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Abstract
Transformer-based models are powerful for mod-
eling temporal dynamics of user preference in
sequential recommendation. Most of the vari-
ants adopt the Softmax transformation in the self-
attention layers to generate dense attention prob-
abilities. However, real-world item sequences are
often noisy, containing a mixture of true-positive
and false-positive interactions. Such dense atten-
tions inevitably assign probability mass to noisy
or irrelevant items, leading to sub-optimal perfor-
mance and poor explainability. Here we propose a
Probabilistic Masked Attention Network (PMAN)
to identify the sparse pattern of attentions, which
is more desirable for pruning noisy items in se-
quential recommendation. Specifically, we employ
a probabilistic mask to achieve sparse attentions
under a constrained optimization framework. As
such, PMAN allows to select which information is
critical to be retained or dropped in a data-driven
fashion. Experimental studies on real-world bench-
mark datasets show that PMAN is able to improve
the performance of Transformers significantly.

1 Introduction
Transformer [Vaswani et al., 2017] and its variants have
become the dominant architectures for language model-
ing tasks, due to their efficient parallel training and good
ability of modeling long-range dependencies within se-
quences [Chen et al., 2022b; Yeh et al., 2022]. In light of this,
many researchers have applied Transformers to understand
the item-item dependencies within users’ sequential actions,
which has recently achieved remarkable performance in se-
quential recommendation. Some popular Transformer-based
sequential models include SASRec [Kang and McAuley,
2018], BERT4Rec [Sun et al., 2019], TiSASRec [Li et al.,
2020], Transformers4Rec [de Souza Pereira Moreira et al.,
2021], and STOSA [Fan et al., 2022].

At the heart of the Transformer is the self-attention mech-
anism [Vaswani et al., 2017], which offers insights of how
a user makes decisions by inspecting the attention distri-

Figure 1: An example of a sequential data (i.e., [Headphones, T-
shirts, Keyboards, Shoes] → Macbooks) that contains both relevant
and irrelevant item-item dependencies in the attention maps.

bution to determine the amount of influence of each item
in the decision-making process. However, the existing
Transformer-based models often rely on dense and fully-
connected attention maps: the attention probabilities are
computed by the Softmax function, which always returns
positive values [Kang and McAuley, 2018; Sun et al., 2019;
Li et al., 2020]. As a result, dense attention maps inevitably
assign certain credits to every item in the sequence for next-
item recommendation, causing misleading explainability.

Recent studies show that the dense attentions are not nec-
essary for real-world scenarios, where users’ logged data is
often noisy, containing a mixture of true-positive and false-
positive interactions [Wang et al., 2021b; Chen and Li, 2019a;
Wang et al., 2021c; Chen and Li, 2019b; Chen et al., 2022a;
Wang et al., 2022]. For instance, as shown in Figure 1,
a user’s click logs may contain Headphones, T-shirts, Key-
boards, Shoes, and Macbooks in a chronological order. Nev-
ertheless, T-shirts and Shoes are irrelevant to Macbooks,
leading to poor explanation in sequential recommendation.
To address this issue, ADT [Wang et al., 2021a] discards
the large-loss samples with a dynamic threshold to identify
and prune the noisy interactions. Rec-denoiser [Chen et al.,
2022a] learns a sparse attention to remove the redundant at-
tentions. Nevertheless, Those frameworks suffers from large
computational bottleneck, i.e, reweighting loss, multi-head
attention, and double forward computation.

In this work, we propose a Probabilistic Masked Atten-
tion Network (PMAN) that is more effective for pruning
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noisy items in sequential recommendation. Our idea is
rooted in the principle that explicitly sparsifying attention
maps is able to improve the concentration of attention on
the global context through an explicit selection of the most
relevant segments [Child et al., 2019; Correia et al., 2019;
Zaheer et al., 2020; Beltagy et al., 2020]. This phenomenon
can be also verified by the recent Lottery Ticket Hypothe-
sis [Frankle and Carbin, 2018; Chen et al., 2020], showing
that a sparse sub-network is enough to achieve good per-
formance without training a dense network. To identify the
sparse pattern of attentions, PMAN adopts a probabilistic
mask to select task-specific items in a data-driven fashion,
which provides better accuracy. In addition, PMAN uses the
squared ReLU rather than Softmax as the activation function
to compute attention distributions, abandoning the probabilis-
tic constraints. This allows to generate exactly zero attention
scores for irrelevant items, mitigating the impact of false-
positive interactions.

Our PMAN can be formulated as a constrained optimiza-
tion problem, which can be efficiently solved by standard
projected gradient descent. More importantly, our PMAN is
an easy-to-implement drop-in replacement for existing self-
attention layers with no specialized operations. Remark-
ably, the sparse attentions are enough to obtain better ac-
curacy than the standard Transformer with a fewer number
of model parameters. Experimental studies on real-world
benchmark datasets show that PMAN can significantly im-
prove the performance of Transformers, and the performance
gain becomes larger for more noisy sequences.

Overall, our contributions are summarized as follows:

• We propose a novel Probabilistic Masked Attention Net-
work (PMAN), which simplifies the design of Trans-
formers and is able to reduce the negative impacts of
noisy items in sequential recommendation.

• We introduce a probabilistic masked mechanism to
achieve sparse attention distributions, resulting in bet-
ter performance. Our probabilistic mask can be learned
automatically via a constrained optimization framework.

• We empirically demonstrate the effectiveness and effi-
ciency of PMAN in real-world datasets. Besides the
superior performance, our PMAN could provide a cer-
tain level of explainability, i.e., eliminating the redun-
dant item-item dependencies.

2 Related Work
2.1 Sequential Recommendation
Sequential recommendation aims to predict the next item
based on a historical sequence of users’ actions. Earlier stud-
ies mainly adopt Markov Chain models to learn local item-
item transition patterns [Rendle et al., 2010]. Deep sequen-
tial models have received much attention owing to their ef-
ficiency. Current efficient architectures include Recurrent
Neural Networks [Hidasi et al., 2016], Convolutional Neu-
ral Networks [Tang and Wang, 2018], and Graph Neural Net-
works [Wu et al., 2019]. Recently, Transformer-based mod-
els have shown promising potential by using the self-attention
mechanism to learn pairwise item-item relationships in the

sequence. For example, one can adopt either left-to-right
unidirectional attentions (e.g., SASRec [Kang and McAuley,
2018] and TiSASRec [Li et al., 2020]) or bidirectional atten-
tions (e.g., BERT4Rec [Sun et al., 2019]) to predict the next
item. SSE-PT [Wu et al., 2020] is a personalized Transformer
model that further incorporates user embeddings to enhance
performance. Recently, LSAN [Li et al., 2021] proposes a
twin-attention network to learn both long- and short-term user
preference via a dedicated self-attention operation.

However, vanilla self-attention mechanism uses the Soft-
max function to compute dense attention distributions, which
is not Lipschitz continuous [Kim et al., 2021], and is thus sen-
sitive to noisy sequences. Rec-denoiser [Chen et al., 2022a]
learns a sparse attention to remove the redundant attentions
but with expensive computational efforts due to the Softmax
operator. Inspired by recent Softmax-free attention mecha-
nisms [Hua et al., 2022; Shazeer, 2020], we put forward a
probabilistic attention network that consists of a probabilistic
mask and the ReLU normalization, to prune the noisy items
within a sequence. As such, the redundancy item-item de-
pendencies can be removed efficiently, providing clean and
sparse attention maps with better explainability.

2.2 Sparse Transformer
Learning sparse and efficient attention mechanisms has re-
cently garnered considerable interest in language model-
ing [Child et al., 2019; Correia et al., 2019; Zaheer et al.,
2020; Beltagy et al., 2020]. The key idea of these sparse
Transformers is to sparsify the attention maps by fixing
the field of view with pre-defined patterns. For example,
Sparse Transformer [Child et al., 2019] uses a fixed atten-
tion patterns, where specific cells summarize previous loca-
tions and propagate the information to all future cells. Long-
former [Beltagy et al., 2020] further increases the receptive
field by employing dilated sliding window.

However, these sparse models highly depend on pre-
defined attention schemes, which require domain-specific
knowledge and lack flexibility [Yun et al., 2020]. Also, the
original purpose of these models is to capture long-range de-
pendencies for long sequences, not to prune noise within se-
quences. Despite the extension is conceptually straightfor-
ward, this direction is less-explored for sequential recommen-
dation. It is thus unclear whether these fixed sparse patterns
could generalize well for noisy item sequences [Child et al.,
2019; Beltagy et al., 2020]. In this paper, we follow a dif-
ferent route with the aim of learning sparse attentions via a
probabilistic mask. As such, the mask can be simultaneously
optimized with the downstream objective, which is able to re-
move the task-irrelevant items in sequential recommendation.

3 Background
3.1 Problem Setup
In the sequential recommendation tasks, let U be a set of
users, V be a set of items, and S = {S1,S2, . . . ,S |U|} a
collection of users’ actions. Each user u ∈ U is associ-
ated with a sequence of items Su = (Su

1 , S
u
2 , . . . , S

u
|Su|)

in a chronological order, where |Su| is the length of the
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sequence, and Su
t ∈ V is the item that user u has inter-

acted with at time t. The sequential recommendation is com-
monly evaluated as next-item prediction [Hidasi et al., 2016;
Kang and McAuley, 2018]. For each user u, we seek to pre-
dict the next item Su

|Su|+1 at time step |Su| + 1 based on the
interaction history Su.

3.2 Self-attention Network
Owing to the efficient parallel training, Transformers have
been widely used in sequential recommendation [Kang and
McAuley, 2018; Sun et al., 2019; Li et al., 2020; de Souza
Pereira Moreira et al., 2021]. Here we briefly introduce the
design of self-attention mechanism.

Embedding Layer. Transformer-based recommenders
maintain an item embedding table T ∈ R|V|×d, where
d is the size of embedding vector. For each sequence
Su, it can be converted into a fixed-length sequence
(Su

|Su|−n+1, . . . , S
u
|Su|), where n is the maximum length,

such as keeping the most recent n items by truncating
or padding items as needed [Kang and McAuley, 2018]).
The embedding for (Su

|Su|−n+1, . . . , S
u
|Su|) is denoted as

E ∈ Rn×d, which can be retrieved from the embedding table
T. To preserve the time information, a learnable positional
embedding P ∈ Rn×d is further constructed. Usually, the
item embedding and the positional embedding are added up:

X = E+P, (1)

where the composited embedding X ∈ Rn×d can be directly
fed to any sequential recommenders.

Self-Attention Layer. The self-attention layer is critical to
learn long-range dependencies within a sequence [Vaswani et
al., 2017]. The scaled dot-product attention is widely used as:

SA(Q,K,V) = Softmax

(
QKT

√
d

)
V, (2)

where Q = XWQ, K = XWK , and V = XWV are the
queries, keys and values, respectively; {WQ,WK ,WV } ∈
Rd×d are weights. Also, one can include other components
like point-wise feed-forward layer, residual connection, and
layer normalization. We skip the details as these parts are the
same as the original Transformer [Vaswani et al., 2017].

Limitations. The scaled dot-product attention in Eq. (2)
always generates dense attention distributions, which com-
plicates the item-item dependencies, and even degrades the
performance. Moreover, recent studies show that Eq. (2) is
not Lipschitz continuous [Kim et al., 2021], implying that
small perturbations (e.g., noise) on input sequences are likely
to cause large variances of attention distributions. This usu-
ally increases the training difficulty.

4 Our Proposed Framework
In this section, we present our Probabilistic Masked Attention
Network (PMAN), a simpler yet more desirable for detecting
noisy sequences in sequential recommendation.

4.1 Probabilistic Masked Attention Network
Sparse Attention. Let X ∈ Rn×d (from Eq. (1)) be the
representations over n items, we make the use of a much
simpler attention mechanism to compute the attention distri-
bution [Hua et al., 2022]:

A = Q(Z)K(Z)T ,where Z = ϕz(XWz), (3)

where A ∈ Rn×n contains dense item-item attentions, Z ∈
Rn×d is a shared representation for both queryQ(Z) and key
Q(Z), where Q(·) and K(·) are two simple affine functions
that apply per-dim scalars and offsets to Z, Wz ∈ Rd×d is
the weight, and ϕz(·) is a nonlinear function.

To address the issue of noise, PMAN introduces masked
mechanism that allows to control what information should be
retained/dropped. Specifically, we have:

H =
1

nd
ReLU2(A⊙M)V,

where M ∈ {0, 1}n×n, and V = ϕv(XWv),
(4)

where H ∈ Rn×d is the output item representations; ⊙
stands for element-wise product; V is the value with weight
Wv ∈ Rd×d and nonlinear function ϕv(·); M ∈ Rn×n is a
trainable binary mask that sparsifies the attention maps, i.e.,
Mij = 0 means that the attention Aij is pruned, otherwise
Aij is kept. Empirically, we choose the squared ReLU rather
than Softmax as activation function. As such, the combina-
tion of the binary mask with squared ReLU normalization is
able to yield exactly zero probabilities for irrelevant items.
We will show how to jointly optimize the discrete variable M
with model parameters later.
Loss Function. One can predict the next item (given the
first t items) based on Ht (Eq. (4)). An inner product is used
to predict users’ preference score of item i as:

ri,t = ⟨Ht,Ti⟩, (5)

where Ti ∈ Rd is the embedding of item i. Typically,
Transformer feeds a sequence (Su

|Su|−n, . . . , S
u
|Su|−1) and

its desired output is a shifted version of the same sequence
o = (Su

|Su|−n+1, . . . , S
u
|Su|). Finally, one can adopt the bi-

nary cross-entropy loss as objective function:

L(Θ) = −
∑
Su∈S

n∑
t=1

[
log(σ(rot,t)) + log(1− σ(ro′t,t))

]
,

(6)
where Θ is the model parameters, o′t ̸∈ Su is a negative sam-
ple corresponding to ot, and σ(·) is the sigmoid function.

4.2 Probabilistic Sparsification Framework
Constrained Optimization. We jointly train the model pa-
rameters Θ and the binary mask M in a unified optimization
framework. The empirical risk minimization is:

min
Θ,M

L(Θ,M),

s.t. ∥M∥1 ≤ B and M ∈ {0, 1}n×n,
(7)

where L1 norm is applied to the mask to control the sparse
degree of the attentions, with the upper bound B. Never-
theless, the objective is discrete with respect to M, which is
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Algorithm 1 PMAN
Input: The training sequence set S, attention capacity B, embed-
ding size d.
1: Initialize model parameters Θ, mask parameters s;
2: for epoch t = 1, 2, . . . , T do
3: Schedule the temperature parameter by τ = 0.97(1−t/T )+

0.03;
4: for each mini-batch do
5: Compute the input embedding X in Eq. (2);
6: Compute dense attentions A in Eq. (3);
7: Compute sparse attentions H in Eq. (4);
8: Compute the entropy loss L in Problem (8);
9: Draw samples {g(i)

1 , g
(i)
0 }Ii=1 ∼ Gumbel(0, 1);

10: Compute gradient ∇sEp(m|s)L(Θ,m) in Eq. (9);
11: Update the mask variables s via PGD in Eq. (12);
12: Update the model parameters Θ via SGD;
13: end for
14: end for
15: return 1) The model parameters Θ;

2) The trained mask m that can be sampled from
the distribution p(m|s).

computationally intractable. To overcome this issue, we view
each element of mask M as a binary random variable, then
Problem (7) can be relaxed into an excepted loss minimiza-
tion problem over the probability spaces, which is continuous
and differentiable for gradient computation.

Formally, we flatten the mask M as a vector m ∈ Rn2

,
and view each element mi as a Bernoulli random variable
with probability si to be 1 and (1 − si) to be 0, that is
mi ∼ Bern(si), where si ∈ [0, 1]. Assuming the ele-
ments of variable m are independent, its distribution be-
comes p(m|s) = Πi(si)

mi(1 − si)
(1−mi). Then we have

Em∼p(m|s)∥m∥1 =
∑n2

i=1 si. As such, Problem (7) can be
relaxed into the following excepted loss minimization:

min
Θ,s

Ep(m|s)L(Θ,m),

s.t. 1⊤s ≤ B and si ∈ [0, 1].
(8)

where 1 is the all-one vector.
For above problem, we use an alternating optimization

schema to iteratively update Θ and s. For model parame-
ters Θ, it can be learned via standard Stochastic Gradient De-
scent. For variable s, it involves a constrained optimization
problem. Next we show how to efficiently update s by using
Projected Gradient Descent (PGD).
Projected Gradient Descent. We adopt Gumbel Softmax
trick [Jang et al., 2017] to calculate the gradients of the binary
variable s as:

∇sEp(m|s)L(Θ,m)

= Eg0,g1∇sL
(
Θ, I

[
log(

s

1− s
) + g1 − g0 ≥ 0

])

≈ Eg0,g1∇sL

Θ, σ

 log
(

s
1−s

)
+ g1 − g0

τ


≈ 1

I

I∑
i=1

∇sL

Θ, σ

 log
(

s
1−s

)
+ g

(i)
1 − g

(i)
0

τ

 ,

(9)

Dataset #users #items #interactions sparsity

Beauty 22.4k 12.1k 198.5k 0.07%
Sports 25.6k 18.4k 296.3k 0.05%
Yelp 30.4k 20.0k 316.4k 0.05%

MovieLens1M 6.0k 3.4k 987.0k 4.78%
Steam 334.7k 13.0k 3686.1k 0.08%

Table 1: Statistics of the benchmark dataset.

where I[·] is the indicator function; g0 and g1 are two random
variables, with each element being i.i.d sampled from Gum-
bel (0, 1) distribution. We use I pairs of Monte Carlo sam-
ples (g(i)

1 , g(i)
0 ) to approximate the expectation; σ(·) is the

Sigmoid function; τ is the temperature that can be decreased
linearly during training [Jang et al., 2017].

Besides, we denote C = {s|1⊤s ≤ B and si ∈ [0, 1]} as
the feasible region of Problem (8). For any vector y, Proposi-
tion 1 shows that its projection on the set C has a closed-form
solution. More details can be found in Appendix1.

Proposition 1. Given any vector y, its projection on the set
C = {s|1⊤s ≤ B, si ∈ [0, 1]} is computed as:

projC [y] = min(1,max(0,y − α1)), (10)

where α = max(0, β), and β is the solution of the equation:

1⊤[min(1,max(0,y − β1))]−B = 0. (11)

In addition, let f(β) = 1⊤[min(1,max(0,y − β1))] −
B, and it can be verified that f(β) is a monotone decreasing
function with respect to β. Thus, the equation f(β) = 0
can be efficiently solved by using the bisection method that
converges in the logarithmic rate. After obtaining β∗, we can
get α∗ = max(0, β∗), which can be then used to compute the
projection in Eq. (10).

To this end, we can apply PGD to update s for Problem (8)
by jointly considering Eq. (9) and Eq. (10):

s← projC [s− η · ∇sEp(m|s)L(Θ,m)] (12)

where η denotes the learning rate. We briefly summarize the
overall training procedure of PMAN in Algorithm 1.

Complexity Analysis. From Eq. (3) and Eq. (4), PMAN
has quadratic complexity over the sequence length as the
Transformers, but with a cheaper architecture. More im-
portantly, we empirically observe that PMAN only requires
one head, without the need of point-wise feed-forward layer,
and layer normalization as in the original Transformer, which
enhances computing efficiency. The running time of differ-
ent Transformer-based models can be found in Appendix.
Additionally, it is worth noting that our PMAN can eas-
ily achieve linear complexity by using low-rank matrix de-
composition [Chen et al., 2021] or Nyström approxima-
tion [Xiong et al., 2021]. We leave the extension of linearized
attentions in the future.
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Model Beauty Sports Yelp MovieLens1M Steam
Hit@10 NDCG@10 Hit@10 NDCG@10 Hit@10 NDCG@10 Hit@10 NDCG@10 Hit@10 NDCG@10

BPRMF 0.0536 0.0320 0.0289 0.0154 0.0240 0.0124 0.0547 0.0361 0.0143 0.0118
FPMC 0.0534 0.0311 0.0341 0.0178 0.0261 0.0134 0.0532 0.0340 0.0148 0.0112

GRU4Rec 0.0543 0.0318 0.0352 0.0180 0.0272 0.0138 0.0553 0.0368 0.0152 0.0122
Caser 0.0541 0.0323 0.0348 0.0183 0.0276 0.0141 0.0560 0.0357 0.0158 0.0129

SR-GNN 0.0563 0.0337 0.0350 0.0181 0.0281 0.0152 0.0567 0.0371 0.0164 0.0133
S3-Rec 0.0595 0.0348 0.0362 0.0187 0.0303 0.0163 0.0574 0.0379 0.0171 0.0137
DSAN 0.0570 0.0327 0.0351 0.0179 0.0292 0.0155 0.0562 0.0369 0.0167 0.0130
STOSA 0.0638 0.0360 0.0381 0.0198 0.0297 0.0160 0.0577 0.0384 0.0177 0.0144

SASRec 0.0601 0.0324 0.0361 0.0183 0.0285 0.0148 0.0570 0.0372 0.0168 0.0131
+PMAN 0.0645 0.0357 0.0387 0.0201 0.0306 0.0157 0.0615 0.0398 0.0185 0.0147
%Improv +7.32% +10.2% +7.20% +9.84% +7.37% +6.08% +7.89% +6.98% +10.1% +12.2%

TiSASRec 0.0623 0.0346 0.0370 0.0190 0.0296 0.0159 0.0584 0.0393 0.0181 0.0153
+PMAN 0.0656 0.0377 0.0403 0.0214 0.0314 0.0167 0.0635 0.0418 0.0199 0.0173
%Improv +5.30% +8.96% +8.92% +12.6% +6.08% +5.03% +8.73% +6.36% +9.94% +12.07%

BERT4Rec 0.0617 0.0328 0.0353 0.0189 0.0287 0.0143 0.0576 0.0381 0.0160 0.0127
+PMAN 0.0649 0.0349 0.0376 0.0207 0.0305 0.0152 0.0627 0.0407 0.0175 0.0142
%Improv +5.19% +6.40% +6.52% +9.52% +6.27% +6.29% +8.85% +6.82% +9.38% +11.8%

Table 2: Overall Performance of different models (”%Improv” denotes the relative improvements of PMANs over their backbones). The best
performing results are boldfaced and the second best ones are underlined.

5 Experiment
5.1 Experimental Setup
Dataset. We consider five benchmark datasets: Amazon-
Beauty, Amazon-Sports2, Yelp3, MovieLens1M4, and
Steam5. For each dataset, we group the interactions by users,
and sort their items by the timestamps ascendingly. Follow-
ing [Fan et al., 2022], we adopt 5-core setting to filter out
unpopular items and inactive users with fewer than five inter-
action records. Their statistics are listed in Table 1.

Baseline. We compare our PMAN with the following meth-
ods: 1) BPRMF [Rendle et al., 2009] is a matrix factor-
ization model with Bayesian personalized ranking loss; 2)
FPMC [Rendle et al., 2010] utilizes Markov Chains to learn
item transitions; 3) GRU4Rec [Hidasi et al., 2016] adopts
GRU to learn the item sequences; 4) Caser [Tang and Wang,
2018] is a CNN-based sequential model; 5) SR-GNN [Wu et
al., 2019] employs graph neural network to capture complex
item transitions. 6) SASRec [Kang and McAuley, 2018], Ti-
SASRec [Li et al., 2020], BERT4Rec [Sun et al., 2019] are
all Transformer-based sequential models; 7) S3-Rec [Zhou
et al., 2020] applies self-supervised learning for sequential
recommendation; 8) DSAN [Yuan et al., 2021] is a sparse
attention network by replacing softmax with α-entmax. 9)
STOSA [Fan et al., 2022] is a recent Transformer model that
uses Wasserstein distance mechanism. Our proposed prob-
abilistic mask can generally plug in the Transformer-based
models during training process. For our PMAN, we choose
SASRec, TiSASRec, and BERT4Rec as its backbones by
simply replacing the Transformer blocks (e.g., self-attention

1https://www.dropbox.com/s/7namvdjm0jy4cmj/Appendix.pdf?dl=0
2https://jmcauley.ucsd.edu/data/amazon/
3https://www.yelp.com/dataset
4https://grouplens.org/datasets/movielens/1m/
5https://cseweb.ucsd.edu/ jmcauley/datasets.html#steam data

layer, point-wise feed-forward layer, and layer normalization
etc.) with our sparse masked attention block. Note that we
do not apply our mask mechanism on STOSA since it adopts
Wasserstein distance attention, rather than the standard scaled
dot-product attention.

Parameter Settings. The parameters for the baselines are
initialized as their original settings and are then carefully
tuned to obtain optimal performance. We adopt Adam as op-
timizer and search embedding dimension d in Eq. (2) within
{32, 64, 128}, the length of item sequence n within {25, 50}.
For the attention capacity B in Problem (8), we vary the ra-
tio r in {0.3, 0.5, 0.7, 0.9}, such that B = r · n2. Moreover,
all of our PMANs only use single-head attention in the ex-
periments. The impact of different number of heads will be
discussed later.

Evaluation. Following the procedure [Kang and McAuley,
2018; Li et al., 2020; Fan et al., 2022], we use the last item
of each user’s sequence for testing, the second-to-last for val-
idation, and the remaining items for training. We adopt the
widely-used Hit@k and NDCG@k as the evaluation metrics
(k = 10 by default). Instead of the biased sampling evalua-
tion, we compute Hit@10 and NDCG@10 by the all-ranking
protocol in the experiments [Krichene and Rendle, 2020].

5.2 Overall Performance
Table 2 presents the overall recommendation performance of
all methods on the five datasets. All the simulated experi-
ments are repeated five times independently and the average
results are reported in the table.

From Table 2, we have the following observations:

• All Transformer-based models (e.g., S3-Rec, STOSA,
SASRec, BERT4Rec, TiSASRec, and PMAN) generally
outperform BPRMF, FPMC, GRU4Rec, Caser, and SR-
GNN with a large margin, implying that the attention
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38::It Takes Two::Comedy 49::When Night Is Falling::Drama|Romance 53::Lamerica::Drama 11::American President::Comedy|Drama|Romance

25::Leaving Las Vegas::Drama|Romance 19::Ace Ventura: When Nature Calls::Comedy 2::Jumanji::Adventure|Children’s|Fantasy 17::Sense and Sensibility::Drama|Romance

37::Across the Sea of Time::Documentary 12::Dracula: Dead and Loving It::Comedy|Horror 14::Nixon::Drama 30::Shanghai Triad::Drama

4::Waiting to Exhale::Comedy|Drama 15::Cutthroat Island::Action|Adventure|Romance 50::Usual Suspects::Crime|Thriller 34::Babe::Children’s|Comedy|Drama

8::Tom and Huck::Adventure|Children’s 43::Restoration::Drama 51::Guardian Angel::Action|Drama|Thriller 41::Richard III::Drama|War

48::Pocahontas::Animation|Children’s|Musical|Romance 18::Four Rooms::Thriller 16::Casino::Drama|Thriller 5::Father of the Bride Part II::Comedy

1::Toy Story::Animation|Children’s|Comedy 40::Cry, the Beloved Country::Drama 21::Get Shorty::Action|Comedy|Drama 31::Dangerous Minds::Drama

22::Copycat::Crime|Drama|Thriller 46::How to Make an American Quilt::Drama|Romance 47::Seven (Se7en)::Crime|Thriller 36::Dead Man Walking::Drama

45::To Die For::Comedy|Drama 27::Now and Then::Drama 6::Heat::Action|Crime|Thriller 33::Wings of Courage::Adventure|Romance

10::GoldenEye::Action|Adventure|Thriller 3::Grumpier Old Men::Comedy|Romance 9::Sudden Death::Action 35::Carrington::Drama|Romance

52::Mighty Aphrodite::Comedy 7::Sabrina::Comedy|Romance 13::Balto::Animation|Children’s Predict next

44::Mortal Kombat::Action|Adventure 20::Money Train::Action 29::City of Lost Children::Adventure|Sci-Fi 26::Othello::Drama

42::Dead Presidents::Action|Crime|Drama 39::Clueless::Comedy|Romance 24::Powder::Drama|Sci-Fi

Table 3: A random user’s historical behaviors in the MovieLens1M dataset, where we aim to visualize its attentions.

38 25 37 4 8 48 1 22 45 10 52 44 42 49 19 12 15 43 18 40 46 27 3 7 20 39 53 2 14 50 51 16 21 47 6 9 13 29 24 11 17 30 34 41 5 31 36 33 35

26

(a) SASRec

38 25 37 4 8 48 1 22 45 10 52 44 42 49 19 12 15 43 18 40 46 27 3 7 20 39 53 2 14 50 51 16 21 47 6 9 13 29 24 11 17 30 34 41 5 31 36 33 35

26

(b) SASRec+PMAN

Figure 2: (a) Dense attentions for SASRec, where each attention score is non-zero, and (b) Sparse attentions for SASRec+PMAN, where ×
means that the corresponding attention scores are zeros. The color saturation indicates attention distribution.

mechanism is able to capture long-range item dependen-
cies for sequential recommendation.

• The relative improvements of PMANs over their cor-
responding backbones are significant for all datasets.
For example, SASRec+PMAN outperforms the vanilla
SASRec by 7.97% and 9.06% on average in terms of
Hit@10 and NDCG@10, respectively. This is mainly at-
tributed to the ability of pruning noisy items via learn-
able mask in PMANs.

• STOSA and PMANs generally perform better than other
Transformer-based models. The reason is that the vanilla
self-attention mechanism is not Lipschitz continuous
and is vulnerable to small perturbations in real-world ap-
plications. STOSA and PMANs address this issue by
modeling uncertain noise within sequence.

• TiSASRec+PMAN consistently obtains the best perfor-
mance for all datasets, which indicates the benefit of
considering both temporal information and sparse atten-
tions simultaneously. STOSA models dynamic uncer-
tainty by using stochastic Gaussian distribution, but still
generating dense attention maps, which cannot exactly
remove the negative impacts of noisy items. Moreover,
DSAN performs worse than our PMANs since its α-
entmax function is relatively sensitive to the hyperpa-
rameters, which may cause overfitting issues.

In terms of running time, we empirically observe that the
training time of the PMANs is around 0.81 times that of their
backbones with the same hardware. That is because PMANs
have a much simpler attention module with fewer model pa-
rameters. For example, we only use per-dim scalars and off-
sets to compute the query and key. Also, our single-head at-

tention is sufficient to achieve the best performance without
the requirements of point-wise feed-forward layer and layer
normalization as in the original Transformer.

Overall, the experimental results demonstrate the superior-
ity of our PMANs. Specifically, the proposed methods out-
perform all baselines with less time complexity.

5.3 Explainability
In addition to the good performance of our PMANs, we
also visualize the attention maps to provide model’s inter-
pretability. In Table 3, a random user’s engagement history
in the Movielens1M dataset is given in a chronological or-
der (column-wise). One can observe that the user tends to
watch various types of movies, including Comedy, Drama,
Animation, Action, Romance, etc. Specially, the drama and
romance are the two types that the user likes to watch most. In
this work, we regard the last item (e.g., 26::Othello::Drama)
as test set, and aim to investigate the relationships between
the last item and the previous engagement history. This can
be achieved by inspecting the attention distribution to deter-
mine the amount of influence of each item in the sequence.

From humans, it is natural to reason that not all of his-
torical movies are related to the target movie. For exam-
ple, there is not obvious relationship between 38::It Takes
Two::Comedy and 26::Othello::Drama. To see the models’
reasoning, we provide attention distribution for both SAS-
Rec and SASRec+PMAN in Figure 2. For SASRec, all con-
text movies have non-zero attention weights due to the Soft-
max attention mechanism. As a result, the dense attention
maps cause misleading explainability. In contrast, our SAS-
Rec+PMAN can yield exactly zero probabilities for irrele-
vant movies, such as 38::It Takes Two::Comedy and 29::City
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Figure 3: The impact of different noisy ratios δ.
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Figure 4: The impact of the degree of attention capacity r.

of Lost Children::Adventure|Sci-Fi. This is attributed to our
probabilistic mask’s ability of pruning task-irrelevant items in
sequential recommendation. As such, our SASRec+PMAN
can pay more attentions on the relevant drama movies, such
as 31::Dangerous Minds::Drama and 36::Dead Man Walk-
ing::Drama. We observe the similar phenomenon for both Ti-
SASRec+PMAN and BERT4Rec+PMAN, and their attention
distribution for both can be found in Appendix.

Concisely, the visualization of spare attentions strongly
shows that our PMANs can reduce the negative impacts of
noisy items, which highly improves model interpretability.

5.4 Further Probe
Robustness. To further evaluate the robustness of our mod-
els, we follow the strategy [Ma et al., 2020] to corrupt the
training sequences by randomly replacing a portion of the
observed items with uniformly sampled items that are not in
the valid/test set. We vary the corrupted ratio δ from 0% to
20%. We report the results of SASRec and SASRec+PMAN
in terms of Hit@10 on Beauty and Sports datasets, and we ob-
serve similar trends in other datasets. Figure 3 shows that the
performance gain becomes larger for more noisy sequences,
i.e., the relative improvement ranges from 8.57% to 36.49%
for different values of δ. This demonstrates the better robust-
ness of our PMAN than its backbone in the task of sequential
recommendation.

Sparsity. One important hyperparameter of our PMANs is
the attention capacity B in Problem (8). A small B may lead
to aggressive pruning, i.e., B = 0 will mask out all of atten-
tions. Here we set B = r · n2, and vary the sparsity ratio r
within {0.3, 0.5, 0.7, 0.9}. Figure 4 shows the impact of the
attention capacity B for Beauty and Sports datasets. We ob-
serve that the performance of SASRec+PMAN is consistently
better than SASRec, indicating the benefits of pruning tech-
niques. In practice, it is reasonable to set the sparsity ratio

Beauty Sports

SASRec Hit@10 NDCG@10 Hit@10 NDCG@10

Dropout (0.3) 0.0595 0.0316 0.0358 0.0175
Dropout (0.5) 0.0601 0.0324 0.0361 0.0183
Dropout (0.7) 0.0589 0.0319 0.0353 0.0170

PMAN 0.0645 0.0357 0.0387 0.0201

Table 4: The results of SASRec with different Dropout rates.

Beauty Sports

Hit@10 NDCG@10 Hit@10 NDCG@10

SASRec 0.0601 0.0324 0.0361 0.0183

PMAN (h=1) 0.0645 0.0357 0.0387 0.0201
PMAN (h=2) 0.0647 0.0353 0.0385 0.0204
PMAN (h=4) 0.0643 0.0354 0.0381 0.0181

Table 5: The results of PMAN with different numbers of heads.

within [0.5, 0.7] in our experiments.
Learnable Mask vs. Dropout. Our probabilistic mask in
Eq. (4) is an elegant extension to Binary Dropout [Srivastava
et al., 2014]. Dropout drops neurons randomly, whereas our
probabilistic mask is trainable with the model parameters. We
compare our PMAN with Dropout in Table 4. We observe
that our model consistently performs better than Dropout
across different dropping ratios. Dropout is known to be
susceptible to bias: the fact that attentions can be dropped
randomly does not mean that the model allows them to be
dropped. In contrast, our probabilistic mask would become
close to a deterministic sparse mask as the optimizer goes on.
Thus, a full trained mask would have much lower variance
with better interpretability.
Single Head vs. Multi-head. For Transformer [Vaswani et
al., 2017], it is often useful to use multi-head mechanism,
which applies self-attention operator in h subspaces, where
h denotes the number of heads. Our Eq. (4) can be easily
extended to multi-head attentions by following the similar
procedure as in Transformer (e.g., projecting X in more sub-
spaces.). As shown in Table 5, the performance of single head
roughly achieves the similar results as two heads. Neverthe-
less, the performance slightly drops with four heads, which
may owe to overfitting issue. The appealing feature of our
single-head method allows to greatly enhance computing ef-
ficiency for large-scale datasets.

6 Conclusion
Here we propose a Probabilistic Masked Attention Networks
(PMAN) to filter out irrelevant item-item dependencies to en-
hance the robustness of Transformer-based recommender sys-
tems. We design a probabilistic masked mechanism to spar-
sify the attention distribution, and jointly train the mask with
model parameters. PMAN is compatible with various Trans-
formers, such as SASRec, TiSASRec, and BERT4Rec. Our
experiments demonstrate the effectiveness of the proposed
PMANs on benchmark datasets. Also, our models are able
to provide a certain level of explainability by pruning irrele-
vant items in the sequences.
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