’s Theorem.

For each vertex v, we introduce a variable Tv , which is
True iff v is in the Tutte set. For each edge {(u, a), (v, b)} ∈
E, we use a variable eab

uv to represent whether this edge re-
mains in the induced subgraph G[V \ S]c w.r.t. a vertex col-
oring c. Then we have:

RemainingEdges

={eab
uv ↔

(
¬Tv ∧ ¬Tu ∧ vca

u ∧ vcb
v

)
}{(u,a),(v,b)}∈E .

One of the technical challenges of encoding Tutte’s Theo-
rem is how to count odd connected components of G[V \S]c.
For each vertex v and an index i of a connected component,
we introduce a variable cci

v , which is True iff vertex v is
in the i-th connected component. Although there can be up
to |V | non-empty connected components in G[V \ S]c (con-
sider |V | isolated vertices), multiple connected components
are often empty in practice. For two vertices u and v, if they
are connected by an edge that remains in G[V \S]c, then they
must be in the same connected component, represented by the
following constraints:

ConnectedComponent

={eab
uv →

∧
1≤i≤|V |

(cci
v ↔ cci

u)}{(u,a),(v,b)}∈E.

It is worth pointing out that ConnectedComponent does
not enforce different components to be indexed differently.
Nevertheless, TutteCondition below is in favor of using
as many indices of connected components as possible.

For each vertex v that is not in the Tutte set, we require v
to be in exactly one connected component. If v is in the Tutte
set, then it does not belong to any of the connected compo-
nents, represented by:

ValidComponent

={ExactOne({cci
v}1≤i≤|V | ∪ {Tv})}v∈V

For each index i (1 ≤ i ≤ |V |) of connected components,
we use a variable Oddi to indicate whether the connected
component with index i has an odd number of vertices. The
set of variables {Odd}i complies with the following set of
XOR constraints:

Odd = {Oddi ↔
⊕
v∈V

cci
v}1≤i≤|V |.

Finally, we enforce that the number of odd connected compo-
nents in G[V \ S]c is greater than the size of the Tutte set by
a cardinality constraint:

TutteCondition = {
|V |∑
i=1

Oddi >
∑
v∈V

Tv}.

Let TutteEncoding be the union of constraints
in RemainingEdges, ConnectedComponent,
ValidComponent, Odd and TutteCondition, as
well as ValidColoring and QuantumState defined
previously. Then we have the following proposition, whose
proof is delayed to the appendix.
Proposition 3. (Correctness of Tutte encoding)
TutteEncoding is satisfiable iff the bicolored graph
does not satisfy the FORALL-PMVC condition.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2043

Our Tutte encoding uses |V |2+|E|+(d+2)·|V | variables.

Remark 1. The Tutte encoding can be alternatively written
in ILP, which allows the Boolean vectors for expressing col-
orings and indices of connected components to be replaced
by a single integer variable. Meanwhile, the constraints for
ValidComponent and ValidColoring are no longer
necessary in the ILP encoding. The evaluation of Tutte en-
coding on ILP solvers is left as future work.

5.3 Optimizations of the Tutte Encoding
The Tutte encoding we proposed above can be improved, by
exploiting the symmetric nature of Tutte set and the input
graph. In the following, we describe optimization techniques
that reduce the search space by 1) using fewer variables and
2) eliminating redundant solutions. As will be seen in the
experiment section, the optimized Tutte encoding scales ex-
ponentially better than the vanilla one proposed above.

Exploiting the Symmetry in Tutte’s Theorem
Each vertex in V \ S belongs to a connected component.
Given a solution of the Tutte encoding, permuting the in-
dices of connected components also generates a solution. To
reduce the solution space, we can leave each vertex with
fewer options regarding the index of the connected compo-
nent. Specifically, for a vertex v with 1 ≤ v ≤ |V |, we only
keep variables cc1

v, · · · ,ccv
v . That is, a vertex v must belong

to a connected component whose index is smaller or equal
to v. |V |(|V |−1)

2 variables are removed from the vanilla Tutte
encoding.

Additionally, we add constraints to reduce the number of
solutions. In spite of that G[V \ S]c can have up to |V |
connected components, the number of non-empty connected
components is often much smaller than |V |. Therefore, for
the same Tutte set, there is still considerable flexibility in the
assignment of connected component indices, which we aim
to further reduce. If a vertex v is in the Tutte set or belongs to
a connected component with an index smaller than v, we can
rule out all solutions that contain non-empty connected com-
ponents indexed by v, expressed by the following constraints:

OPT ={Tv →
(∧
v≤u≤|V |

¬ccv
u

)
}v∈V

∪ {
(∨
1≤i<v

cci
v

)
→

(∧
v≤u≤|V |

¬ccv
u

)
}v∈V .

Exploiting the Symmetry of the Input Graph
One of the advantages of constraint-based approaches is that
the properties of the input can be easily taken into account as
extra constraints. Previous work has been done in symmetry-
breaking by leveraging graph automorphism when solving
combinatorial problems by propositional logic [Aloul et al.,
2006]. Since adding all potential symmetry-breaking con-
straints often leads to an exponential overhead, in this work
we apply a lightweight symmetry-breaking strategy. If there
exists a set U ⊆ V , such that all vertices are equivalent in
graph G, i.e., permuting vertices in U leads to a graph isomor-
phism to G. Then we want the solution of the Tutte encod-
ing to have the smallest lexicographically representative in U .

For such a set U and an order of vertices in U : (u1, · · · , u|U |),
we add the following constraints:

GraphSymmetryBreaking = {Tui
→ Tui−1

}2≤i≤|U |.

Note that our approach is not the only way of breaking
symmetry. There exists a trade-off between the size of con-
straints and solution-space reduction [Walsh, 2006]. We leave
investigating the interaction of different symmetry-breaking
techniques on FORALL-PMVC as a future work.

6 Experiment Results
This section evaluates our Tutte encoding on solving
FORALL-PMVC problems.

6.1 Implementations and Methods in Comparison
RQ1. How do the optimization techniques in Section 5.3
improve the performance of the Tutte encoding?

RQ2. Among conjunctive normal form (CNF), pseudo-
Boolean+XOR (PBXOR), and Answer Set Programming
(ASP), which language fits best for the Tutte encoding?

RQ3. How do methods based on Tutte encoding perform
on FORALL-PMVC benchmarks?

6.2 Implementations and Competing Methods
We implemented the Tutte encoding in CNF formulas (Tut-
teCNF), pseudo-Boolean+XOR constraints (TuttePBXOR),
and Answer Set Programming (TutteASP). Additionally, we
implemented the QBF-based approach in Section 5.1 and Al-
gorithm 1 based on the Blossom Algorithm. Our implemen-
tations are based on the following software.

• For solving ASP programs, we use Clingo [Gebser et al.,
2019]. Due to the powerful expressiveness of ASP, the
implementation of Tutte encoding is less than 30 lines
of code, which is considerably more compact than CNF
and pseudo-Boolean encoding.

• For solving CNF Tutte encoding, we use two SAT
solvers: Kissat [Fleury and Heisinger, 2020], a winner
of recent SAT Competitions, and Clasp [Gebser et al.,
2007], the underneath SAT solver in Clingo in order for
fairly comparing CNF with ASP.

• For solving pseudo-Boolean+XOR encoding, we use
LinPB [Yang and Meel, 2021], a recent advanced hybrid
Boolean constraint solver with native XOR support.

• We implemented Alg. 1 (Enum-Blossom) with Python
package networkx [Hagberg and Conway, 2020].

• For solving QBF formulas, we use DepQBF, a medal
winner of QBF evaluations [Lonsing and Biere, 2010].

Besides the vanilla Tutte encoding in Section 5.2, we use
Tutte[Language]+Opt to denote the Tutte encoding including
constraints in OPT defined in Section 5.3 and with unneces-
sary variables removed. We use Tutte[Language]+Opt+GS to
denote the Tutte encoding including constraints in both OPT
and GraphSymmetryBreaking.

All experiments were run on single CPU cores of a Linux
cluster at 2.60-GHz and with 16 GB of RAM. We set the time

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2044

Methods Running Time/s

Blossom 0.02
ExactOne-PB 0.11

TutteCNF+Opt+GS 10.61
TutteCNF+Opt 12.85

TutteASP+Opt+GP 14.89
TutteASP+Opt 66.40

TutteCNF 133.73
ExactOne-CNF Timeout (> 1000s)

Table 1: Running time for proving the uncolored complete bipartite
graph K48,50 has no perfect matching.

limit for each problem instance to 1000 seconds. The im-
plementations and benchmarks can be found in the GitHub
repository: https://github.com/zzwonder/PMVC.

Experiment 1: Proving the Non-existence of PM of Un-
colored Graphs. We first evaluate the efficiency of Tutte
encoding in identifying the non-existence of PM of un-
colored graphs, before solving FORALL-PMVC problems.
The benchmarks include complete bipartite graphs Kn−2,n

for n ∈ {10, 12, 14, · · · , 70}. All graphs have no perfect
matching. The first partition with n − 2 vertices forms the
unique Tutte set. We compare the Tutte encoding with the
Exact-One encoding in Section 5.1, whose unsatisfiabil-
ity indicates the non-existence of perfect matching. We also
include the Blossom Algorithm in comparison. The running
time for each algorithm to prove K48,50 has no perfect match-
ing is shown in Table 1 and the comprehensive results are de-
layed to the appendix. Each running time is the median of
100 independent executions.

Experiment 2: Verifying graphs that satisfy the Dicke
FORALL-PMVC conditions. In this experiment, we
use different techniques to verify graphs that satisfy the
Dicke state. We generate two types of graphs. First,
for n ∈ {6, 8, · · · , 40} we generate graphs that satisfy
Dicke(n, n/2) (see Section 3 and Figure 2), where the size
of legal coloring grows exponentially as n increases. Second,
we fix n = 36 and generate graphs that satisfy Dicke(36, k)
with k ∈ {1, 2, · · · , 18}. The Tutte-encoding-based ap-
proaches are supposed to output “unsatisfiable”, as the for-
mula translates to finding a legal coloring with a Tutte set.
The results are shown in Figure 4 and 5. Each running time
is the median of 100 independent executions.

Experiment 3: Refuting graphs that violate the Dicke
FORALL-PMVC conditions. We evaluate the searching
power of different approaches via refuting graphs that vi-
olates the Dicke state. Tutte-encoding-based approaches
are supposed to output “satisfiable”. Graphs in this bench-
mark are obtained by removing edges from graphs that sat-
isfy the Dicke state. For each (n, k) pair where n ∈
{10, 15, 20, · · · , 80}, and k ∈ {0.1 ·n, 0.2 ·n, 0.3 ·n, 0.4 ·n},
we first generate 20 graphs that satisfy Dicke(n, k). Then
for each graph, we randomly remove either 40% of blue edges
or 2 bicolored edges such that the resulting graph violates the
Dicke state. In Enum-Blossom, we shuffled the list of le-
gal colorings for more stable performance. The number of

10 15 20 25 30 35 40
n

10−3

10−2

10−1

100

101

102

103

R
un

ni
ng

 ti
m

e/
s TutteCNF+Opt+GS

TutteCNF+Opt
TutteCNF+Opt (Clasp)
Enum-Blossom
TuttePBXOR+Opt+GS
TutteASP+Opt+GS
TutteASP+Opt
TutteCNF
QBF

Figure 4: Running time for verifying the FORALL-PMVC condi-
tion for graphs that satisfy Dicke(n, n/2). The unsatisfactory per-
formance of TutteASP and TuttePBXOR (without +Opt, +GS) is
omitted for readability.

2 4 6 8 10 12 14 16 18
k

10−3

10−2

10−1

100

101

102

103

R
un

ni
ng

 ti
m

e/
s

TutteCNF+Opt+GS
TutteCNF+Opt
Enum-Blossom
TuttePBXOR+Opt+GS
TutteASP+Opt+GS
TutteASP+Opt

Figure 5: Running time for verifying FORALL-PMVC condition
for graphs that satisfy Dicke(36, k). QBF failed to solve a single
instance even for k = 1 within the time limit.

instances that each method solved v.s. the running time is
plotted in Figure 6.

6.3 Analysis of Results
Answer to RQ1
A significant performance enhancement by optimization
techniques in Section 5.3 can be observed in Table 1 and
Figure 4-6. For example, verifying Dicke(10, 5) was ac-
celerated by 1200 times from TutteCNF (122.7s) to Tut-
teCNF+Opt (0.1s). On searching tasks (Figure 6), Tut-
teCNF+Opt (741) solved 466 more instances than TutteCNF
(275). Adding constraints for graph symmetry exploitation
also yields great improvement for the verification of rela-
tively large symmetric graphs. TutteCNF+Opt+GS success-
fully verifies all Dicke graphs in Experiment 2 within 1000s,
while TutteCNF+Opt timed out for verifying Dicke(36, 10)
and Dicke(34, 17). We conclude that our optimization tech-
niques are critical for the performance of Tutte encoding.

Answer to RQ2
All experiments agree that CNF is the language leading
to the best performance for Tutte encoding, with a signif-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2045

https://github.com/zzwonder/PMVC

0 100 200 300 400 500 600 700 800 900
Number of solved benchmarks

10−3

10−2

10−1

100

101

102

103

R
un

ni
ng

 ti
m

e/
s

TutteCNF+Opt
Enum-Blossom
TuttePBXOR+Opt
TutteCNF
QBF

Figure 6: The number of benchmarks solved by each method v.s.
running time (1280 instances in total).

icant advantage against PBXOR and ASP. The ASP solver
Clingo is deployed with a relatively slow SAT solver Clasp
with specialized adaptions, which makes it difficult to re-
place Clasp with a faster SAT solver, e.g., Kissat. To com-
pare CNF encoding with ASP fairly, in Experiment 2 we
also solved the Tutte encoding by Clasp. In Figure 4, Tut-
teCNF+Opt (Clasp) still outperforms TutteASP+Opt+GS and
TuttePBXOR+Opt+GS by far. We conclude that while high-
level languages such as ASP and PBXOR can be convenient
for modeling the problem, low-level languages such as CNF
are necessary for better performance.

Answer to RQ3
Experiment 1 (Table 1). When proving the non-existence
of perfect matching in uncolored graphs Kn−2,n, the polyno-
mial Blossom Algorithm is the fastest approach as expected.
Among all encoding-based approaches, Exact-One encod-
ing with pseudo-Boolean solver (ExactOne-PB) scales best
while ExactOne-CNF is the slowest. This observation aligns
with the theoretical results about 1) the polynomial behav-
ior of cutting-plane methods [Chandrasekaran et al., 2016]
and 2) the exponential lower bound of resolution-based ap-
proaches on perfect matching [Razborov, 2004]. Compared
with the Blossom Algorithm and ExactOnePB, approaches
based on Tutte encoding take a longer time to solve the prob-
lem by searching for the unique Tutte set.
Experiment 2 (Figure 4, 5). For the verification of Dicke
FORALL-PMVC conditions, all approaches tend to scale ex-
ponentially. The QBF encoding presents the worst scalabil-
ity, which failed to verify Dicke(10, 5) and Dicke(36, 1)
within the time limit. Methods based on Vanilla Tutte en-
coding (TutteCNF) also do not scale well, which only out-
perform QBF. With optimization techniques, Tutte encod-
ings in ASP and PBXOR languages (TuttePBXOR+Opt+GS,
TutteASP+Opt+GS) were able to achieve better scalabil-
ity, although the Enum-Blossom algorithm still performs
better. Only when equipped with both optimization tech-
niques and state-of-the-art SAT solvers (TutteCNF+Opt, Tut-
teCNF+Opt+GS), does the Tutte encoding display promising
potential. For verifying graphs that satisfy Dicke(n, n/2),
TutteCNF+Opt+GS can successfully verify graphs with n =
40 and TutteCNF+Opt is able to solve for n = 34 within

1000s, both of which scale exponentially better than Enum-
Blossom (n = 26) and QBF (n = 8) according to Figure 4.
As for verifying Dicke(36, k) (Figure 5), when k is small
(k ≤ 2), the set of legal coloring is polynomially bounded
and Enum-Blossom is the fastest algorithm. As k increases,
optimized CNF Tutte encoding with SAT solvers dominates
other approaches by far.

Experiment 3 (Figure 6). On identifying graphs that vi-
olate FORALL-PMVC conditions, QBF only solved 8 in-
stances (1280 in total). TuttePBXOR+Opt and Enum-
Blossom solved 503 and 529 instances respectively. Enum-
Blossom is able to solve relatively small-size instances
quickly (within 0.1s). The optimized Tutte encoding in CNF
(TutteCNF+Opt) solved 741 instances, which outperforms
Enum-Blossom mainly on large-size problems.

Summary. Not surprisingly, the Blossom Algorithm dom-
inates constraint-based approaches in proving the non-
existence of PM for uncolored graphs. However, when solv-
ing FORALL-PMVC tasks with vertex coloring involved, our
method displays promising performance, especially when the
legal coloring set grows exponentially. The vanilla Tutte en-
coding does not scale well without optimization techniques
and suitable language. With modern CNF-SAT solvers,
optimized Tutte encoding scales exponentially better than
QBF and a graph theoretical algorithm (Enum-Blossom) on
FORALL-PMVC problems. We conclude that while hybrid-
constraint-based techniques are powerful and expressive, ex-
tra effort is necessary for solving FORALL-PMVC effi-
ciently. Our approaches also scale significantly better than
previous implementations for similar tasks from the quantum-
computing community. The graph instances used in previous
work have less than 15 vertices [Cervera-Lierta et al., 2021].

7 Conclusions and Future Directions
In this paper, we study a new application of hybrid Boolean
constraints, named FORALL-PMVC, which arises in quan-
tum computing. We propose a novel encoding based on
Tutte’s Theorem in graph theory as well as optimization tech-
niques for this encoding. Empirical results demonstrate that
in the most suitable encoding language (CNF), our approach
based on optimized Tutte encoding scales significantly better
than competing approaches on tasks with interest in quantum
computing. Our study identifies the necessity of designing
problem-specific encodings when applying powerful general-
purpose constraint solvers. Our implementations also provide
useful tools for the quantum computing community.

For future directions, we plan to apply constraint-based
methods to solve problems beyond graph property check-
ing. For example, the ultimate goal of this line of re-
search [Cervera-Lierta et al., 2021] is to construct a graph
w.r.t. a quantum state. Considering an alternative constraint-
programming approach for our problem based on filtering al-
gorithms and All-Different constraints [Bessiere et al.,
2010] is another interesting direction. It is also promising to
apply our Tutte encoding for solving graph theoretical prob-
lems related to Tutte’s Theorem algorithmically [Bauer et al.,
2007].

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2046

Acknowledgements
Work supported in part by NSF grants IIS-1527668, CCF-
1704883, IIS-1830549, DoD MURI grant N00014-20-1-
2787, Andrew Ladd Graduate Fellowship of Rice Ken
Kennedy Institute, and an award from the Maryland Procure-
ment Office. We thank the anonymous reviewers for helping
improve the paper.

Contribution Statement
The author list has been sorted alphabetically by last name.
Zhiwei Zhang is the corresponding author.

References
[Aloul et al., 2006] Fadi A Aloul, Karem A Sakallah, and

Igor L Markov. Efficient symmetry breaking for
boolean satisfiability. IEEE Transactions on Computers,
55(5):549–558, 2006.

[Anderson, 1971] Ian Anderson. Perfect matchings of a
graph. Journal of Combinatorial Theory, Series B,
10(3):183–186, 1971.

[Ballentine, 2014] Leslie E Ballentine. Quantum mechanics:
a modern development. World Scientific Publishing Com-
pany, 2014.

[Bauer et al., 2007] Douglas Bauer, Haitze J Broersma, Au-
rora Morgana, and E Schmeichel. Tutte sets in graphs i:
Maximal tutte sets and d-graphs. Journal of graph theory,
55(4):343–358, 2007.

[Bessiere et al., 2010] Christian Bessiere, George Katsire-
los, Nina Narodytska, Claude-Guy Quimper, and Toby
Walsh. Propagating conjunctions of alldifferent con-
straints. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 24, pages 27–32, 2010.

[Biere et al., 2009] Armin Biere, Marijn Heule, and Hans
van Maaren. Handbook of satisfiability, volume 185. IOS
press, 2009.

[Bogdanov et al., 2011] Andrey Bogdanov, Dmitry Khovra-
tovich, and Christian Rechberger. Biclique Cryptanalysis
of the Full AES. In ASIACRYPT 2011, 2011.

[Brailsford et al., 1999] Sally C Brailsford, Chris N Potts,
and Barbara M Smith. Constraint satisfaction problems:
Algorithms and applications. European journal of opera-
tional research, 119(3):557–581, 1999.

[Cervera-Lierta et al., 2021] Alba Cervera-Lierta, Mario
Krenn, and Alán Aspuru-Guzik. Design of quantum
optical experiments with logic artificial intelligence.
arXiv preprint arXiv:2109.13273, 2021.

[Chandrasekaran et al., 2016] Karthekeyan Chandrasekaran,
László A Végh, and Santosh S Vempala. The cutting plane
method is polynomial for perfect matchings. Mathematics
of Operations Research, 41(1):23–48, 2016.

[Costa et al., 2009] M.-C. Costa, D. de Werra, C. Picouleau,
and B. Ries. Graph Coloring with Cardinality Constraints
on the Neighborhoods. Discrete Optimization, 6(4):362 –
369, 2009.

[Devriendt et al., 2021] Jo Devriendt, Stephan Gocht, Emir
Demirovic, Jakob Nordström, and Peter J Stuckey. Cut-
ting to the core of pseudo-boolean optimization: Combin-
ing core-guided search with cutting planes reasoning. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, pages 3750–3758, 2021.

[Dinur et al., 2005] Irit Dinur, Oded Regev, and Clifford
Smyth. The Hardness of 3-Uniform Hypergraph Coloring.
Combinatorica, 25(5):519–535, Sep 2005.

[Duncan et al., 2020] Ross Duncan, Aleks Kissinger, Simon
Perdrix, and John Van De Wetering. Graph-theoretic sim-
plification of quantum circuits with the zx-calculus. Quan-
tum, 4:279, 2020.

[Edmonds, 1965] Jack Edmonds. Paths, trees, and flowers.
Canadian Journal of mathematics, 17:449–467, 1965.

[Eén and Sörensson, 2003] Niklas Eén and Niklas
Sörensson. An Extensible SAT-Solver. In SAT, pages
502–518, 2003.

[Feldman et al., 2005] J. Feldman, M. J. Wainwright, and
D. R. Karger. Using Linear Programming to Decode Bi-
nary Linear Codes. IEEE Transactions on Information
Theory, 51(3):954–972, March 2005.

[Fleury and Heisinger, 2020] Armin Biere Katalin
Fazekas Mathias Fleury and Maximilian Heisinger.
Cadical, kissat, paracooba, plingeling and treengeling
entering the sat competition 2020. SAT COMPETITION,
50:2020, 2020.

[Froleyks et al., 2021] Nils Froleyks, Marijn Heule, Markus
Iser, Matti Järvisalo, and Martin Suda. Sat competition
2020. Artificial Intelligence, 301:103572, 2021.

[Gaspers et al., 2012] Serge Gaspers, Eun Jung Kim, Sebas-
tian Ordyniak, Saket Saurabh, and Stefan Szeider. Don’t
be strict in local search! In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 26, pages 486–
492, 2012.

[Gebser et al., 2007] Martin Gebser, Benjamin Kaufmann,
André Neumann, and Torsten Schaub. clasp: A conflict-
driven answer set solver. In International Conference on
Logic Programming and Nonmonotonic Reasoning, pages
260–265. Springer, 2007.

[Gebser et al., 2019] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, and Torsten Schaub. Multi-shot asp
solving with clingo. Theory and Practice of Logic Pro-
gramming, 19(1):27–82, 2019.

[Gong and Zhou, 2017] Weiwei Gong and Xu Zhou. A
Survey of SAT Solver. AIP Conference Proceedings,
1836(1):020059, 2017.

[Gu et al., 2019a] Xuemei Gu, Lijun Chen, Anton Zeilinger,
and Mario Krenn. Quantum experiments and graphs. iii.
high-dimensional and multiparticle entanglement. Physi-
cal Review A, 99(3):032338, 2019.

[Gu et al., 2019b] Xuemei Gu, Manuel Erhard, Anton
Zeilinger, and Mario Krenn. Quantum experiments and
graphs ii: Quantum interference, computation, and state

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2047

generation. Proceedings of the National Academy of Sci-
ences, 116(10):4147–4155, 2019.

[Hagberg and Conway, 2020] Aric Hagberg and Drew Con-
way. Networkx: Network analysis with python. URL:
https://networkx. github. io, 2020.

[Jooya et al., 2016] Hossein Z Jooya, Kamran Reihani, and
Shih-I Chu. A graph-theoretical representation of multi-
photon resonance processes in superconducting quantum
circuits. Scientific Reports, 6(1):1–10, 2016.

[Krenn et al., 2017] Mario Krenn, Xuemei Gu, and Anton
Zeilinger. Quantum experiments and graphs: Multiparty
states as coherent superpositions of perfect matchings.
Physical review letters, 119(24):240403, 2017.

[Krenn et al., 2019] Mario Krenn, Xuemei Gu, and Daniel
Soltész. Questions on the structure of perfect match-
ings inspired by quantum physics. arXiv preprint
arXiv:1902.06023, 2019.

[Krenn et al., 2022] Mario Krenn, Jonas Landgraf, Thomas
Foesel, and Florian Marquardt. Artificial intelligence
and machine learning for quantum technologies. arXiv
preprint arXiv:2208.03836, 2022.

[Kyrillidis et al., 2020] Anastasios Kyrillidis, Anshumali
Shrivastava, Moshe Vardi, and Zhiwei Zhang. Fouriersat:
A fourier expansion-based algebraic framework for solv-
ing hybrid boolean constraints. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages
1552–1560, 2020.

[Kyrillidis et al., 2021a] Anastasios Kyrillidis, Anshumali
Shrivastava, Moshe Y Vardi, and Zhiwei Zhang. Solv-
ing hybrid boolean constraints in continuous space via
multilinear fourier expansions. Artificial Intelligence,
299:103559, 2021.

[Kyrillidis et al., 2021b] Anastasios Kyrillidis, Moshe Vardi,
and Zhiwei Zhang. On continuous local bdd-based search
for hybrid sat solving. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages 3841–
3850, 2021.

[Kyrillidis et al., 2022] Anastasios Kyrillidis, Moshe Y
Vardi, and Zhiwei Zhang. Dpms: an add-based symbolic
approach for generalized maxsat solving. arXiv preprint
arXiv:2205.03747, 2022.

[Liang, 2018] Jia Hui Liang. Machine Learning for SAT
Solvers. PhD thesis, University of Waterloo, December
2018.

[Lifschitz, 2019] Vladimir Lifschitz. Answer set program-
ming. Springer Heidelberg, 2019.

[Lonsing and Biere, 2010] Florian Lonsing and Armin
Biere. Depqbf: A dependency-aware qbf solver. Journal
on Satisfiability, Boolean Modeling and Computation,
7(2-3):71–76, 2010.

[Martins et al., 2014] Ruben Martins, Vasco Manquinho,
and Inês Lynce. Open-wbo: A modular maxsat solver,.
In Carsten Sinz and Uwe Egly, editors, Theory and Appli-
cations of Satisfiability Testing – SAT 2014, 2014.

[Pan et al., 2012] Jian-Wei Pan, Zeng-Bing Chen, Chao-
Yang Lu, Harald Weinfurter, Anton Zeilinger, and Marek
Żukowski. Multiphoton entanglement and interferometry.
Reviews of Modern Physics, 84(2):777, 2012.

[Prestwich, 2009] Steven D Prestwich. Cnf encodings.
Handbook of satisfiability, 185:75–97, 2009.

[Razborov, 2004] Alexander A Razborov. Resolution lower
bounds for perfect matching principles. Journal of Com-
puter and System Sciences, 69(1):3–27, 2004.

[Schrijver and others, 2003] Alexander Schrijver et al. Com-
binatorial optimization: polyhedra and efficiency, vol-
ume 24. Springer, 2003.

[Soos et al., 2009] Mate Soos, Karsten Nohl, and Claude
Castelluccia. Extending SAT Solvers to Cryptographic
Problems. In SAT, pages 244–257, 2009.

[Tseitin, 1983] Grigori S Tseitin. On the complexity of
derivation in propositional calculus. In Automation of rea-
soning, pages 466–483. Springer, 1983.

[Vardi and Zhang, 2022] Moshe Y Vardi and Zhiwei Zhang.
Quantum-inspired perfect matching under vertex-color
constraints. arXiv preprint arXiv:2209.13063, 2022.

[Vardi, 2014] Moshe Y. Vardi. Boolean satisfiability: theory
and engineering. Commun. ACM, 57(3):5, 2014.

[Walsh, 2006] Toby Walsh. General symmetry breaking
constraints. In Principles and Practice of Constraint
Programming-CP 2006: 12th International Conference,
CP 2006, Nantes, France, September 25-29, 2006. Pro-
ceedings 12, pages 650–664. Springer, 2006.

[Yang and Meel, 2021] Jiong Yang and Kuldeep S Meel. En-
gineering an efficient pb-xor solver. In 27th International
Conference on Principles and Practice of Constraint Pro-
gramming (CP 2021). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2021.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2048

	Introduction
	Preliminaries
	Quantum-Inspired Perfect-Matching-Related Problems
	Quantum Motivation and Impact of FORALL-PMVC
	Perfect Matchings and Quantum Circuits
	Impact of FORALL-PMVC

	Boolean Encodings for FORALL-PMVC
	The Exact-One Encoding for PM and QBF Encoding for FORALL-PMVC
	A Tutte's Theorem-Based Encoding
	Optimizations of the Tutte Encoding
	Exploiting the Symmetry in Tutte's Theorem
	Exploiting the Symmetry of the Input Graph

	Experiment Results
	Implementations and Methods in Comparison
	Implementations and Competing Methods
	Analysis of Results
	Answer to RQ1
	Answer to RQ2
	Answer to RQ3

	Conclusions and Future Directions

