
Eliminating the Computation of Strongly Connected Components in Generalized
Arc Consistency Algorithm for AllDifferent Constraint
Luhan Zhen1,3 , Zhanshan Li1,3 , Yanzhi Li2,3 and Hongbo Li4∗

1College of Computer Science and Technology, Jilin University, Changchun 130012, China
2College of Software, Jilin University, Changchun, 130012, China

3Key Laboratory of Symbolic Computation and Knowledge Engineering (Jilin University), Ministry of
Education, Changchun 130012, China

4School of Information Science and Technology, Northeast Normal University, Changchun, China
lihb905@nenu.edu.cn

Abstract
AllDifferent constraint is widely used in Constraint
Programming to model real world problems. Ex-
isting Generalized Arc Consistency (GAC) algo-
rithms map an AllDifferent constraint onto a bi-
partite graph and utilize the structure of Strongly
Connected Components (SCCs) in the graph to fil-
ter values. Calculating SCCs is time-consuming
in the existing algorithms, so we propose a novel
GAC algorithm for AllDifferent constraint in this
paper, which eliminates the computation of SCCs.
We prove that all redundant edges in the bipartite
graph point to some alternating cycles. Our algo-
rithm exploits this property and uses a more ef-
ficient method to filter values, which is based on
breadth-first search. Experimental results on the
XCSP3 benchmark suite show that our algorithm
considerably outperforms the state-of-the-art GAC
algorithms.

1 Introduction
Constraint Programming (CP) is a powerful paradigm for
solving combinatorial search problems [Rossi et al., 2006].
When solving problems with CP, people model the real world
problem into a Constraint Satisfaction Problem (CSP) de-
fined with a set of variables whose values must satisfy some
constraints. Then a general purpose constraint solver is
used to solve the CSP. AllDifferent constraint (hereinafter,
called allDiff) [Lauriere, 1978] requires that the values of
the variables in this constraint must be different. Because
of its practical interests, allDiff has been widely used in
modelling many real world problems in CP [Wallace, 1996;
Van Hoeve, 2001; Fellows et al., 2013].

A solution to a CSP is an assignment to all variables that
satisfies all constraints. Solving a CSP involves either find-
ing a solution or proving that there is no solution to the
CSP. Backtracking search is a standard algorithm for solving
CSPs. To speedup the search process, local consistency tech-
niques are used to filter out some inconsistent values from
the domains of the variables. Generalized Arc Consistency
(GAC) [Bessiere and Régin, 1997] is one of the most popular

local consistencies in modern constraint solvers. A classi-
cal GAC algorithm of allDiff was proposed by Régin [Régin,
1994]. It maps an allDiff to a value graph and filters values
by removing redundant edges that do not appear in any max-
imum matching of the value graph. To avoid enumerating
all maximum matchings, the algorithm identifies all Strongly
Connected Components (SCCs) of the value graph and re-
moves edges between the SCCs. In 2008, Gent et al. pro-
posed an algorithm [Gent et al., 2008] capturing all SCCs
of the value graph and updating the local part of the value
graph. In 2018, Zhang et al. proposed an algorithm [Zhang et
al., 2018] that improves Régin’s algorithm by finding SCCs
on subgraphs of value graphs. In 2020, Zhang et al. pro-
posed a mechanism for early detection of useless propaga-
tions [Zhang et al., 2020]. In recent years, some other ap-
proaches have emerged, such as using GPU [Tardivo et al.,
2022] or parallel algorithms [Suijlen et al., 2022] to maintain
the consistency of allDiff.

The computation of SCCs [Tarjan, 1972] is the basis of
the existing GAC algorithms of allDiff. However, the com-
putation is time-consuming in the GAC algorithms. Com-
puting all SCCs is rather time-consuming in Régin’s algo-
rithm [Régin, 1994]. Although Gent’s algorithm [Gent et
al., 2008] uses an incremental updating strategy to compute
SCCs, it take a considerable amount of time to maintain all
the SCC information. Zhang’s 2018 algorithm proves that
the computation of SCCs in subgraphs of the value graph is
sufficient to enforce GAC and it is several times faster than
Régin’s algorithm. In Zhang’s 2020 algorithm [Zhang et al.,
2020], a preprocessing algorithm is inserted to avoid unneces-
sary computation of SCCs and it further saves some computa-
tion time in solving some problems. Based on the aforemen-
tioned analysis, the solving time will be significantly reduced
if the computation of SCCs is eliminated from the GAC algo-
rithm for allDiff.

In this paper, we propose a novel GAC algorithm for allD-
iff that eliminates the computation of SCCs. We first define
Reachable Set (RS), a set of vertices, in the value graph of
allDiff. Then we prove that any edge whose ending vertex
is in an RS and starting vertex is out of the RS is redundant.
Based on our new finding, we design an efficient GAC algo-
rithm that filters values by calculating RSs. In the first run,

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2049

our algorithm calculates the RSs for all variables in the con-
straint. After that, we recalculate the RSs only for the vari-
ables whose domains have been changed.

Extensive experiments have been performed on the XCSP3
benchmark suite [Boussemart et al., 2016]. The results show
that our algorithm outperforms the state-of-the-art algorithms
in solving most of the problems containing allDiff. In the
problems where the number of allDiff s accounts for a large
proportion of the total number of constraints, such as Karuro,
QWH, etc., our algorithm performs significantly better than
the existing algorithms. We believe that our algorithm could
be a new component for modern constraint solvers to handle
allDiff.

2 Background
A constraint satisfaction problem (CSP) P is a triple P =
⟨X ,D, C⟩, where X is a set of n variables X = {x1, x2, · · · ,
xn}, D is a set of domains D = {D(x1), D(x2), · · · , D(xn)},
where D(xi) is a finite set of possible values for variable xi,
and C is a set of e constraints C = {c1, c2, · · · , ce}. Each
constraint c consists of two parts, an ordered set of variables
scp(c) = {xi1, xi2, · · · , xir} and a subset of the Cartesian
product D(xi1) × D(xi2) × · · · × D(xir) that specifies the
allowed (or disallowed) combinations of values for the vari-
ables {xi1, xi2, · · · , xir}. An element of D(xi1) × D(xi2) ×
· · · × D(xir) is called a tuple on scp(c), denoted by τ . τ [x]
is the value of x in τ . A tuple τ is valid for a constraint c iff
∀xi ∈ scp(c), τ [xi] ∈ D(xi), otherwise τ is invalid.

A solution to a CSP is an assignment of values to each vari-
able such that all constraints in the CSP are satisfied. Solving
a CSP P involves either finding one (or more) solution(s) of
P or proving that P is unsatisfiable. Backtracking search is
a standard algorithm for solving CSPs. It performs a depth-
first traversal of a search tree. At each search tree node, an
unassigned variable is selected and a new node is generated
after the assignment to this variable, and then constraint prop-
agation is applied to filter those inconsistent values from the
domains of variables. If the propagation leads a domain to be
wiped out, then a failure is encountered, one or more assign-
ments must be cancelled and a backtracking occurs.

Constraint propagation establishes local consistency in
CSP to filter invalid values. Generalized Arc Consistency
(GAC) [Bessiere and Régin, 1997] is one of the most impor-
tant local consistencies in constraint solvers, which is defined
as follows.
Definition 1 (Generalized Arc Consistency). Given a CSP P
= ⟨X ,D, C⟩, a constraint c ∈ C, and a variable x ∈ scp(c),
• A value x = a is consistent with c iff there exists a valid

tuple τ allowed by c and τ[x] = a.
• Constraint c is generalized arc consistent iff ∀ x ∈ scp(c),
D(x) ̸= ∅ and ∀ a ∈ D(x), x = a is consistent with c.
• P is generalized arc consistent iff all the constraints of C

are generalized arc consistent.
An allDiff c requires that the values of the variables in this

constraint must be different. The relations between the vari-
ables in scp(c) and the values in the domains of the variables
can be represented by a value graph which is a specific case
of directed bipartite graph defined as follows.

Definition 2 (Value Graph). Given an allDiff c, the value
graph of c is a bipartite graph ⟨U, V,E⟩, where U = scp(c),
V =

⋃
u∈U D(u), E = {(u, v)|u ∈ U , v ∈ D(u)} and |E| =∑

u∈U |D(u)|.
An edge (u, v) implies that its direction is from u to v. A

matching in a graph is a set of edges without common ver-
tices. An edge is a matching edge if it is in the matching; oth-
erwise it is a non-matching edge. A vertex is called a match-
ing vertex if it is related to an edge in the matching, otherwise
a free vertex. A path is a finite sequence of edges which joins
a sequence of vertices, a directed path is a path whose edges
are all directed in same direction. A vertex u can reach a
vertex v if there exists a directed path from u to v. An alter-
nating path is a path whose edges are alternately in and out
of the matching. An augmenting path is an alternating path
whose starting and ending vertices are free vertices. A cycle
is a directed path which starts and ends at the same vertex. An
alternating cycle is a cycle whose edges are alternately in and
out of the matching, a single vertex that is not contained in an
even alternating cycle or an even alternating path ending at a
free vertex can also be called an alternating cycle. A maxi-
mum matching is a matching with the maximum number of
edges. In a value graph, a maximum matching is a matching
with the edge number equals to min(|U |, |V |), which can be
computed by the Hungarian algorithm [Kuhn, 1955]. Exam-
ple 1 illustrates the value graph of an allDiff where the set of
red edges is a maximum matching.
Example 1. Given an allDiff c1, where scp(c1) = {x1, x2,
x3, x4}, D(x1) = {1}, D(x2) = {1, 2}, D(x3) = {1, 2, 3,
4}, D(x4) = {1, 2, 4, 5}. The value graph of c1 is shown in
Figure 1.

x1 x2 x3 x4

1 2 3 4 5

V

U

matching edges

non-matching edges

free vertex

Figure 1: The value graph for allDiff c1 in Example 1.

A maximum matching of a value graph of allDiff is a valid
tuple, so an edge in the value graph is a redundant one if it
does not belong to any maximum matching. An allDiff sat-
isfies GAC iff all edges in its value graph are non-redundant.
However, it is quite time-consuming to enumerate all max-
imum matchings, so the existing GAC algorithms for allD-
iff identify redundant edges based on the following theo-
rem [Berge, 1973].
Theorem 1. For an arbitrary maximum matching, a non-
matching edge in the value graph is allowed iff it belongs
to either an even alternating path ending at a free vertex or
an even alternating cycle.

Existing GAC algorithms for allDiff map an allDiff onto
a value graph. To identify redundant edges, these algorithms

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2050

find a maximum matching of the value graph and reverse all
edges in the matching, and then find even alternating paths
ending at free vertices and even alternating cycles based on
the computation of SCCs.

3 Related Work
We recall some classical and efficient GAC algorithms
for allDiff here. In 1994, Régin proposed a GAC algo-
rithm [Régin, 1994] for allDiff, which is considered as the
basis of the existing GAC algorithms. It finds a maximum
matching in the value graph and reverses all matching edges.
Then a virtual vertex t is added into the value graph. After
that, it adds edges from free vertices to t and edges from t to
the matching vertices in V of the graph. Finally, it computes
all SCCs of the graph and removes edges between SCCs.

In 2008, Gent et al. proposed a method that avoids the
computation of unchanged SCCs [Gent et al., 2008]. It main-
tains the information of each SCC in the value graph and
only checks the SCCs containing the variables whose do-
mains have been changed between successive propagations.
Thus, it recomputes only the affected SCCs and removes the
edges between SCCs. By reducing the computation of SCCs,
it is more efficient than Régin’s algorithm in solving some
problems.

In 2018, Zhang et al. proposed an efficient algorithm (here-
inafter, called Zhang18 algorithm) based on Régin’s algo-
rithm [Zhang et al., 2018]. It improves Régin’s algorithm
by finding SCCs in a sub-graph of the value graph. In their
algorithm, some redundant edges can be obtained by finding
alternating paths ending at free vertices. More specifically,
it identifies the set A containing all the vertices in V that can
reach free vertices and the set Γ(A) containing all the vertices
in U that can reach free vertices. Then, each edge starting at
a vertex in Γ(A) and ending at a vertex in V \A is redundant.
The remaining redundant edges can be found by computing
SCCs in the induced subgraph of (U \Γ(A))∪ (V \A). Note
that Zhang18 algorithm degenerates to Régin’s algorithm if
there is no free vertex in the value graph. Figure 2 shows the
value graph of Zhang18 algorithm for c1 in Example 1. The
green edges in Figure 2 are identified by finding alternating
paths, and the orange edge is identified by computing SCCs.

x1 x2 x3 x4

1 2 3 4 5

SCC1

SCC4

SCC2

SCC5 A

Γ(A)
redundant edges b/w SCCs and Γ(A)

redundant edge b/w SCCs

allowed edges

matching edges

free vertex

Figure 2: The value graph in Zhang18 algorithm for allDiff c1 in
Example 1.

In 2020, Zhang et al. proposed a new algorithm [Zhang et
al., 2020] (hereinafter, called Zhang20 algorithm) that identi-
fies useless propagations. The algorithm considers an edge to

be unimportant if there exists an alternating cycle in the graph
containing the end nodes of the edge after removing it. They
proved that the removal of an unimportant edge does not need
to invoke constraint propagation. Zhang20 algorithm brings
improvements in solving some problems.

Among some modern constraint solvers, the Ace solver1

and the Minion solver2 chose Gent’s algorithm as the GAC
algorithm for allDiff, the Choco solver3 [Prud’homme et al.,
2016] chooses Régin’s algorithm and Zhang18 algorithm as
the GAC algorithm for allDiff. Zhang20 algorithm has not yet
been implemented in mainstream constraint solvers. In addi-
tion to GAC, Bound Consistency (BC) [Puget, 1998; López-
Ortiz et al., 2003] is also used in modern constraint solvers as
a consistency used by propagation algorithms for allDiff. In
general, BC is less capable of deleting values than GAC. In
addition to the above algorithms, a method [Van Kessel and
Quimper, 2012] based on bitwise operations was proposed by
Kessel and Quimper in 2012, however, their method is rarely
used in modern constraint solvers.

4 Eliminating the Computation of SCCs
Computing SCCs in a value graph is time-consuming, thus
the propagation time of allDiff will be significantly reduced if
the computation of SCCs is eliminated. To discuss the prop-
erties of redundant edges, we first introduce two notions. An
even alternating cycle is called an EAC and an even alternat-
ing path ending at a free vertex is called an EAPF.

Corollary 1. For an arbitrary maximum matching, a non-
matching edge in the value graph is redundant, iff it belongs
to neither an EAPF nor an EAC.

Corollary 1 is the contrapositive of Theorem 1. By Corol-
lary 1, we know that every redundant edge is either between
an EAPF and an EAC, or between two EACs. Note that there
is no redundant edge between two EAPFs, because such an
edge connects two EAPFs and results in a longer EAPF.

Corollary 2. Given two EACs C1 and C2, V (C1) and V (C2)
are the vertex sets of C1 and C2 respectively. All the redun-
dant edges between V (C1) and V (C2) are directed either ex-
clusively from the vertices in V (C1) to the vertices in V (C2)
or exclusively from the vertices in V (C2) to the vertices in
V (C1).

Proof. Assuming that there exists a redundant edge directed
from a vertex in V (C1) to a vertex in V (C2) and a redundant
edge directed from a vertex in V (C2) to a vertex in V (C1),
then there exists another EAC which is a supergraph of C1

and C2. However, by Corollary 1, redundant edges do not
belong to any EAC. There exists a contradiction. Thus, the
corollary is proven.

Corollary 3. Given an EAPF P1 and an EAC C1, V (P1)
and V (C1) are their vertex sets respectively. All the redun-
dant edges between V (P1) and V (C1) are directed from the
vertices in V (P1) to the vertices in V (C1).

1https://github.com/xcsp3team/ace
2https://constraintmodelling.org/minion/
3https://choco-solver.org/

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2051

Proof. Assuming that there exists a redundant edge e directed
from a vertex in V (C1) to a vertex in V (P1), then e belongs to
an EAPF. However by Theorem 1, e is an allowed edge. This
is in contradiction with the precondition that e is a redundant
edge. Thus, the corollary is proven.

Corollary 4. Every redundant edge ends at a vertex in an
EAC and starts at a vertex out of the EAC it ends in.

By Corollary 2 and 3, we can conclude Corollary 4. If we
can find all EACs containing the end vertices of all redundant
edges, then all redundant edges can be obtained. Therefore,
it is not necessary to find all EACs.

Definition 3 (Reachable Set). Given a variable x, and mx is
the starting vertex of the matching edge (mx, x), the reach-
able setRS(x) is the set of vertices reachable from mx.

For each variable x, RS(x) can be computed by Breadth-
First Search (BFS) starting from the vertex mx with worst-
case time complexity of O(|E| + |V | + |U |) [Bundy and
Wallen, 1984]. Example 2 shows theRSs of some variables.

Example 2. Given an allDiff c2, where scp(c2) = {x1, x2,
x3, x4, x5}, D(x1) = {1}, D(x2) = {1, 2}, D(x3) = {3, 4},
D(x4) = {3, 4}, D(x5) = {3, 4, 5}. The value graph of c2
is shown in Figure 3, RS(x1) = {1, x1}, and RS(x4) = {4,
x4, 3, x3}.

x1 x2 x3 x4 x5

1 2 3 4 5

non-matching edges

matching edges

RS(x4)

RS(x1)

Figure 3: The value graph of allDiff c2 in Example 2.

By Definition 3, if there is only one value in the domain of
the variable x, then mx can only reach the vertex x, because
the only value inD(x) is in the matching and the edge is from
the value to x. In this case,RS(x) = {mx, x} because mx is
not contained in an EAC or an EAPF, mx is considered as an
EAC.

Theorem 2. Given an RS(x) containing no free vertex and
two vertices u, v in the value graph, u ̸∈ RS(x) and v ∈
RS(x). If there exists an edge (u, v), then the edge (u, v) is
redundant.

Proof. By Definition 3, given v ∈ RS(x) and u ̸∈ RS(x), v
can not reach u, so there is no EAC containing (u, v). Since
RS(x) contains no free vertex and v ∈ RS(x), v can not
reach any free vertex, so there exists no EAPF containing (u,
v). By Corollary 1, (u, v) is redundant.

Theorem 2 provides us an efficient idea to identify redun-
dant edges in a value graph. We propose an efficient GAC al-
gorithm for allDiff that eliminates the computation of SCCs
in Algorithm 1. The main idea is to compute RSs for each
variable then to remove all the edges directed to the vertices
in theRSs containing no free vertex.

Algorithm 1 filtering algorithm for allDiff

Require: allDiff c
1: construct the value graph G = ⟨U, V,E⟩ for c;
2: XD ← {x | x ∈ scp(c) and |D(x)| ̸= lastSize(c)[x]};
3: for all x ∈ XD do
4: if the matching edge for x does not exist then
5: if repair matching edges for x fails then
6: return inconsistency;
7: M ← the maximum matching;
8: for all x ∈ XD do
9: XD ← XD \ {x};

10: computeRS(x);
11: ifRS(x) contains a free vertex then
12: continue;
13: for all v ∈ RS(x) do
14: if the edge (u, v) exists and u ̸∈ RS(x) then
15: remove (u, v) from G;
16: D(u)←D(u) \ {v};
17: XD ← XD ∪ {u};
18: for all x ∈ scp(c) do
19: lastSize(c)[x]← |D(x)|;

For each allDiff c, we use G to store the value graph and
a backtrackable array lastSize(c) to store the domain sizes
of the variables in scp(c). There are two ways to implement
the value graph G, one is to reconstruct G from c when Al-
gorithm 1 is called, and the other is to use decremental back-
trackable data structures to store G. And Algorithm 1 uses the
latter. For each variable x ∈ scp(c), lastSize(c)[x] records
the domain size of x. The domain size is used to obtain the
variables whose domains have been changed since the last
time c was processed. Each lastSize(c)[x] of each allDiff c
is initialized to 0, so at the beginning of the search, all vari-
ables in scp(c) are added into XD at line 2, which is a set con-
taining the variables to be processed. After that, we compare
the current domain size of each variable x with its recorded
domain size. If the number |D(x)| is not equal to the number
lastSize(c)[x], then D(x) has been changed since the pre-
vious invocation of Algorithm 1 for the specific constraint c
and x will be added into XD.

At lines 3-6, we use an incremental strategy to find new
matching edges for the variables in XD whose matching
edges are removed. At the beginning of the search, the Hun-
garian algorithm [Kuhn, 1955] is employed to find a max-
imum matching. After that, if the matching edge for x is
removed, the new matching edge for x can be found by the
augmenting path. If there is no maximum matching, i.e. the
matching edge for a variable can not be repaired, then there
is no valid tuple, by Definition 1, c does not satisfy GAC and
the inconsistency is returned at line 6.

The redundant edges are removed at lines 8-17. The vari-
ables in XD are selected and removed from the set and pro-
cessed one by one. For each variable x selected from XD, we
compute RS(x) with BFS. If RS(x) contains a free vertex,
we skip the variable x; otherwise, any edge directed from a
vertex u /∈ RS(x) to a vertex v ∈ RS(x) is deleted. The
RS(x) containing a free vertex is skipped at line 12, because

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2052

the redundant edges directed to a vertex inRS(x) will be pro-
cessed later. The reason for this is as follows: If all vertices
in RS(x) can reach a free vertex, then all the edges directed
to a vertex in RS are contained in an EAPF, so there are al-
lowed edges; otherwise, there exists a vertex v inRS(x) that
can not reach a free vertex. In the latter case, there exists a
vertex u′ involved in the matching edge (v, u′) (otherwise, v
is a free vertex), so v belongs toRS(u′). RS(u′) contains no
free vertex, because v in RS(x) can not reach a free vertex.
When processing RS(u′), the redundant edges directed to v
will be deleted. Example 3 illustrates the case. If an edge is
removed during the procedure, the related variables will be
added into XD at line 17. Finally, the domain sizes of the
variables in scp(c) are recorded in lastSize(c).

Example 3. Given an allDiff c3, where scp(c3) = {x1, x2,
x3, x4, x5, x6, x7}, D(x1) = {1, 2}, D(x2) = {2}, D(x3)
= {2, 3, 4}, D(x4) = {4, 5, 8}, D(x5) = {5, 6}, D(x6) =
{5, 6}, D(x7) = {6, 7}, the value graph of c3 is shown in
Figure 4. When processingRS(x3) = {x2, x3, x4, x5, x6, 2,
3, 4, 5, 6, 8}, the redundant edges (x1, 2) and (x7, 6) are not
deleted because RS(x3) contains free vertex 8. The vertex
6 and vertex 2 belong to RS(x6) and RS(x2) respectively.
The two RSs contain no free vertex, so the redundant edges
(x4, 5), (x7, 6) and (x1, 2), (x3, 2) will be deleted when
processing the twoRSs.

x1 x2 x3 x4 x5 x6 x7

1 2 3 4 8 5 6 7

redundant edges

matching edges

allowed edges

free vertex

Figure 4: The value graph of allDiff c3 in Example 3.

The worst-case time complexity of Algorithm 1 is
O(|scp(c)|*(|E| + |V | + |U |)). Although the time complex-
ity of BFS for computingRS and Tarjan’s algorithm for com-
puting SCCs [Tarjan, 1972] are bothO(|E| + |V | + |U |), per-
forming BFS for RS is more efficient than performing Tar-
jan’s algorithm for SCCs in the realistically implementations
of the GAC algorithms for allDiff.

Example 4 and 5 describe the processing of two allDiff s
by Algorithm 1. Example 4 describes the case when non-
matching edges are deleted from the value graph of c4 and Ex-
ample 5 describes the case when the matching edge is deleted
from the value graph of c5.

x1 x2 x3 x4 x5 x6

1 2 3 4 5 6 7

removed edges

redundant edgesmatching edges;

allowed edges

RS(x1) RS(x2)

RS(x4) RS(x5)

free vertex

Figure 5: The value graph of allDiff c4 in Example 4.

Example 4. Given an allDiff c4, where scp(c4) = {x1, x2,
x3, x4, x5, x6}, D(x1) = {1, 2}, D(x2) = {1, 2}, D(x3) =
{3, 4}, D(x4) = {3, 4, 5}, D(x5) = {3, 4, 5, 6}, D(x6) = {5,
6, 7}, the value graph of c4 is shown in Figure 5. When the
value 2 is removed from D(x1) and the value 5 is removed
from D(x4) by the solver, the black dashed lines represent
the edge (x1, 2) and (x4, 5) that are removed. Algorithm 1
processes c4 as follows:
a. XD = {x1, x4}.
b. x1 ∈ XD, getRS(x1),RS(x1) = {1, x1}.
c. 1 ∈ RS(x1), and x2 ̸∈ RS(x1), remove the edge (x2, 1),
D(x2) = D(x2) \ {1}, XD = {x2, x4}.

d. x2 ∈ XD, getRS(x2),RS(x2) = {2, x2}, do nothing.
e. x4 ∈ XD, getRS(x4),RS(x4) = {4, x4, 3, x3}.
f. 3, 4 ∈ RS(x4), and x5 ̸∈ RS(x4), remove the edge (x5,

3) and (x5, 4), D(x5) = D(x5) \ {3, 4}, XD = {x5}.
g. x5 ∈ XD, getRS(x5),RS(x5) = {5, x5, 6, x6, 7}.
h. RS(x5) contains a free vertex, do nothing.
i. XD = ∅, Algorithm 1 ends.
Example 5. Given an allDiff c5, where scp(c5) = {x1, x2,
x3, x4}, D(x1) = {1, 2}, D(x2) = {2, 3}, D(x3) = {3, 4},
D(x4) = {1, 4}, the value graph of c5 is shown in Figure 6(a).
When the value 1 is removed from D(x1) by the solver. First,
Algorithm 1 repairs a new matching edge for x1 by finding
an augmenting path (x1, 2, x2, 3, x3, 4, x4, 1), and the
new matching is shown in Figure 6(b). Then, Algorithm 1
computes RS(x1) and deletes (x2, 2), and then computes
RS(x2),RS(x3) andRS(x4) in turn. Finally,D(x1) = {2},
D(x2) = {3}, D(x3) = {4}, D(x4) = {1}.

x1 x2 x3 x4

1 2 3 4 allowed edges

matching edges

removed edge

(a) Before the edge (1, x1) is removed.

x1 x2 x3 x4

2 3 4 1

redundant edges

matching edges

RS(x1) RS(x2)

RS(x3) RS(x4)

(b) After repairing a new matching edge for x1.

Figure 6: The value graphs of allDiff c5 in Example 5.

Theorem 3. There is no allowed edge removed by Algo-
rithm 1.

Proof. The ending vertex and starting vertex in each edge re-
moved by Algorithm 1 are not in the same RS . By Theo-
rem 2, all edges directed to a vertex in an RS not containing
a free vertex is redundant. Thus, Algorithm 1 does not re-
move any allowed edge.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2053

Theorem 4. Algorithm 1 removes all redundant edges.

Proof. In the first run of Algorithm 1 for a allDiff c, all vari-
ables in scp(c) will be added into XD and their RSs will be
processed at lines 8-17. For each redundant edge (u, v), by
Corollary 4, v belongs to an EAC and u cannot be reached
by any vertex in the EAC. Let x be the ending vertex of the
matching edge (v, x), then x is a vertex in the EAC, soRS(x)
does not contain u. When processing RS(x) at lines 13-17,
the edge (u, v) will be deleted, because u does not belong to
RS(x) and v belongs toRS(x).

Whenever the domain of a variable u is changed during
propagation, u is added into XD at line 17. Assuming that
the value v is removed fromD(u), which leads to the deletion
of the edge (u, v) from the value graph. If there exists an
redundant edge (u′, v′) after the deletion, then u can not reach
u′. This is because if u can reach u′, thenRS(u) contains u′

and v′, so there exists an EAC containing u, u′ and v′, and (u′,
v′) is an allowed edge. In this way, when processing RS(u),
the redundant edge (u′, v′) will be deleted. Therefore, all
redundant edges are removed by Algorithm 1.

A maximum matching of a value graph of allDiff is a valid
tuple, so an edge in the value graph is a redundant one if it
does not belong to any maximum matching. By Definition 1,
an allDiff satisfies GAC iff all edges in its value graph are
non-redundant. Therefore, removing all the redundant edges
in the value graph is equivalent to making the corresponding
allDiff satisfy GAC. By Theorem 3 and 4, Algorithm 1 only
removes all redundant edges in the value graph of allDiff c,
so Algorithm 1 makes the allDiff c satisfy GAC.

5 Experimental Results
In order to show the practical interest of our GAC algorithm,
we conducted experiments using a Windows 10 PC with an
AMD Ryzen 3950X processor and 64 GB memory. To pre-
vent the effects of CPU overclocking, the CPU clock speed
was fixed at 3.7GHz and the CPU warm-up process was per-
formed before all experiments were conducted. The Java De-
velopment Kit version is openjdk-18.0.1.1.

We compared our algorithm with four efficient GAC al-
gorithms including Régin’s algorithm [Régin, 1994], Gent’s
algorithm [Gent et al., 2008], Zhang18 algorithm [Zhang et
al., 2018] and Zhang20 algorithm [Zhang et al., 2020]. We
used Choco solver [Prud’homme et al., 2016] in the exper-
iment. Régin’s algorithm and Zhang18 algorithm have been
already integrated in the solver, so we implemented our algo-
rithm, Gent’s algorithm and Zhang20 algorithm. The source
code of our algorithm is available here4. The performance
of finding the first solution and proving unsatisfable is mea-
sured by CPU time in seconds. The timeout limit is set to 900
seconds.

The experiments were run with the XCSP3 benchmark
suite5, which contains 21 families of CSP instances defined
by at least one allDiff. After eliminating the instances where

4https://github.com/luhanzhen/AllDifferent
5http://www.xcsp.org

all algorithms are timeout, 1285 instances were involved in
the experiments6.

10−2 10−1 100 101 102 103

Our algorithm(s)

10−2

10−1

100

101

102

103

R
é
g
in

's
 a

lg
o
ri

th
m

(s
)

10−2 10−1 100 101 102 103

Our algorithm(s)

10−2

10−1

100

101

102

103

G
e
n
t'

s
 a

lg
o
ri

th
m

(s
)

10−2 10−1 100 101 102 103

Our algorithm(s)

10−2

10−1

100

101

102

103

Z
h
a
n
g
1
8
 a

lg
o
ri

th
m

(s
)

10−2 10−1 100 101 102 103

Our algorithm(s)

10−2

10−1

100

101

102

103

Z
h
a
n
g
2
0
 a

lg
o
ri

th
m

(s
)

Figure 7: Comparing our algorithm with the existing GAC
algorithms by pairs.

We used a deterministic variable ordering heuristic called
min lower bound first (hereinafter, called minLB), which al-
ways selects the variable with the smallest domain size (the
leftmost variable has higher priority). The heuristic called
lower bound value first was always selected as the value or-
dering heuristic. With these low-cost heuristics, the search
with all the compared GAC algorithms build the same search
tree for each CSP instance, so we can examine the improve-
ment measured by solving time of our propagation algorithm
and others.

In Figure 7, we compare our GAC algorithm with the ex-
isting algorithms by pairs. The X-axis of the scatter plots
is the time cost (seconds) of our algorithm and the Y-axis is
the time cost (seconds) of the existing algorithms. The red
scatters above the diagonals represent the instances where our
algorithm performs better and the blue ones under rhe diag-
onals represent the instances where the other algorithms per-
form better. More specifically, the numbers of red scatters to
that of blue scatters in the four sub-figures are (1128:147),
(1133:142), (976:301) and (1207:65) respectively. It is ob-
served that our algorithm outperforms the other algorithms.

In Table 1, we report the average solving time cost for solv-
ing these problems. The best one in each row is in bold. It
can be seen that our algorithm achieves the best performance
in 18 out of 21 problems. It brings a significant improve-

6The Subisomorphism problem contains a large number of in-
stances, so we selected 2 sub-problems with 300 instances in our
experiments.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2054

Series #Instances Régin Gent Zhang18 Zhang20 Our
AllInterval 14 54.69 51.74 54.77 66.14 44.16
ColouredQueens 5 0.10 0.11 0.09 0.11 0.05
CostasArray 9 153.26 157.98 118.28 191.80 52.59
CoveringArray 2 0.018 0.019 0.018 0.018 0.016
CryptoPuzzle 10 0.020 0.020 0.020 0.020 0.018
DeBruijnSequence 7 0.130 0.139 0.133 0.164 1.491
Kakuro 538 12.72 12.95 11.34 13.23 7.53
KnightTour 10 49.57 46.24 49.69 53.65 37.24
Langford 15 13.96 13.16 13.92 16.52 11.83
QWH 37 229.00 216.11 228.39 263.28 128.91
BQWH 198 0.019 0.020 0.018 0.020 0.018
MagicSquare 18 5.05 4.60 4.93 6.32 5.71
nengfa 3 5.59 5.23 4.09 7.40 3.81
NumberPartitioning 25 85.22 77.74 81.64 98.71 66.42
Ortholatin 5 17.35 16.61 17.39 20.31 7.45
QuasiGroups 23 42.04 48.63 46.53 44.58 40.90
Queens 12 28.81 30.28 30.11 31.77 30.01
SchurrLemma-mod 6 88.30 95.50 60.97 138.09 37.76
SportsScheduling 2 0.018 0.019 0.018 0.019 0.018
Subisomorphism 300 2.55 2.51 2.49 2.48 2.19
Sudoku 46 0.015 0.016 0.015 0.016 0.016

Table 1: Average time cost(seconds) for solving different problems.

Instances #Constraints #allDiff Régin Gent Zhang18 Zhang20 Our
AllInterval-019 56 2 653.55 613.76 653.55 791.17 528.83
CostasArray-17 149 15 748.71 770.16 576.36 >900 258.24
CostasArray-18 167 16 545.54 562.84 421.44 715.36 184.51
Kakuro-easy-168 532 266 >900 >900 836.18 >900 477.93
Kakuro-medium-181 536 268 458.60 492.32 309.46 529.33 156.78
Kakuro-hard-168 168 84 30.39 32.69 21.04 34.88 10.71
Kakuro-hard-178 540 270 >900 >900 >900 >900 648.02
qwh-o30-h375-04 61 60 661.64 601.68 704.19 >900 246.24
qwh-o100-h10000 200 200 241.90 230.53 261.07 266.37 104.29
Mixed-nengfa-protein X2 569 1 16.64 15.56 12.13 22.03 10.73
KnightTour-08 66 1 494.55 461.29 495.73 535.29 371.52
Langford-2-13 14 1 208.46 196.48 207.87 246.75 176.49
NumberPartitioning-084 92 1 263.10 229.91 248.76 308.04 195.00
Ortholatin-007 80 29 86.67 82.97 86.91 101.50 37.19
QuasiGroup-4-08 129 16 92.05 89.31 87.67 90.87 59.95
SchurrLemma-100-9 2450 2450 341.33 383.59 246.29 569.55 159.37
Subisomorphism-si2-r01-m200-08 158 1 606.34 570.29 570.58 581.93 470.91
Subisomorphism-si4-r01-m200-02 581 1 873.33 859.68 839.07 884.42 794.21
DeBruijnSequence-02-08 2051 1 0.65 0.70 0.66 0.85 9.67

Table 2: Solving time cost (seconds) of representative instances.

ment in some problems, such as CostasArray, QWH, Ortho-
latin, SchurrLemma-mod, etc. However, for a family of CSP
instances called DeBruijnSequence, our algorithm is not as
good as the others, the reason is that our algorithm is very
inefficient for three instances within this family, and this can
be observed from the blue scatters that deviate to the right of
the diagonals in Figure 7.

In Table 2, we present the results of some representative
instances, together with the numbers of constraints in these
instances. Compared with the existing algorithms, our algo-
rithm saves more CPU time in the instances where the number
of allDiff accounts for a large proportion of the total num-
ber of constraints. For example, if we consider Zhang18
algorithm as a baseline, our algorithm saves about 12% to

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2055

19% CPU time in Mixed-nengfa-protein X2 and AllInterval-
019. Moreover, it saves about 35% to 65% CPU time in
SchurrLemma-100-9 and qwh-o30-h375-04. We can con-
clude that the improvement in efficiency of our algorithm for
a given instance is positively correlated with the number of
allDiff constraints as a proportion of all constraints in that in-
stance, further demonstrating the significant improvement of
our algorithm over the other four algorithms.

Nevertheless, we can observe from the last row of Table 2
that our algorithm is much less efficient than the other four
algorithms. The reason for this situation is that for the in-
stance named DeBruijnSequence-02-08, there is an allDiff
constraint with 256 variables whose domains are from 0 to
255, there is a situation where some vertices are computed
multiple times in RSs, or even a situation where one RS
contains most of the vertices of the value graph.

The reasons why our algorithm is more efficient than the
other four algorithms are as follows: Compared with Régin’s
algorithm and Zhang18 algorithm, our algorithm updates the
value graph locally and eliminates the computation of SCCs.
Compared with Gent’s algorithm, our algorithm not only
eliminates the task of recording information about the SCCs
in the value graph, but also the value graph in our algorithm
does not contain the virtual vertex. Compared with Zhang20
algorithm, our algorithm does not require the solver to record
all deleted edges, and it does not spend time checking whether
unimportant edges exist. Therefore, our algorithm removes
all redundant edges in the value graph at a much lower cost.

10−2 10−1 100 101 102 103

Our algorithm(s)

10−2

10−1

100

101

102

103

R
é
g
in

's
 a

lg
o
ri

th
m

(s
)

10−2 10−1 100 101 102 103

Our algorithm(s)

10−2

10−1

100

101

102

103

G
e
n
t'

s
 a

lg
o
ri

th
m

(s
)

10−2 10−1 100 101 102 103

Our algorithm(s)

10−2

10−1

100

101

102

103

Z
h
a
n
g
1
8
 a

lg
o
ri

th
m

(s
)

10−2 10−1 100 101 102 103

Our algorithm(s)

10−2

10−1

100

101

102

103

Z
h
a
n
g
2
0
 a

lg
o
ri

th
m

(s
)

Figure 8: Comparing our algorithm with the existing GAC
algorithms by pairs with dom/wdeg heuristic.

We have compared the solving efficiency of the GAC al-
gorithms with the low-cost variable ordering heuristic which
builds the same search trees. Then, we examined the per-

formance of the GAC algorithms when using a more effi-
cient variable ordering heuristic dom/wdeg [Boussemart et
al., 2004]. Since the Choco solver may process different vari-
ables with empty domains in the same scope at dom/wdeg
in different order, this heuristic can lead to distinct search
trees under distinct filtering algorithms. The result is shown
in Figure 8. Specifically, the number of red scatters to
that of blue scatters in the four sub-figures are (833:442),
(919:354), (699:576) and (875:399) respectively. Although
the dom/wdeg heuristic has an unpredictable effect on the path
of the backtracking search, we observe that our algorithm still
outperforms the existing algorithms. The reason for this phe-
nomena is that our algorithm consumes less time to enforce
GAC for allDiff compared with other existing algorithms.

6 Conclusion
In this paper, we propose a novel GAC algorithm for allDiff.
Our algorithm eliminates the computation of SCCs, which is
time-consuming in existing GAC algorithms for allDiff. In-
stead of computing the SCCs, our algorithm uses a simpler
and more efficient method called BFS to identify redundant
edges. The experimental results on the XCSP3 benchmark
suite show that our algorithm outperforms four efficient GAC
algorithms for allDiff. It not only brings significant improve-
ment in the problems where the number of allDiff is a large
proportion of the total number of constraints, but also in-
directly improves the propagation algorithms for other con-
straints (e.g. Global Cardinality Constraint [Jean-Charles,
1996], Sequence Constraint [Van Hoeve et al., 2006], Dis-
joint Constraint [Bessiere et al., 2004], Bin Packing Con-
straint [Shaw, 2004], etc.). The new algorithm could be a new
candidate propagator for allDiff in modern constraint solvers.

Acknowledgements
The authors would like to thank the anonymous reviewers
for their helpful comments. This work is supported by the
National Natural Science Foundation of China under Grant
62276060, the Natural Science Foundation of Jilin Province
under Grant 20210101470JC, and the Industrial Technology
Research and Development Project of the Development and
Reform Commission of Jilin Province 2019C053-9.

References
[Berge, 1973] Claude Berge. Graphs and hypergraphs.

American Elsevier Publishing Company, 1973.
[Bessiere and Régin, 1997] Christian Bessiere and Jean-

Charles Régin. Arc consistency for general constraint net-
works: preliminary results. In IJCAI, volume 2, pages
398–404. Citeseer, 1997.

[Bessiere et al., 2004] Christian Bessiere, Emmanuel He-
brard, Brahim Hnich, and Toby Walsh. Disjoint, partition
and intersection constraints for set and multiset variables.
CP, 4:138–152, 2004.

[Boussemart et al., 2004] Frédéric Boussemart, Fred
Hemery, Christophe Lecoutre, and Lakhdar Sais. Boost-
ing systematic search by weighting constraints. In ECAI,
volume 16, page 146, 2004.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2056

[Boussemart et al., 2016] Frédéric Boussemart, Christophe
Lecoutre, Gilles Audemard, and Cédric Piette. Xcsp3:
an integrated format for benchmarking combinatorial con-
strained problems. arXiv preprint arXiv:1611.03398,
2016.

[Bundy and Wallen, 1984] Alan Bundy and Lincoln Wallen.
Breadth-first search. In Catalogue of artificial intelligence
tools, pages 13–13. Springer, 1984.

[Fellows et al., 2013] Michael Fellows, Tobias Friedrich,
Danny Hermelin, Nina Narodytska, and Frances Rosa-
mond. Constraint satisfaction problems: Convexity makes
alldifferent constraints tractable. Theoretical Computer
Science, 472:81–89, 2013.

[Gent et al., 2008] Ian P Gent, Ian Miguel, and Peter
Nightingale. Generalised arc consistency for the alldif-
ferent constraint: An empirical survey. AI, 172(18):1973–
2000, 2008.

[Jean-Charles, 1996] Régin Jean-Charles. Generalized arc
consistency for global cardinality constraint. American
Association for Artificial Intelligence (AAAI 1996), pages
209–215, 1996.

[Kuhn, 1955] Harold W Kuhn. The hungarian method for the
assignment problem. Naval research logistics quarterly,
2(1-2):83–97, 1955.

[Lauriere, 1978] Jena-Lonis Lauriere. A language and a pro-
gram for stating and solving combinatorial problems. AI,
10(1):29–127, 1978.

[López-Ortiz et al., 2003] Alejandro López-Ortiz, Claude-
Guy Quimper, John Tromp, and Peter Van Beek. A fast
and simple algorithm for bounds consistency of the alld-
ifferent constraint. In IJCAI, volume 3, pages 245–250,
2003.

[Prud’homme et al., 2016] Charles Prud’homme, Jean-
Guillaume Fages, and Xavier Lorca. Choco solver
documentation. TASC, INRIA Rennes, LINA CNRS UMR,
6241, 2016.

[Puget, 1998] Jean-François Puget. A fast algorithm for the
bound consistency of alldiff constraints. In AAAI, pages
359–366, 1998.

[Régin, 1994] Jean-Charles Régin. A filtering algorithm for
constraints of difference in csps. In AAAI, volume 94,
pages 362–367, 1994.

[Rossi et al., 2006] Francesca Rossi, Peter Van Beek, and
Toby Walsh. Handbook of constraint programming. El-
sevier, 2006.

[Shaw, 2004] Paul Shaw. A constraint for bin packing. In
Principles and Practice of Constraint Programming–CP
2004: 10th International Conference, CP 2004, Toronto,
Canada, September 27-October 1, 2004. Proceedings 10,
pages 648–662. Springer, 2004.

[Suijlen et al., 2022] Wijnand Suijlen, Félix de Framond,
Arnaud Lallouet, and Antoine Petitet. A parallel algorithm
for gac filtering of the alldifferent constraint. In Interna-
tional Conference on Integration of Constraint Program-

ming, Artificial Intelligence, and Operations Research,
pages 390–407. Springer, 2022.

[Tardivo et al., 2022] Fabio Tardivo, Agostino Dovier, An-
drea Formisano, Laurent Michel, and Enrico Pontelli.
Constraints propagation on gpu: A case study for alldif-
ferent. In PCILC, CEUR-WS, 2022.

[Tarjan, 1972] Robert Tarjan. Depth-first search and linear
graph algorithms. SIAM journal on computing, 1(2):146–
160, 1972,.

[Van Hoeve et al., 2006] Willem-Jan Van Hoeve, Gilles Pe-
sant, Louis-Martin Rousseau, and Ashish Sabharwal. Re-
visiting the sequence constraint. In Principles and Prac-
tice of Constraint Programming-CP 2006: 12th Interna-
tional Conference, CP 2006, Nantes, France, September
25-29, 2006. Proceedings 12, pages 620–634. Springer,
2006.

[Van Hoeve, 2001] Willem-Jan Van Hoeve. The alldifferent
constraint: A survey. arXiv preprint cs/0105015, 2001.

[Van Kessel and Quimper, 2012] Philippe Van Kessel and
Claude-Guy Quimper. Filtering algorithms based on the
word-ram model. In AAAI, volume 26, pages 577–583,
2012.

[Wallace, 1996] Mark Wallace. Practical applications of
constraint programming. Constraints, 1(1):139–168,
1996.

[Zhang et al., 2018] Xizhe Zhang, Qian Li, and Weixiong
Zhang. A fast algorithm for generalized arc consistency
of the alldifferent constraint. In IJCAI, pages 1398–1403,
2018.

[Zhang et al., 2020] Xizhe Zhang, Jian Gao, Yizhi Lv, and
Weixiong Zhang. Early and efficient identification of use-
less constraint propagation for alldifferent constraints. In
IJCAI, pages 1126–1133, 2020.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2057

	Introduction
	Background
	Related Work
	Eliminating the Computation of SCCs
	Experimental Results
	Conclusion

