
Beyond Homophily: Robust Graph Anomaly Detection via Neural Sparsification
Zheng Gong1,2∗ , Guifeng Wang3,† , Ying Sun4 , Qi Liu1,2 ,

Yuting Ning1,2 , Hui Xiong4 and Jingyu Peng1,2

1School of Computer Science and Technology, University of Science and Technology of China
2State Key Laboratory of Cognitive Intelligence

3Huawei Technologies Co Ltd
4Hong Kong University of Science and Technology (Guangzhou)

{gz70229, ningyt, jypeng28}@mail.ustc.edu.cn, wangguifeng4@huawei.com,
{yings, xionghui}@ust.hk, qiliuql@ustc.edu.cn

Abstract
Recently, graph-based anomaly detection (GAD)
has attracted rising attention due to its effectiveness
in identifying anomalies in relational and struc-
tured data. Unfortunately, the performance of
most existing GAD methods suffers from the in-
herent structural noises of graphs induced by hid-
den anomalies connected with considerable benign
nodes. In this work, we propose SparseGAD, a
novel GAD framework that sparsifies the struc-
tures of target graphs to effectively reduce noises
and collaboratively learns node representations.
It then robustly detects anomalies by uncovering
the underlying dependency among node pairs in
terms of homophily and heterophily, two essen-
tial connection properties of GAD. Extensive ex-
periments on real-world datasets of GAD demon-
strate that the proposed framework achieves sig-
nificantly better detection quality compared with
the state-of-the-art methods, even when the graph
is heavily attacked. Code will be available at
https://github.com/KellyGong/SparseGAD.git.

1 Introduction
Graph-based Anomaly Detection (GAD) refers to identify-
ing anomalies that deviate significantly from the majority of
objects in relational and structured data. With graph data be-
coming ubiquitous and ever-growing, graph-based anomaly
detection has received increasing attention on account of
its vast applications, such as spammer recognition [Ye and
Akoglu, 2015], financial fraudster identification [Weber et al.,
2019] and sensor fault detection [Gaddam et al., 2020]. Due
to the complex interactions between nodes in real-world sys-
tems (e.g., partnership in a social network or transactions on
a financial platform), detecting anomalies within graph data
becomes more challenging than anomaly detection in non-
interaction feature space (e.g., image).

Most recently, Graph Neural Networks (GNNs) serve as
popular approaches for graph-structure data and are naturally
∗Work done during an internship at Huawei.
†Corresponding Author.

Normal

Abnormal

heterophily link

homophily link

Sparsify

Figure 1: An illustration of our proposed SparseGAD for sparsi-
fying graphs in GAD and detecting anomalies in consideration of
homophily and heterophily connections.

applied in GAD [Dou et al., 2020; Liu et al., 2021]. Driven
by the message passing scheme, standard GNN methods usu-
ally recursively aggregate and transform the representations
of neighbors for each ego node and categorize the abnor-
mal cases. However, many investigations [Dou et al., 2020;
Liu et al., 2020] discover that anomalies tend to camouflage
themselves and mitigate suspiciousness by connecting with
substantial benign entities. Considering a social network as
an instance, where nodes represent users and edges indicate
relationships, fraudsters establish insincere links to real users,
and they can effortlessly inject wrong structure information
into the entire network, which leads to poor performance of
estimating user credibility via the plain GNNs.

To remedy this issue, the existing GAD methods can be
generally divided into three categories. That is, (1) ap-
plying resampling strategy to selectively aggregate neigh-
borhood information by measuring the label similarity of
node pairs [Dou et al., 2020; Liu et al., 2021], (2) design-
ing spectral-based architectures based on adaptive low and
high-passing filters [Chai et al., 2022; Tang et al., 2022],
(3) adding auxiliary loss to strengthen the expressive power
of network [Ding et al., 2019; Zhao et al., 2020].

Although some encouraging progress has been achieved,
the capability of anomaly detectors against noisy graph struc-
tures remains to be further investigated and enhanced, since
the unknowable and ever-changing behaviors of anomalies
hinder anomaly detection and lead to poor robustness [Chang
and Chang, 2014]. A natural and fundamental question arises
here: how to resist structure noises of GAD for detecting
anomalies robustly? As GNNs are fragile when graphs have

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2104

https://github.com/KellyGong/SparseGAD.git

disturbing edges, our work is motivated by the intuition that
sparsifying graph structures by selecting task-relevant edges
not only enhances the detection robustness but also facilitates
discovering essential neighbors, for example, an accomplice
of fraudsters. Furthermore, there are indeed two disparate
and essential connection properties, i.e., homophily and het-
erophily in GAD. Specifically, the connected nodes have sim-
ilar attributes or the same category labels, called homophily,
while the connections between dissimilar nodes in terms of
attributes or labels are referred to as heterophily. In real-life
graphs for anomaly detection, such as Amazon [McAuley and
Leskovec, 2013] and Reddit [Kumar et al., 2019], the con-
nections involving anomalies or benign entities are diverse in
homophily and heterophily. How to sparsify graph structures
and aggregate neighborhood information under such complex
interactions remains to be further explored.

With these in mind, we propose a neural sparsification
framework for GAD (short for SparseGAD). As illustrated
in Figure 1, under the framework, we can effectively op-
timize the sparsification of graphs and collaboratively learn
node representations in consideration of homophily and het-
erophily, which, to the best of our knowledge, has not been
studied before. In practice, our SparseGAD has a three-stage
process for this task. First, we exploit a GNN to infer a novel
adjacency matrix where the value of each entry can represent
the informativeness and properties of neighbors to ego nodes.
Second, we sparsify the graph structure by removing task-
irrelevant edges and discovering the closely related nodes as
neighbors. Third, we share the parameters of GNN in the first
stage, conduct the heterophily-aware aggregation scheme to
represent each node, and categorize suspicious cases. Our
extensive experiments on real-world datasets of GAD demon-
strate the superiority and robustness of SparseGAD.

2 Related Work
Graph Neural Networks (GNNs). GNNs [Kipf and
Welling, 2017; Veličković et al., 2018; Hamilton et al.,
2017] have demonstrated their capacity in various machine
learning tasks built upon graph structure data [Wang et
al., 2018; Wang et al., 2019], such as molecular property
prediction [Zhang et al., 2021], talent acquisition [Sun et
al., 2021] and point of interests retrieval [Huang et al.,
2021]. Some extensively-used GNNs, such as Graph Con-
volution Network (GCN) [Kipf and Welling, 2017] implic-
itly leverage the homophily assumption, resulting in the over-
smooth problem with the increasing depth of GNN layers.
The common philosophy behind non-homophilic (a.k.a het-
erophilic) approaches is to weaken the smooth effect. For
instance, APPNP [Gasteiger et al., 2019] and GCNII [Chen
et al., 2020a] average the GNN-smoothed node representa-
tions with the original linear-transformed node embeddings.
FAGCN [Bo et al., 2021] and GPR-GNN [Chien et al., 2021]
assign learnable weights that can be positive or negative in
the aggregation of neighbors’ representations and layers’ rep-
resentations respectively.

Graph Structure Learning (GSL). GSL methods aim at
rebuilding or refining graph structure to boost GNN perfor-
mance by following a general pipeline: the adjacency ma-

trix of the graph is characterized with learnable parame-
ters and then jointly optimized with GNN under the super-
vision of downstream tasks (e.g., node classification [Luo
et al., 2021]) or self-supervised signal (e.g., reconstruc-
tion error [Fatemi et al., 2021] and contrastive loss [Liu et
al., 2022b]). Due to the discrete inherence of the graph
structure, the key of GSL is how to parameterize the adja-
cency matrix. One type of methods [Fatemi et al., 2021;
Jin et al., 2020] directly treats each element in the adja-
cency matrix as a learnable parameter under the assump-
tion of edge independence, while another type of method se-
lects the top-K similar nodes as the ego node’s new neigh-
bors by computing node-pair similarity [Liu et al., 2022b;
Yu et al., 2020]. Besides, some methods [Jin et al., 2021;
Liu et al., 2023] rebuild the topology of graphs thoroughly
considering the homophily. However, most recent GSL meth-
ods are evaluated in homophilic scenarios, leaving works on
heterophilic applications with abundant structure noise (esp.
anomaly detection) unexplored.

GNN-based Anomaly Detection. Considering the trend
that anomalies, such as financial fraudsters, connect to abun-
dant normal users, which limits the power of conventional
GNN (e.g., GCN) based on the homophilic assumption, vari-
ous techniques are leveraged to alleviate the negative impact.
From the spectral domain, AMNet [Chai et al., 2022] and
BWGNN [Tang et al., 2022] both design multi-pass spectral
filters to discover high-frequency anomalies. To select im-
portant neighbors, CARE-GNN [Dou et al., 2020] and AO-
GNN [Huang et al., 2022] both use a Reinforcement Learn-
ing module by taking the neighbors’ similarity measurements
with ego nodes and AUC performance as rewards, respec-
tively. While PC-GNN [Liu et al., 2021] directly measures
the anomaly probability gap by training an additional MLP
with only the node attributes as input. Nevertheless, few
works investigate the sparsification of the noisy graph struc-
tures in GAD to enhance the robustness of anomaly detection.

3 Preliminary and Problem Statement
In this section, we first introduce the conceptions of ho-
mophily and heterophily. Then we describe the specific def-
inition of our paper objective, i.e., graph-based anomaly de-
tection. After that, we introduce the GNN backbone of our
SparseGAD framework, which can also be replaced by other
advanced GNN architectures.

Homophily versus Heterophily. In homophilic graphs,
connected node pairs tend to have same category labels or
similar attributes. In contrast, the edges link two dissimilar
nodes in the heterophilic graphs. Remarkably, the graphs in
GAD embody homophilic and heterophilic edges together.

Graph-based Anomaly Detection. In this paper, we focus
on attribute graphs for anomaly detection. Specifically, given
an attribute graph G = (V ,A,X) as input, V is the node
set with size n = |V|, and E ⊆ V × V represents the edge
set. We denote the adjacency matrix of G as A ∈ {0, 1}n×n,
where Aij = 1 if node vi connects to node vj , i.e., eij ∈ E
and Aij = 0 otherwise, andN (v) is the neighbor set of node
v. X ∈ Rn×f is the matrix of node attributes where each

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2105

G
N
N

G
N
N Loss

𝝏𝑳

𝝏𝜽
Share Parameters

Graph 𝓖
Sparsified Graph
𝒈′ ~ 𝑸𝝍(𝒈|𝓖,𝓗)

Classification Result 𝒀
Homey Graph

Generator
𝓗 = 𝓕𝝓 𝓖

Homey Message
Passing

𝑸𝜽(𝒀|𝒈
′,𝓗)

Homey Adjacency 𝓗

Homophily

Heterophily

Worthless

Figure 2: The overview architecture of SparseGAD. Homey Graph Generator F with a GNN parameterized by φ creates homey adjacency
matrix H to capture the informativeness (i.e., Assumption 1) and properties (i.e., homophily and heterophily in Assumption 2) of neighbors
based on the unsparsified graph G. The structure of G is then sparsified, and g′ is a sparsified sample drawn from Qψ(g|G,H). The final
anomaly detection results are obtained on the grounds of g′ and H via homey message passing, i.e., Qθ(Y |g′,H). Note that the parameters
of GNN in homey graph generator Fφ are shared with the GNN in homey message passingQθ , and the different grey levels of nodes in graph
G reflect the diverse node attributes.

row vector Xv ∈ Rf is the corresponding attributes of node
v. A part of nodes V ′ ⊆ V has a corresponding binary label
yv ∈ {0, 1}, where 0 represents benign entity and 1 represents
anomaly, while other nodes remain unknown. Considering
notable structure noises arise in the neighbors of anomalies
which harms the performance of GNNs [Dou et al., 2020;
Yang et al., 2020], the task aims at predicting the suspicious-
ness of unlabeled nodes by training an anomaly detector on
the labeled node information along with the sparsified sub-
graph g′ of graph G. The optimized graph topology of g′ is
expected to capture the underlying dependence of two nodes
and thereby facilitate detecting anomalies robustly.
GNN Backbone. Generally speaking, our GNN is a func-
tion fGNN : X,A → {zv}, which maps to the representa-
tions of each node v with node attribute matrix X and adja-
cency matrix A as input. Specifically, we first transform the
node attributes with a linear layer h0

v = W0Xv + b0, where
h0
v,b0 ∈ Rd, W0 ∈ Rd×f , and d is the hidden dimension of

node representations. Then we utilize a GNN with K layers
to aggregate neighbors’ information and derive each node’s
representation. In the k-th layer of GNN, the representation
hkv of node v is derived through:

hkv = σ

((
hk−1v +

∑
u∈N (v)

ckuvh
k−1
u

)
Wk

)
, (1)

where Wk ∈ Rd×d are the learnable parameters, u ∈ N (v)
is the neighbor of node v in the adjacency matrix A, and σ
is the activation function. Please note that the values of ckuv
control the weights of message aggregation from neighbors,
and we will illustrate two settings of ckuv , which play different
roles, in subsection 4.3 and subsection 4.5.

Since the anomalies connect to substantial benign enti-
ties, over-smoothing neighbors’ information limits the power
of our model to detect abnormal nodes. Hence, we adopt
the aggregation mechanism of Personalized PageRank-based
GNN [Gasteiger et al., 2019; Chien et al., 2021] and obtain
the aggregated representation zv of node v:

zv =
∑K

k=0
γkh

k
v , (2)

where γk ∈ R is a learnable parameter, and we initialize the
parameters {γk}Kk=0 as γk = α(1 − α)k for k ∈ [0,K − 1],
γK = (1− α)K with α being a hyperparameter.

4 Method
4.1 Framework Overview
Real-life graphs in anomaly detection usually have com-
plex information in the local neighborhood, where each
node builds diverse relationships with dozens of neigh-
bors [McAuley and Leskovec, 2013; Rayana and Akoglu,
2015]. Moreover, anomalies camouflage themselves by es-
tablishing false connections with substantial benign enti-
ties [Dou et al., 2020; Liu et al., 2020]. Hence, there exist
two essential characteristics of GAD. First, neighbors have
varying degrees of informativeness to estimate the ego node
credibility due to complex relations, such as friendships and
partnerships. We can thereby implement sparsified graph
by selecting task-relevant edges to enhance the robustness
of anomaly detection. Second, the behaviors of anomalies
lead to the widespread heterophily in GAD, and thus dis-
tinguishing between homophilic and heterophilic neighbors
contributes to identifying anomalies based on the message ag-
gregation scheme of GNN.

Accordingly, to characterize the informativeness of neigh-
bors considering homophily and heterophily, we introduce
a learnable adjacency matrix H (hereinafter simplified as
homey for brevity), which can further facilitate reducing
structure noises and aggregating neighborhood information
to robustly detect anomalies. Specifically, assuming we have
a graph G = (V,A,X), we deriveH from G via homey graph
generator F parameterized by φ, a deterministic function as
H = Fφ(G). We incorporate H and formulate the GAD task
from the perspective of statistical learning:

P (Y |G) = P (Y |G,H) ≈
∑
g∈SG

P (Y |g,H)P (g|G,H), (3)

where Y is the prediction target, i.e., anomaly detection, and
SG is a set of sparsified graphs of G. However, it is intractable

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2106

to enumerate all possible g ∈ SG , and thus we approximate
the distributions P (Y |g) and P (g|G,H) by tractable func-
tions [Zheng et al., 2020]:∑
g∈SG

P (Y |g,H)P (g|G,H) ≈
∑
g∈SG

Qθ(Y |g,H)Qψ(g|G,H), (4)

where Qθ and Qψ are approximation functions for P (Y |g)
and P (g|G) parameterized by θ and ψ, respectively. Further-
more, to make the above graph sparsification differentiable,
we apply reparameterization trick [Kool et al., 2020] to gen-
erate the differentiable sample g′ as:∑
g∈SG

Qθ(Y |g,H)Qψ(g|G,H) ∝
∑

g′∼Qψ(g|G,H)

Qθ(Y |g′,H), (5)

where g′ ∼ Qψ(g|G,H) denotes g′ = (V,A′,X) is a sparsi-
fied graph sampled from Qψ(g|G,H).

4.2 Framework Architecture
In this paper, we propose SparseGAD to implement Equa-
tion (5). As shown in Figure 2, SparseGAD consists of three
essential components:

• Homey Graph Generator is a GNN with an MLP trans-
formation that implements H = Fφ(G) to generate the
homey adjacency matrix which captures the informa-
tiveness and properties of neighbors.

• Graph Sparsification is a sampling module that imple-
ments g′ ∼ Qψ(g|G,H) to sample sparsified graph g′.

• Homey Message Passing is a GNN that categorizes sus-
picious cases Qθ(Y |g′,H) with the sparsified graph g′
and homey adjacency matrixH as input.

To enable end-to-end and stable training, we share the GNN
parameters of homey graph generator with homey message
passing and assign different values to ckuv in Equation (1) de-
pending on the goals of each module. In the following sub-
sections, we will demonstrate these components extensively.

4.3 Homey Graph Generator
The goal of homey graph generator is to generate homey ad-
jacency matrix H = Fφ(G) to facilitate sparsifying graph
G to reduce noises and aggregating messages of neighbors
with homophily and heterophily into consideration. Practi-
cally, we first obtain node representations {zv} with node
attribute matrix X and adjacency matrix A of G as the in-
put of GNN illustrated in Section 3. During this process, we
set ckuv = 1/

√
(du + 1) (dv + 1) following GCN [Kipf and

Welling, 2017], where du and dv are the degrees of node u
and v in adjacency matrix A, respectively.

To capture the underlying dependence of node pairs and
help discover the underlying neighbors of anomalies and be-
nign entities, we bring in the versatile homey adjacency ma-
trixH, which accommodates the following assumptions:
Assumption 1. The absolute edge weight |Huv| shall re-
flect the informativeness of neighbor u to ego node v. When
the neighbor u has no impact on node v, the absolute value
|Huv| → 0.
Assumption 2. The value Huv can help distinguish whether
the neighbor u is homophilic or heterophilic.

Since the heterophilic links make up a significant portion
of connections involving anomalies, appropriately capturing
the connection properties contributes to the detection quality.

In practice, we use a two-layer MLP to transform the repre-
sentation zv of Equation (2) as z′v = MLP(zv) and calculate
the cosine similarity of node pairs as the value of each entry
of homey adjacencyH:

Huv =
z′u · z′v
|z′u||z′v|

∈ [−1, 1]. (6)

Based on homey adjacency matrix H, we distinguish neigh-
bor u to ego node v as homophilic, worthless or heterophilic:

Huv → 1, if u is homophilic to v,
Huv → 0, if u is worthless to v,
Huv → −1, if u is heterophilic to v.

(7)

The value of Huv is optimized by the learning objective in
subsection 4.6, not directly supervised by the edge types [Shi
et al., 2022]. Unlike the attention mechanism applied in
GAT [Veličković et al., 2018] constraining the learned edge
weight to be non-negative via a softmax nonlinear function,
cosine similarity allows Huv to zero-centered real values
ranging in [-1, 1]. Note that cosine similarity can be replaced
by other functions. In our experiment results, we find cosine
similarity effective in the majority of datasets. Besides, co-
sine similarity is beneficial from two perspectives. That is,
(1) keeping symmetry, i.e., Huv = Hvu without any other
adjacency post-processor, like (H + HT)/2 in some GSL
works [Fatemi et al., 2021; Liu et al., 2022b], (2) contain-
ing no extra learnable parameters and effortlessly adapting to
our graph sparsification module.

4.4 Graph Sparsification
Due to the camouflage behaviors of anomalies, structure
noises inherently exist in unsparsified graph G. Hence, we
sparsify structures ofG to achieve the following targets. First,
we remove unnecessary neighbors which may inject false in-
formation into the aggregation mechanism of GNN and de-
cline the anomaly detection performance. Second, the closely
related nodes are identified as potential neighbors to obtain
profitable signals from other nodes. Third, we regularize the
adjacency matrix to keep sparsity in the end-to-end training.

As the absolute value of each entry |Huv| captures the in-
formativeness of neighbor u to ego node v, we first filter un-
necessary neighbors of node v with a threshold δ:

N1(v) = {u ∈ V|u ∈ N (v) and |Huv| > δ}. (8)
Meanwhile, we discover the potential neighbors of nodes

based on the H through k-nearest neighbors (kNN). As an
efficient alternative, we suggest sampling k-nearest neigh-
bors via the Gumbel-Top-k trick [Kool et al., 2020; Kazi
et al., 2022]. The sampling strategy can be viewed as a
stochastic relaxation of kNN. Specifically, the probability of
sampling each node u /∈ N (v) is normalized by puv =
|Huv|/

∑
w/∈N (v) |Hwv| to follow the categorical distribu-

tion [Kool et al., 2020]. Then we select the nodes with top-k
αuv values as new neighbors N2(v):

αuv = log(puv)− log(− log(ε)),

N2(v) = {u ∈V|u /∈ N (v) and αuv ∈ top-k(α∗v)},
(9)

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2107

where ε is drawn from Uniform(0, 1) independently for each
node u, and top-k(α∗v) is the set of top-k values in the col-
umn vector α∗v . In this paper, we implement kNN on the
whole graph. While for large graphs, one can approximate it
using locality-sensitive hashing approaches [Halcrow et al.,
2020] and reduce the time complexity of kNN from O

(
n2
)

to O (sn(B + log n)), where s is the number of hashes per
node, and B is the size of buckets. In our work, we resort
to brute-force algorithm [Li and Amenta, 2015] to reduce the
space complexity of kNN fromO

(
n2
)

toO (nk) and thereby
accelerate kNN on GPU devices.

We obtain the neighbors N ′(v) of node v in the sparsi-
fied graph g′ by assembling the filtered neighbors N1(v) and
the kNN neighbors N2(v) as N ′(v) = N1(v) ∪ N2(v). Ac-
cordingly, the each entry A′uv of sparsified adjacency matrix
A′ ∈ {0, 1}n×n equals to 1 when u ∈ N ′(v).

Moreover, we regularize the homey adjacency matrix H
to sparsify the graph G. A direct way to solve sparsifica-
tion is minimizing the `1-norm [Chen et al., 2020b] and
nuclear-norm [Koltchinskii et al., 2011] of the adjacency
matrix. However, some investigations [Jin et al., 2020;
Zhu et al., 2021] indicate that non-differentiable `1-norm
and nuclear-norm optimize the adjacency matrix even more
challenging in the end-to-end training and need unique op-
timization algorithms, such as Forward-Backward splitting
method [Combettes and Pesquet, 2011]. Besides, these meth-
ods optimize the adjacency directly, and thereby they are in-
trinsically transductive and cannot adapt to graphs with un-
seen nodes [Zhu et al., 2021].

To address these issues, we develop a GAD-oriented reg-
ularization for sparsifying graph G. Since excessive sparsifi-
cation of the adjacency matrix may lead to sub-optimal clas-
sification results, inspired by Gumbel-Softmax [Jang et al.,
2017], we derive the sparsification normalization Lr to en-
courage the absolute value |Huv| of each entry where edge
(u, v) in the unsparsified G to approximate 1 or 0 via entropy:

Lr = −
∑
Auv=1

(ωuv logωuv + (1− ωuv) log(1− ωuv)/τ), (10)

where ωuv = max(δ,min(|Huv|, 1 − δ)), and τ ≥ 0 is a
hyperparameter to control the expectation sparsity ofH. The
smaller τ means entry values of H below a higher threshold
are desirably optimized to 0. In other words, smaller τ means
more sparsed g′. We truncate the gradient of |Huv| via δ in
Equation (8) to reduce the computational cost of the edges
with the highest probability to be removed or reserved.

4.5 Homey Message Passing
After we obtain the sparsified graph g′, we categorize the sus-
picious nodes through a GNN. Note that we share the param-
eters of GNN with the inference in subsection 4.3. The ma-
jority of GSL methods [Liu et al., 2021; Fatemi et al., 2021;
Liu et al., 2022b] focus on learning graph structure and clas-
sifying nodes via different architectures, which may cause ex-
tra overhead on space and lead to an unstable training process
due to the different scales of parameters.

Moreover, we incorporate the homey adjacency matrix H
in the message passing procedure of GNN due to the follow-
ing reasons. First, a substantial of edges in GAD assist in

concealing anomalies, and we shall control the message pass-
ing on this part of edges. Since absolute edge weight |Huv|
reveals the informativeness of neighbor u to ego node v, we
control the message flows from neighbors with |Huv| as a
message gate. Second, the neighbors of anomalies mostly
are not homophilic in terms of attributes, even some other
anomalies, since the behaviors of anomalies are most proba-
bly diverse and unpredictable. Hence, we take into account
homophily and heterophily in the process of message passing
via homey adjacency matrixH.

Specifically, we obtain the final node representations {ẑv}
by applying the GNN described in section 3 with the spar-
sified g′ as input. We set the value ckuv in Equation (1) as:

ckuv = Huv/
√
(d′u + 1) (d′v + 1), (11)

where d′u and d′v are the degree of node u and v in adja-
cency matrix A′ of sparsified graph g′, respectively. Intu-
itively, from the perspective of the spectral GNNs, positive
values of Huv are equivalent to low-pass filters, whereas the
negative values of Huv indeed facilitate the filtering beyond
low-frequency [Yang et al., 2021; Chien et al., 2021]. In this
vein, we can detect anomalies in both low and high frequency
with the aid of flexibleHuv .

4.6 Learning Objective
Our training objective includes two parts. First, we classify
the final representations {ẑv} of nodes into two categories,
i.e., benign or abnormal, via a linear transformation:

ŷv = sigmoid(ẑvW + b), (12)

where W ∈ Rd×1, b ∈ R, and ŷv ∈ (0, 1) denotes the proba-
bility of node v belonging to anomalies. The node classifica-
tion loss is derived from cross-entropy loss:

Lc =
∑

v∈V′
yv log ŷv + (1− yv) log(1− ŷv). (13)

The second objective is the sparsification regularization Lr
derived from Equation (10). The final learning objective of
our model is L = Lc + λLr, where λ is a hyperparameter
controlling the relative importance of the node classification
loss Lc and sparsification normalization Lr.

5 Evaluation
5.1 Experimental Setup
Dataset. We conduct extensive experiments to evaluate
SparseGAD on three real-world anomaly detection datasets:

Dataset Amazon YelpChi Reddit

Nodes 11,944 45,954 10,984
Features 25 32 64
Avg. Degree 800.2 175.2 15.3
Anomaly(%) 9.5 14.5 3.3
HEdge 0.95 0.77 0.95
(HNormal, HAnomaly) (0.97, 0.10) (0.87, 0.20) (0.99, 0.00)

Table 1: The statistics of the real-world datasets.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2108

Method
Dataset YelpChi (1%) Amazon (1%) YelpChi (40%) Amazon (40%) Reddit (40%)

Average Precision↑ AUC-ROC↑

GCN 17.35±2.6 53.99±2.9 29.15±7.4 76.11±7.5 19.06±2.4 57.78±1.0 31.26±2.9 80.63±1.2 3.52±0.2 52.34±1.8

GAT 17.14±2.4 53.45±3.1 30.55±6.3 78.45±1.6 21.42±2.2 58.61±1.2 73.69±1.0 91.70±0.5 5.74±0.9 65.79±1.6

GraphSage 36.75±2.8 74.27±1.8 34.27±1.6 82.07±0.9 46.24±2.3 79.60±1.3 64.17±1.6 86.29±0.4 4.95±1.1 61.81±7.1

GIN 22.40±3.9 62.87±4.6 35.09±1.3 82.72±0.5 26.23±2.0 65.20±0.9 45.42±1.2 85.74±1.1 4.20±0.3 57.64±1.2

GPRGNN 34.41±1.8 73.96±0.9 79.95±3.9 89.82±3.0 40.18±0.7 76.95±0.4 82.82±0.8 93.37±0.2 4.72±1.5 57.53±7.1

Neural Sparse 30.03±9.0 67.37±8.4 74.32±7.7 86.42±2.4 34.24±2.1 73.56±1.2 82.87±1.4 92.08±2.1 5.19±0.4 62.73±1.7

IDGL 32.81±4.1 70.51±2.5 78.10±4.0 88.59±2.7 38.82±2.6 78.03±1.3 85.30±2.3 93.51±1.5 5.30±0.3 62.95±1.6

SLAPS OOM OOM 75.87±5.2 87.98±3.4 OOM OOM 84.68±2.1 93.28±0.8 5.49±0.6 63.24±2.5

CARE-GNN 35.30±3.9 74.80±3.2 74.35±5.9 88.67±2.7 38.90±1.1 78.41±1.5 70.46±1.1 90.86±0.8 N/A N/A
PC-GNN 23.39±1.8 72.93±2.4 79.94±6.0 89.07±1.5 32.77±0.6 80.61±0.7 80.05±1.7 95.75±0.5 N/A N/A
AMNet 35.15±1.7 73.69±1.3 72.86±5.0 87.53±1.8 57.77±0.9 85.85±1.1 83.72±1.2 94.18±0.4 5.69±0.8 57.69±2.7

BW-GNN 36.17±2.3 76.29±1.5 71.26±3.5 86.71±1.3 62.88±1.2 87.20±0.8 90.85±1.3 97.95±0.3 5.65±0.9 61.61±2.4

SparseGAD (GCN) 35.82±2.8 75.36±1.8 77.82±3.6 89.02±2.1 53.36±1.8 82.41±1.3 86.40±2.0 95.83±0.6 5.42±0.2 63.17±1.2

SparseGAD-s 38.52±2.1 77.64±1.9 80.29±2.7 91.28±1.6 63.77±1.6 87.80±0.8 89.65±1.3 97.21±0.2 5.47±0.4 64.05±1.2

SparseGAD-h 35.10±2.5 73.57±1.6 78.24±1.5 89.28±0.7 51.49±1.3 81.63±1.0 78.28±1.8 95.42±0.3 5.33±0.2 63.28±1.3

SparseGAD 40.77±1.8 78.73±1.7 81.40±1.9 93.67±0.9 65.82±0.9 88.54±0.5 89.17±1.6 97.03±0.3 5.98±0.5 66.12±1.6

Table 2: Anomaly detection performance of popular baselines and SparseGAD on the real-world datasets with 1% and 40% training ratios.
“OOM” represents the detector is out of memory on the dataset, and “N/A” denotes the detector is not applicable to the dataset.

• Amazon [McAuley and Leskovec, 2013] collects the
product reviews of the Musical Instrument category on
Amazon.com, in which nodes are benign/fraud users.

• YelpChi [Rayana and Akoglu, 2015] includes the hotel
and restaurant reviews filtered (spam) as anomalies and
recommended (legitimate) as normal nodes by Yelp.

• Reddit [Kumar et al., 2019] consists of user posts on
one month collection of subreddits. The ground-truth
labels of banned users are obtained from Reddit.

We process the connections of node pairs in Amazon and
YelpChi following [Dou et al., 2020], and Reddit is loaded
from PyGod package [Liu et al., 2022a]. The performance of
our method is conducted on homogeneous settings, i.e., with-
out the category information of edges, and we leave the adap-
tion of SparseGAD for multiple node types and edge types of
heterogeneous graphs in our future works.

The statistics of these datasets are shown in Table 1. We
further show the edge homophily [Zhu et al., 2020] and node
homophily [Pei et al., 2020] of normal nodes and anomalies
for each dataset. The edge homophilyHEdge is the proportion
of edges that link two nodes of the same classes:

HEdge =
|{euv ∈ E : yu = yv}|

|E|
, (14)

while the node homophily of class C is calculated as:

HC =
1

|VC |
∑

v∈VC

|{u ∈ N (v) : yu = yv}|
|N (v)|

, (15)

where C includes normal nodes and anomalies. We discover
that the anomaly homophily HAnomaly of the datasets in Ta-
ble 1 are all significantly lower than normal nodes HNormal,
which indicates that heterophilic links are the major part of
connections involving anomalies.

Metrics. Following previous works in GAD [Dou et al.,
2020; Chai et al., 2022], we evaluate the detection perfor-
mance with two widely-used and complementary metrics: (1)
AUC-ROC reflects the detectors’ effectiveness on both nor-
mal and abnormal nodes, while (2) Average Precision (AP)
focuses more on the anomalies.

Baselines. To verify the effectiveness of our SparseGAD,
we compare it with three types of baselines. (1) General
GNNs, which consist of GCN [Kipf and Welling, 2017],
GAT [Veličković et al., 2018], GraphSage [Hamilton et al.,
2017], GIN [Xu et al., 2019] and GPRGNN [Chien et al.,
2021]. (2) Graph Structure Learning methods, such as Neu-
ral Sparse [Zheng et al., 2020], IDGL [Chen et al., 2020b]
and SLAPS [Fatemi et al., 2021]. (3) GNN-based anomaly
detectors, including CARE-GNN [Dou et al., 2020], PC-
GNN [Liu et al., 2021], AMNET [Chai et al., 2022] and BW-
GNN [Tang et al., 2022].

In addition to representative baselines, we also include
two variants of SparseGAD to validate the effectiveness of
modules: (1) SparseGAD (GCN) utilize Graph Convolu-
tion Network [Kipf and Welling, 2017] as the backbone.
(2) SparseGAD-s, which removes the sparsification module
(or keep g′ = G and λ = 0). (3) SparseGAD-h ignores het-
erophily exists in GAD by settingHuv = sigmoid(z′u · z′v).
Experiment Settings. For each experiment, we train all
models for 2000 epochs by Adam optimizer. We optimize all
models on each dataset by selecting learning rate from {0.01,
0.005, 0.001}, hidden states from {16, 32, 64} and dropout
rate from {0, 0.1, 0.2} via grid search, and save the model
according to the best AUC in validation. As for SparseGAD,
α of Equation (2) and λ are both set to 0.1, and δ is set to 0.05
for all datasets. For each dataset, we search k of kNN from
{5, 10, 20} and τ from {0.5, 1.0, 2.0}. We select 40% nodes

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2109

Perturbation Rate (%)

Te
st

 A
U

C

Perturbation Rate (%)

Te
st

 A
U

C

BW-GNN AMNET GraphSage GPRGNN GAT SparseGAD

(a) YelpChi (b) Amazon

Figure 3: Detection AUC of different models under random attack.

for training models in supervised scenarios and 1% in semi-
supervised scenarios. The remaining nodes are split by 1:2
for validation and testing. We report the average value and
standard deviation of ten independent runs for each dataset.
As for the detailed experiment settings, please refer to our
code https://github.com/KellyGong/SparseGAD.git.

5.2 Detection Performance
The anomaly detection results of baselines and SparseGAD
are reported in Table 2. Overall, SparseGAD achieves the
best detection quality in all datasets except Amazon (40%),
where BW-GNN obtains the best AUC and AP scores. Under
the semi-supervised scenarios (i.e., YelpChi (1%) and Ama-
zon (1%)), SparseGAD outperforms baselines by a large mar-
gin. For instance, in YelpChi (1%), which includes only 67
labeled anomalies, SparseGAD has 4.6% and 2.4% absolute
improvements in AP and AUC score compared to BW-GNN,
which illustrates the superiority of SparseGAD with low-
resource anomaly labels. Moreover, the strong heterophily
of anomalies (i.e., HAnomaly = 0) in Reddit leads to the
worse performance of advanced graph-based anomaly detec-
tors compared to GAT. By contrast, SparseGAD has consis-
tent improvements in this dataset, proving both the scalability
and superiority of our framework.

5.3 Robustness Performance
To compare the robustness of SparseGAD against structure
noises with other detectors, we evaluate the detection perfor-
mance under two types of attacks. i). Random Attack [Jin
et al., 2020] injects fake edges into the graph, which can be
viewed as adding random structure noises to the clean graphs.
ii). DICE [Zügner and Günnemann, 2019] aims at fooling
GNNs by removing edges between nodes from the same class
and inserting edges between nodes from the different classes.

We first poison the graph structure with these two attack
methods and then train each model on the poisoned graphs
and evaluate the anomaly detection results. We reserve 40%
nodes for training models and report the mean AUC of ten
independent runs on the test set for each model.
Against Random Attack. In this experiment, we evaluate
how SparseGAD behaves under different ratios of random
structure noises from 0% to 100% and report the results in
Figure 3. Figure 3 shows that the performance of GAT and
GraphSage drops significantly with increasing ratios of the
random attack, and the performance of AMNET and BW-
GNN decline noticeably when the random attack to some

Perturbation Rate (%)

Te
st

 A
U

C

Perturbation Rate (%)

Te
st

 A
U

C

BW-GNN AMNET GraphSage GPRGNN GAT SparseGAD

(a) YelpChi (b) Amazon

Figure 4: Detection AUC of different models under DICE attack.

(a) (b)

Normal

Abnormal

Figure 5: (a) The homey edge weight Huv KDE density of attack
edges and raw edges under DICE attack in YelpChi. (b) Huv distri-
bution across three different connections of node pairs.

extent. We discover that SparseGAD successfully defends
against the random attack and consistently outperforms base-
lines in most cases.
Against DICE Attack. Since heterophilic links inher-
ently exist in graphs of anomaly detection, we study how
SparseGAD performs under different ratios of heterophily
links. In practice, we select the anomalies in the test set as
target nodes to attack, and the perturbation number of each
node is calculated as max(10, degree) × ratio. We vary the
ratio of perturbations on every target node with a step size of
20% to remove the existing links and add an equal number of
heterophilic links. AUC values of SparseGAD and baselines
on target nodes are reported in Figure 4. We discover that
when the perturbation ratio increases, GAT and GraphSage
perform worse than other models, whereas our SparseGAD is
better than baselines on the attacked target nodes for the most
part, demonstrating that SparseGAD can resist DICE attack.

5.4 Ablation Study
To validate the effectiveness of SparseGAD framework,
we also investigate the anomaly detection performance of
SparseGAD with Graph Convolution Network as the back-
bone, i.e., SparseGAD (GCN) and compare it with other
GSL works. As shown in Table 2, we discover that
SparseGAD (GCN) outperforms other GSL approaches in
most case, which illustrates the superiority and extensibility
of our framework in the GAD task. Besides, to better under-
stand how homey adjacency matrixH and sparsification mod-
ule help SparseGAD detect anomalies, we conduct ablation
studies and compare SparseGAD with other two variants, i.e.,
SparseGAD-h and SparseGAD-s. As for SparseGAD-h, we
only consider the informativeness of neighbors to ego nodes
without heterophily via sigmoid activation instead of cosine

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2110

https://github.com/KellyGong/SparseGAD.git

similarity. As shown in Table 2, we find that SparseGAD
achieves coherent improvements in all datasets compared to
SparseGAD-h, which suggests that heterophily-aware aggre-
gation is vital in GAD. Besides, in SparseGAD-s, we di-
rectly use the raw graph structure without sparsification in
the homey message passing. In Table 2, we discover that
SparseGAD outperforms SparseGAD-s in most cases, which
indicates that the structure noises exists in the graphs of
anomaly detection, and selecting the task-relevant edges con-
tributes to more reliable results.

5.5 Parameter Analysis
Before this, we illustrated the effectiveness and robustness of
SparseGAD. In this subsection, we attempt to understand the
sparsified graph and homey adjacency matrixH we learned.
Importance of Graph Sparsification. Based on the fact
that anomalies tend to connect with plenty of benign enti-
ties, if the framework is able to learn a denoised graph struc-
ture, the influence of the attack edges shall be eliminated from
the poisoned graph. Hence, we investigate the homey edge
weight Huv of attack edges and raw edges in YelpChi under
DICE attack with a 20% perturbation ratio. In Figure 5(a),
Huv of attack edges are much smaller than raw edges in the
graph and are mainly around 0. The sparsification module
will remove most attack edges via threshold δ, which proves
that SparseGAD is capable to mitigate the effect of attack
edges and learn robust parameters of GNN.
Importance of Homey Adjacency matrix. As heterophilic
and homophilic connections exist in GAD, if the framework
can detect anomalies precisely, the relationships between dif-
ferent neighbors and ego nodes shall be recognized distinctly.
Accordingly, we study whether Huv can distinguish the con-
nection properties. In Figure 5(b), we visualize Huv distri-
butions of raw edges across pairs of normal entities, pairs of
anomalies, and intersections of anomalies and normal entities
in YelpChi (40%). We observe that Huv among the intersec-
tions of anomalies and normal entities are much smaller and
more diverse than the other connections between the same
types of nodes, which proves that SparseGAD can distinguish
the complex relationships of node pairs and thereby facilitate
aggregating message from neighbors.

6 Conclusion and Future Work
In this paper, we introduced SparseGAD, a neural sparsifi-
cation framework for Graph-based Anomaly Detection. Un-
der this framework, we can capture the heterophilic and ho-
mophilic reliance of nodes to sparsify graph structure and
learn distinguishable node representations for anomalies col-
laboratively. Our experiments show that our framework out-
performs the state-of-the-art baselines in most cases, espe-
cially when the structure of graphs is heavily perturbed.

Considering some applications [Wang et al., 2021] of
anomaly detection in real-world graphs are accompanied by
multiple types of nodes and edges, we would like to inves-
tigate how to sparsify graph structure to facilitate detecting
anomalies on such heterogeneous graphs in our future works.
Besides, some graph compression methods, e.g., [Yin et al.,
2022] shed light on how to accelerate graph samplings with

GPUs and reduce the graph size for the explosive growth of
nodes in large-scale graphs of anomaly detection. We could
like to further improve the detection speed with the aid of
such techniques.

References
[Bo et al., 2021] Deyu Bo, Xiao Wang, Chuan Shi, and

Huawei Shen. Beyond low-frequency information in graph
convolutional networks. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages 3950–
3957, 2021.

[Chai et al., 2022] Ziwei Chai, Siqi You, Yang Yang, Shil-
iang Pu, Jiarong Xu, Haoyang Cai, and Weihao Jiang. Can
abnormality be detected by graph neural networks? In
Proceedings of the 31st International Joint Conference on
Artificial Intelligence (IJCAI), 2022.

[Chang and Chang, 2014] Jau-Shien Chang and Wen-Hsi
Chang. Analysis of fraudulent behavior strategies in online
auctions for detecting latent fraudsters. Electronic Com-
merce Research and Applications, 13(2):79–97, 2014.

[Chen et al., 2020a] Ming Chen, Zhewei Wei, Zengfeng
Huang, Bolin Ding, and Yaliang Li. Simple and deep
graph convolutional networks. In International Confer-
ence on Machine Learning, pages 1725–1735. PMLR,
2020.

[Chen et al., 2020b] Yu Chen, Lingfei Wu, and Mohammed
Zaki. Iterative deep graph learning for graph neural net-
works: Better and robust node embeddings. Advances in
neural information processing systems, 33:19314–19326,
2020.

[Chien et al., 2021] Eli Chien, Jianhao Peng, Pan Li, and Ol-
gica Milenkovic. Adaptive universal generalized pager-
ank graph neural network. In International Conference on
Learning Representations, 2021.

[Combettes and Pesquet, 2011] Patrick L Combettes and
Jean-Christophe Pesquet. Proximal splitting methods in
signal processing. In Fixed-point algorithms for inverse
problems in science and engineering, pages 185–212.
Springer, 2011.

[Ding et al., 2019] Kaize Ding, Jundong Li, Rohit
Bhanushali, and Huan Liu. Deep anomaly detection
on attributed networks. In Proceedings of the 2019
SIAM International Conference on Data Mining, pages
594–602. SIAM, 2019.

[Dou et al., 2020] Yingtong Dou, Zhiwei Liu, Li Sun, Yu-
tong Deng, Hao Peng, and Philip S Yu. Enhancing graph
neural network-based fraud detectors against camouflaged
fraudsters. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management,
pages 315–324, 2020.

[Fatemi et al., 2021] Bahare Fatemi, Layla El Asri, and
Seyed Mehran Kazemi. Slaps: Self-supervision improves
structure learning for graph neural networks. Advances in
Neural Information Processing Systems, 34:22667–22681,
2021.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2111

[Gaddam et al., 2020] Anuroop Gaddam, Tim Wilkin, Maia
Angelova, and Jyotheesh Gaddam. Detecting sensor faults,
anomalies and outliers in the internet of things: A sur-
vey on the challenges and solutions. Electronics, 9(3):511,
2020.

[Gasteiger et al., 2019] Johannes Gasteiger, Aleksandar Bo-
jchevski, and Stephan Günnemann. Predict then propa-
gate: Graph neural networks meet personalized pagerank.
In International Conference on Learning Representations,
2019.

[Halcrow et al., 2020] Jonathan Halcrow, Alexandru Mosoi,
Sam Ruth, and Bryan Perozzi. Grale: Designing net-
works for graph learning. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discov-
ery & Data Mining, pages 2523–2532, 2020.

[Hamilton et al., 2017] Will Hamilton, Zhitao Ying, and Jure
Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing sys-
tems, 30, 2017.

[Huang et al., 2021] Jizhou Huang, Haifeng Wang, Yibo
Sun, Miao Fan, Zhengjie Huang, Chunyuan Yuan, and
Yawen Li. Hgamn: Heterogeneous graph attention match-
ing network for multilingual poi retrieval at baidu maps.
In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pages 3032–3040,
2021.

[Huang et al., 2022] Mengda Huang, Yang Liu, Xiang Ao,
Kuan Li, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing
He. Auc-oriented graph neural network for fraud detec-
tion. In Proceedings of the ACM Web Conference 2022,
pages 1311–1321, 2022.

[Jang et al., 2017] Eric Jang, Shixiang Gu, and Ben Poole.
Categorical reparameterization with gumbel-softmax. In
5th International Conference on Learning Representa-
tions, ICLR 2017, 2017.

[Jin et al., 2020] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng
Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. In Proceedings
of the 26th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 66–74, 2020.

[Jin et al., 2021] Di Jin, Zhizhi Yu, Cuiying Huo, Rui Wang,
Xiao Wang, Dongxiao He, and Jiawei Han. Universal
graph convolutional networks. Advances in Neural Infor-
mation Processing Systems, 34:10654–10664, 2021.

[Kazi et al., 2022] Anees Kazi, Luca Cosmo, Seyed-Ahmad
Ahmadi, Nassir Navab, and Michael Bronstein. Differ-
entiable graph module (dgm) for graph convolutional net-
works. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2022.

[Kipf and Welling, 2017] Thomas N. Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Rep-
resentations (ICLR), 2017.

[Koltchinskii et al., 2011] Vladimir Koltchinskii, Karim
Lounici, and Alexandre B Tsybakov. Nuclear-norm

penalization and optimal rates for noisy low-rank matrix
completion. The Annals of Statistics, 39(5):2302–2329,
2011.

[Kool et al., 2020] Wouter Kool, Herke van Hoof, and Max
Welling. Estimating gradients for discrete random vari-
ables by sampling without replacement. In International
Conference on Learning Representations, 2020.

[Kumar et al., 2019] Srijan Kumar, Xikun Zhang, and Jure
Leskovec. Predicting dynamic embedding trajectory in
temporal interaction networks. In Proceedings of the
25th ACM SIGKDD international conference on knowl-
edge discovery & data mining, pages 1269–1278, 2019.

[Li and Amenta, 2015] Shengren Li and Nina Amenta.
Brute-force k-nearest neighbors search on the gpu. In Sim-
ilarity Search and Applications: 8th International Confer-
ence, SISAP 2015, Glasgow, UK, October 12-14, 2015,
Proceedings 8, pages 259–270. Springer, 2015.

[Liu et al., 2020] Zhiwei Liu, Yingtong Dou, Philip S Yu,
Yutong Deng, and Hao Peng. Alleviating the inconsis-
tency problem of applying graph neural network to fraud
detection. In Proceedings of the 43rd international ACM
SIGIR conference on research and development in infor-
mation retrieval, pages 1569–1572, 2020.

[Liu et al., 2021] Yang Liu, Xiang Ao, Zidi Qin, Jianfeng
Chi, Jinghua Feng, Hao Yang, and Qing He. Pick and
choose: a gnn-based imbalanced learning approach for
fraud detection. In Proceedings of the Web Conference
2021, pages 3168–3177, 2021.

[Liu et al., 2022a] Kay Liu, Yingtong Dou, Yue Zhao, Xuey-
ing Ding, Xiyang Hu, Ruitong Zhang, Kaize Ding, Canyu
Chen, Hao Peng, Kai Shu, George H. Chen, Zhihao Jia,
and Philip S. Yu. Pygod: A python library for graph out-
lier detection. arXiv preprint arXiv:2204.12095, 2022.

[Liu et al., 2022b] Yixin Liu, Yu Zheng, Daokun Zhang,
Hongxu Chen, Hao Peng, and Shirui Pan. Towards unsu-
pervised deep graph structure learning. In Proceedings of
the ACM Web Conference 2022, pages 1392–1403, 2022.

[Liu et al., 2023] Yixin Liu, Yizhen Zheng, Daokun Zhang,
Vincent Lee, and Shirui Pan. Beyond smoothing: Un-
supervised graph representation learning with edge het-
erophily discriminating. In AAAI, 2023.

[Luo et al., 2021] Dongsheng Luo, Wei Cheng, Wenchao
Yu, Bo Zong, Jingchao Ni, Haifeng Chen, and Xiang
Zhang. Learning to drop: Robust graph neural network
via topological denoising. In Proceedings of the 14th ACM
international conference on web search and data mining,
pages 779–787, 2021.

[McAuley and Leskovec, 2013] Julian McAuley and Jure
Leskovec. From amateurs to connoisseurs: Modeling the
evolution of user expertise through online reviews. the web
conference, 2013.

[Pei et al., 2020] Hongbin Pei, Bingzhe Wei, Kevin Chen-
Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geomet-
ric graph convolutional networks. In International Confer-
ence on Learning Representations, 2020.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2112

[Rayana and Akoglu, 2015] Shebuti Rayana and Leman
Akoglu. Collective opinion spam detection: Bridging re-
view networks and metadata. knowledge discovery and
data mining, 2015.

[Shi et al., 2022] Fengzhao Shi, Yanan Cao, Yanmin Shang,
Yuchen Zhou, Chuan Zhou, and Jia Wu. H2-fdetector: A
gnn-based fraud detector with homophilic and heterophilic
connections. In Proceedings of the ACM Web Conference
2022, pages 1486–1494, 2022.

[Sun et al., 2021] Ying Sun, Fuzhen Zhuang, Hengshu Zhu,
Qi Zhang, Qing He, and Hui Xiong. Market-oriented job
skill valuation with cooperative composition neural net-
work. Nature communications, 12(1):1992, 2021.

[Tang et al., 2022] Jianheng Tang, Jiajin Li, Ziqi Gao, and
Jia Li. Rethinking graph neural networks for anomaly de-
tection. In International Conference on Machine Learn-
ing, 2022.

[Veličković et al., 2018] Petar Veličković, Guillem Cucurull,
Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph Attention Networks. International
Conference on Learning Representations, 2018.

[Wang et al., 2018] Hao Wang, Enhong Chen, Qi Liu, Tong
Xu, Dongfang Du, Wen Su, and Xiaopeng Zhang. A united
approach to learning sparse attributed network embedding.
In 2018 IEEE International Conference on Data Mining
(ICDM), pages 557–566. IEEE, 2018.

[Wang et al., 2019] Hao Wang, Tong Xu, Qi Liu, Defu Lian,
Enhong Chen, Dongfang Du, Han Wu, and Wen Su. Mcne:
An end-to-end framework for learning multiple condi-
tional network representations of social network. In Pro-
ceedings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, pages
1064–1072, 2019.

[Wang et al., 2021] Li Wang, Peipei Li, Kai Xiong, Jiashu
Zhao, and Rui Lin. Modeling heterogeneous graph net-
work on fraud detection: A community-based framework
with attention mechanism. In Proceedings of the 30th
ACM International Conference on Information & Knowl-
edge Management, pages 1959–1968, 2021.

[Weber et al., 2019] Mark Weber, Giacomo Domeniconi, Jie
Chen, Daniel Karl I Weidele, Claudio Bellei, Tom Robin-
son, and Charles E Leiserson. Anti-money laundering in
bitcoin: Experimenting with graph convolutional networks
for financial forensics. arXiv preprint arXiv:1908.02591,
2019.

[Xu et al., 2019] Keyulu Xu, Weihua Hu, Jure Leskovec, and
Stefanie Jegelka. How powerful are graph neural net-
works? In International Conference on Learning Rep-
resentations, 2019.

[Yang et al., 2020] Xiaoyu Yang, Yuefei Lyu, Tian Tian,
Yifei Liu, Yudong Liu, and Xi Zhang. Rumor detection
on social media with graph structured adversarial learn-
ing. international joint conference on artificial intelli-
gence, 2020.

[Yang et al., 2021] Liang Yang, Mengzhe Li, Liyang Liu,
bingxin niu, Chuan Wang, Xiaochun Cao, and Yuanfang
Guo. Diverse message passing for attribute with het-
erophily. neural information processing systems, 2021.

[Ye and Akoglu, 2015] Junting Ye and Leman Akoglu. Dis-
covering opinion spammer groups by network footprints.
In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 267–282.
Springer, 2015.

[Yin et al., 2022] Hongbo Yin, Yingxia Shao, Xupeng Miao,
Yawen Li, and Bin Cui. Scalable graph sampling on gpus
with compressed graph. In Proceedings of the 31st ACM
International Conference on Information & Knowledge
Management, pages 2383–2392, 2022.

[Yu et al., 2020] Donghan Yu, Ruohong Zhang, Zhengbao
Jiang, Yuexin Wu, and Yiming Yang. Graph-revised con-
volutional network. In Joint European conference on
machine learning and knowledge discovery in databases,
pages 378–393. Springer, 2020.

[Zhang et al., 2021] Zaixi Zhang, Qi Liu, Hao Wang,
Chengqiang Lu, and Chee-Kong Lee. Motif-based graph
self-supervised learning for molecular property predic-
tion. Advances in Neural Information Processing Systems,
34:15870–15882, 2021.

[Zhao et al., 2020] Tong Zhao, Chuchen Deng, Kaifeng Yu,
Tianwen Jiang, Daheng Wang, and Meng Jiang. Error-
bounded graph anomaly loss for gnns. In Proceedings of
the 29th ACM International Conference on Information &
Knowledge Management, pages 1873–1882, 2020.

[Zheng et al., 2020] Cheng Zheng, Bo Zong, Wei Cheng,
Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng Chen,
and Wei Wang. Robust graph representation learning via
neural sparsification. In International Conference on Ma-
chine Learning, pages 11458–11468. PMLR, 2020.

[Zhu et al., 2020] Jiong Zhu, Yujun Yan, Lingxiao Zhao,
Mark Heimann, Leman Akoglu, and Danai Koutra. Be-
yond homophily in graph neural networks: Current limita-
tions and effective designs. Advances in Neural Informa-
tion Processing Systems, 33:7793–7804, 2020.

[Zhu et al., 2021] Yanqiao Zhu, Weizhi Xu, Jinghao Zhang,
Qiang Liu, Shu Wu, and Liang Wang. Deep graph struc-
ture learning for robust representations: A survey. arXiv
preprint arXiv:2103.03036, 2021.

[Zügner and Günnemann, 2019] Daniel Zügner and Stephan
Günnemann. Adversarial attacks on graph neural networks
via meta learning. In International Conference on Learn-
ing Representations, 2019.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2113

	Introduction
	Related Work
	Preliminary and Problem Statement
	Method
	Framework Overview
	Framework Architecture
	Homey Graph Generator
	Graph Sparsification
	Homey Message Passing
	Learning Objective

	Evaluation
	Experimental Setup
	Detection Performance
	Robustness Performance
	Ablation Study
	Parameter Analysis

	Conclusion and Future Work

