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Abstract

The computation of minimal rare itemsets is a well-
known task in data mining, with numerous applica-
tions, e.g., drugs effects analysis and network secu-
rity, among others. This paper presents a novel ap-
proach to the computation of minimal rare itemsets.
First, we introduce a generalization of the tradi-
tional minimal rare itemset model called k-minimal
rare itemset. A k-minimal rare itemset is defined as
an itemset that becomes frequent or rare based on
the removal of at least k or at most (k − 1) items
from it. We claim that our work is the first to pro-
pose this generalization in the field of data mining.
We then present a SAT-based framework for effi-
ciently discovering k-minimal rare itemsets from
large transaction databases. Afterwards, by parti-
tioning the k-minimal rare itemset mining problem
into smaller sub-problems, we aim to make it more
manageable and easier to solve. Finally, to evaluate
the effectiveness and efficiency of our approach, we
conduct extensive experimental analysis using vari-
ous popular datasets. We compare our method with
existing specialized algorithms and CP-based algo-
rithms commonly used for this task.

1 Introduction
Pattern extraction is a core topic in data mining. It aims to au-
tomatically infer knowledge from data based on various kinds
of interesting measures. This involves the identification of
relevant patterns embedded in data. These patterns represent
the properties of the data satisfying users’ preferences. Fre-
quent Itemset Mining (FIM, for short) is a typical task of data
analysis area that aims to find objects that frequently occur
together among data. The first original motivation for FIM
was found in market basket analysis, which involves explor-
ing transactions in retails to discover frequently co-occurring
products.

Earlier work has often focused on mining frequent pat-
terns (see [Fournier-Viger et al., 2017] for a detailed sur-
vey). However, in some cases certain items have a much
lower chance to frequently appear than others. Hence, pat-
terns appearing rarely, i.e., itemsets having a low frequency

in the database, are overlooked since they are considered un-
interesting and eliminated using the frequency constraint. In
contrast, it has been shown recently that in many real-life ap-
plications, targeting infrequent itemsets, called rare itemsets,
may be more informative than discovering frequently occur-
ring patterns [Darrab et al., 2021]. For instance, in the medi-
cal field, infrequent patterns may be more appealing because
their discovery would aid in the avoidance of negative conse-
quences and the formulation of healthcare decisions. During
the Covid-19 pandemic, one might be interested for example
in analyzing clinical data to discover unusual combinations
of disease symptoms and risk factors that have not previously
been identified. These patterns could be used as surrogate in-
dicators to identify patients with Covid-19 and predict their
clinical outcomes, so that appropriate treatments can be pro-
vided. Another example of using rare itemsets is that in the
banking field where finding irregular behaviors could be help-
ful for identifying potentially fraudulent transactions.

The problem of mining rare itemsets from transaction
databases is quite challenging since they are practically much
more numerous than frequent ones. To overcome this issue,
a condensed representation of rare itemsets, coined minimal
rare itemsets, has been considered. Minimal rare itemsets
are of interest since they represent a border below which all
subsets are frequent itemsets [Mannila and Toivonen, 1997].
Some algorithms have been proposed for computing minimal
rare itemsets in transaction databases (e.g., [Szathmary et al.,
2007; Szathmary et al., 2012; Belaid et al., 2019]).

In this paper, we are primarily interested in generalizing the
concept of minimal rare itemset, and then computing these
motifs in large transaction databases. In fact, the frequency of
some itemsets cannot exceed the minimum frequency thresh-
old due to the presence of some items. As a result, these item-
sets are regarded as rare. In this case, it may be more inter-
esting to focus on finding this kind of itemsets while relaxing
the fequency constraint over a fixed number of items. This
representation will be referred to as k-minimal rare itemsets.
In more detail, a k-minimal rare itemset X is an itemset that
becomes frequent (resp. rare) when removing at least (resp.
most) k (resp. (k−1)) items from it. Clearly, a 1-minimal rare
itemset is a minimal rare itemset. Interestingly, such general-
ization could aid in the discovery of what may be relevant in
data in real applications. In fact, k-minimal rare itemsets can
be used to identify errors in certain processes. These item-
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sets, for example, aid in the discovery of the causes of ab-
normal effects of drugs taken by patients in the medical field.
Moreover, such patterns can assist a retailer in identifying ir-
relevant purchased products, allowing her/him to provide the
appropriate product combinations. A retail store manager can
use this knowledge to assess the risk of selling a product by
removing it from the market.
Our Contributions. In this paper, we first present a gen-
eralization of the minimal rare itemset model, which we call
k-minimal rare itemset. Note that our framework is general
enough to encompass minimal rare itemsets as a specific case.
Then, we provide a symbolic Artificial Intelligence (AI) ap-
proach to discovering k-minimal rare itemsets from transac-
tion databases. In detail, we present a SAT-based framework
for translating the task of finding k-minimal rare itemsets into
a propositional satisfiability problem that can be solved us-
ing a SAT solver. To tackle the scalability issue, we pro-
vide afterwards a splitting-based approach enabling to par-
tition the database into subsets with lower size that can be
independently mined without jeopardizing completeness. Fi-
nally, we conduct extensive experiments on different popular
real-world datasets to evaluate the efficiency of our approach
w.r.t. the state-of-the-art methods.

2 General Setting
2.1 Propositional Satisfiability
Let L be a propositional language built up inductively from a
countable set P of propositional variables, the Boolean con-
stants ⊤ (true or 1) and ⊥ (false or 0) and the classical logical
connectives {¬,∧,∨,→,↔} in the usual way. To range over
the elements of P , we use the letters x, y, z, and so on. A lit-
eral is a propositional variable (x) of P or its negation (¬x).
A clause is a (finite) disjunction of literals. Propositional for-
mulas of L are denoted by Φ,Ψ, etc. For any formula Φ from
L, P(Φ) denotes the symbols of P occurring in Φ. A formula
in conjunctive normal form (or simply CNF) is a finite con-
junction of clauses. A Boolean interpretation I of a CNF for-
mula Φ is defined as a function from P(Φ) to {0, 1}. A model
of Φ is an interpretation I that satisfies Φ (denoted I |= Φ),
that is, if there exists an interpretation I : P(Φ) → {0, 1}
that satisfies all clauses in Φ. The formula Φ is satisfiable if
it has at least one model. We write M(Φ) as shorthand for
the set of models of a formula Φ.

The propositional satisfiability problem (in short, SAT) is
the decision problem for propositional logic. Given a CNF
formula Φ, SAT determines whether there exists a model of
Φ. SAT solvers have been used in a variety of real-world sce-
narios, e.g., electronic design automation, software and hard-
ware verification [Morgado and Marques-Silva, 2005], etc.
Note that the aforementioned applications require the enu-
meration of all possible models of the corresponding CNF
formula. This task, known as model enumeration, is of
great importance. For instance, in diagnosis, the user is in-
terested in finding all possible explanations rather than just
whether one exists. Model enumeration problems find ap-
plications in a variety of tasks, including network verifica-
tion [Zhang et al., 2012], model checking [Hu and Mar-
tin, 2004] as well as several data mining tasks, e.g., [Dlala

et al., 2018; Jabbour et al., 2018; Boudane et al., 2016;
Izza et al., 2020; Hidouri et al., 2021b; Hidouri et al., 2021a;
Hidouri et al., 2022], and graph analysis [Jabbour et al., 2016;
Jabbour et al., 2017; Jabbour et al., 2022]. In the last decade,
several SAT-based proposals for modeling and solving pattern
mining problems have indeed studied. Because they rely on
generic and declarative solvers, these approaches are suitable
for modeling a variety of mining tasks.

2.2 Overview of the Rare Itemsets
Let Ω be a universe of items (or symbols) that may repre-
sent articles in a supermarket, web pages, or a collection of
attributes or events. We denote the elements of Ω by the
letters a, b, c, etc. An itemset (or simply a motif ) is a sub-
set of items in Ω, that is, X ⊆ Ω. The set of all itemsets
over Ω, denoted as 2Ω, are represented by the capital let-
ters X,Y, Z, etc. A transaction database is a finite non-
empty set of transactions or records D = {T1, T2, . . . , Tm}.
We denote by Da the sub-base containing the set of transac-
tions where a appears. Given a transaction database D and
an itemset X , the cover of X in D is a mapping 2X → 2D

which maps each itemset X to a set of transactions in D con-
taining X . More formally, Cover(X,D) = {i ∈ [1..m] |
Ti ∈ D and X ⊆ Ti}. The cardinality of the cover of the
itemset X represents its support (also called frequency). We
write Supp(X,D) for the support of X in the dataset D, i.e.,
Supp(X,D) = |Cover(X,D)|. When there is no confusion,
the cover and support will be simply denoted as Cover(X)
and Supp(X), respectively. We also write X <freq Y iff
Supp(X) ≤ Supp(Y ), for two itemsets X and Y . Next, we
introduce some useful notions.
Definition 1 Let D be a transaction database, X an itemset
and λ ≥ 1 a minimum support threshold. Then, X is a:

• frequent itemset in D iff Supp(X) ≥ λ.
• rare itemset in D iff Supp(X) < λ.
• minimal rare itemset in D iff (i) X is rare, and (ii)
∀ Y ⊂ X , Y is frequent.

Let us write MRIs to be the set of minimal rare itemsets in
D. Obviously, every rare itemset is an infrequent itemset in
D, and any super-set of a MRI is also a rare itemset.
Definition 2 Given a transaction database D, an itemset
X is called a minimal (key) generator in D iff ∀ Y ⊂
X, Supp(X) < Supp(Y ).

Given a database D, it has been shown in [Szathmary et al.,
2012] that all minimal rare itemsets are generators in D.
Example 1 Let us consider the transaction database given in
Table 1. Note that each transaction contains some products
purchased in a grocery store. The minimum support threshold
λ is set to 3.

Figure 1 depicts the search space of (in)frequent itemsets
(we refer to each product by a letter, e.g., a for apple, b for
bread, etc.). The lattice is basically divided into two zones
according to λ. The top zone represents frequent itemsets
while the bottom one consists of rare itemsets. A line sepa-
rates these two zones which are complementary subsets of the
powerset 2|Ω|. In this paper, we are interested in the second
zone, i.e., the set of all rare itemsets in D.
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TID Items
1 apple bread cheese diapers
2 apple bread cheese
3 apple bread cheese eggs
4 apple bread diapers eggs
5 apple bread diapers
6 eggs

Table 1: A sample transaction database D

Figure 1: The powerset lattice of items {a, b, c, d, e} in D.

As we have seen, a minimal rare itemset is a rare itemset
that by removing one item from it becomes frequent. Next,
we generalize such condition to consider the deletion of one
or more items. Following that, we present our formalization
of this generalization as follows.
Definition 3 Let D be a transaction database, λ a minimum
support threshold, and k a positive integer. Then, an itemset
X is called a k-minimal rare itemset (k-MRI, in short) if (i)
∀ Y ⊂ X s.t. |Y | ≤ k − 1, X \ Y is rare, and (ii) ∀Y ⊂ X
s.t. |Y | ≥ k, X \ Y is frequent.

Intuitively, Definition 3 extends the minimal rare itemset
model by requiring that the removal of (k−1) items from the
itemset does not make it frequent, but the deletion of at least
k items does. It is also worthy to say that a k-minimal rare
itemset is of size at least k. To our knowledge, this is the first
generalization of minimal rare itemsets in data mining. Inter-
estingly, our model encompasses the minimal rare itemsets as
a specific case by setting k to 1.
Example 2 Consider the transactions in Table 1 and λ = 3.
Then, X = {c, d, e} is a 2-MRI. In fact, {c}, {d}, {e} are
frequent while {c, d, e}, {c, d}, {c, e}, {d, e} are not.
Proposition 1 Let D be a transaction database and k > 1.
If X is a k-MRI in D, then for all x ∈ X , X \ {x} is a
(k − 1)-MRI in D.
Proposition 2 Given a transaction database D and a mini-
mum support threshold λ, if X is a 1-MRI in D with X =
Y
⊎

Z, then Z is a 1-MRI in {Ti ∈ D | Y ⊆ Ti}.

3 SAT-based Encoding for k-MRIs Mining
This section presents our SAT-based encoding for the k-
minimal rare itemset enumeration problem. Given a transac-

tion database D, our key idea is to encode the task of k-MRIs
computation into a propositional formula whose models cor-
respond exactly to the set of k-minimal rare itemsets of D. In
this view, the problem of mining such motifs is translated to
the one of computing all models of a propositional formula.

We start by providing a SAT encoding for the enumeration
of 1-MRIs before proposing a generalization for the k-MRIs
mining problem. For that purpose, to establish a one-to-one
mapping between the models of our SAT-based encoding and
the set of 1-MRIs in the database D, each item a ∈ Ω is asso-
ciated with a propositional variable xa where xa is true iff a
belongs to the candidate rare itemset, while each transaction
Ti in D is associated with two propositional variables pi and
qi where pi (resp. qi) is true iff the transaction Ti contains the
candidate rare itemset (resp. the candidate rare itemset except
one item).

Now, in order to establish a mapping between the set of
1-MRIs in the database D and the models of the correspond-
ing propositional formula, we introduce the following logical
constraints.

Cover constraint. The first constraint allows to capture the
cover of the itemset and it can be expressed as follows:∧

Ti∈D
(pi ↔ (

∧
a∈Ω\Ti

¬xa)) (1)

Constraint (1) means that the itemset appears in the transac-
tion Ti if all items that do not occur in that itemset are set to
false.

Infrequency constraint. The second constraint ensures
that the candidate itemset is not frequent in D.∑

Ti∈D
pi < λ (2)

Given a minimum support threshold λ, Constraints (1) and
(2) allow to find the set of all rare itemsets in D.

Now, in order to find a 1-MRI, one needs to identify the set
of transactions matching X in D as well as those that match
X\{a} for all a ∈ X . This can be expressed by the following
constraint.

Generator constraint. This constraint allows to catch the
set of transactions in the database D involving the whole
itemset except one item.∧

Ti∈D
(qi ↔ (

∑
a∈Ω\Ti

xa = 1)) (3)

In other words, enforcing a rare itemset X to be minimal is
equivalent to enforcing the itemset X \ {a} (∀a ∈ X) to
be frequent. This requirement can be modeled with the next
constraint.

Frequency constraint. This constraint requires that each
itemset X \ {a} (∀a ∈ X) must be frequent in D.∧

a∈Ω

(xa → (
∑
Ti∈D
a∈Ti

pi +
∑
Ti∈D
a ̸∈Ti

qi ≥ λ)) (4)
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Example 3 Consider again Table 1 and let λ = 3. Then, the
cover, infrequency, generator and frequency constraints can
be written as given in Figure 2.

Property 1 Each model of the formula Φλ
D = (1) ∧ (2) ∧

(3) ∧ (4) corresponds to a 1-MRI in the database D.

The next result shows that the formula Φλ
D entails the fol-

lowing set of clauses.

Proposition 3 For a given transaction database D, we have
Φλ

D |= Θ:

Θ =
∧
a∈Ω

(¬xa ∨
∨

Ti∈D
a ̸∈Ti

qi) (5)

It is worth noting that Constraint (5) can be useful for unit
propagation. In fact, this constraint enforces the rare item-
set to be a generator. Indeed, it expresses that there exists a
transaction in which X \{a} appears for each a ∈ X . As this
property holds for every a ∈ X , then X is a generator.

Interestingly, the previous encoding can be generalized to
deal with the problem of mining the set of all k-MRIs from
a given transaction database. To do so, let us present the fol-
lowing three logical constraints.

k∧
j=0

∧
Ti∈D

(pi,j ↔ (
∑

a∈Ω\Ti

xa = j)) (6)

∧
X⊆Ω

|X|=k−1

(
∧
a∈X

xa → (

k−1∑
j=0

(
∑
Ti∈D

|(Ω\Ti)∩X|=j

pi,j < λ))) (7)

∧
X⊆Ω
|X|=k

(
∧
a∈X

xa → (
k∑

j=0

(
∑
Ti∈D

|(Ω\Ti)∩X|=j

pi,j ≥ λ))) (8)

Let us now go over these constraints in greater depth. To
compute the set of all k-MRIs in D, we need first to identify
the transactions involving the whole itemset (i.e., pi,0), those
containing the itemset except one item (i.e., pi,1), until those
with k missing items (i.e., pi,k). Constraint (6) enables the
identification of such a set of transactions. Next, Constraint
(7) requires the deletion of (k − 1) items from the candidate
itemset in order for it to be rare. This requires an additional
constraint for each subset of items from Ω of size (k − 1).
Note that in this case the number of constraints can be ex-
ponential w.r.t. k. Lastly, to allow the removal of k items,
we need to identify the transactions containing partially the
itemset (i.e., the candidate itemset without k items). This
condition can be modelled with Constraint (8). Notice that
for k = 1, the SAT encoding of 1-MRIs corresponds to Φλ

D
by substituting pi,0 (resp. pi,1) by pi (resp. qi). Also, it is
worthy to note that Constraint (6) is a cardinality constraint
of the form

∑n
i=1 xi = k. Such constraint can be rewritten

as follows:

k∧
j=0

∧
Ti∈D

(pi,j ↔ (
∧

0≤l<j

¬pi,l ∧
∑

a∈Ω\Ti

xa ≤ j)) (9)

To close this section, we note that the three constraints (6),
(7) and (8) clearly induce a large number of propositional
variables that grow rapidly with the values of k.

Proposition 4 Given a transaction database D, a minimum
support threshold λ, and a positive integer k > 0, then the
propositional formula Φk,λ

D = (6) ∧ (7) ∧ (8) encodes the
problem of mining k-MRIs in D.

4 Towards a More Efficient Computation of
Rare Itemsets

The practical SAT-based encoding of k-MRIs mining prob-
lem, defined in Section 3, is polynomial in k, |Ω|, and |D|. In
particular, the number of propositional variables and clauses
is bounded by O(|Ω|×|D|2+ |Ω|2×|D|) for 1-MRIs. Unfor-
tunately, even if such complexity is polynomially bounded, it
becomes challenging and time-consuming for large datasets.
This is due especially to the cardinality constraint (4) (for 1-
MRIs) that involves all the transactions of D. Hence, the size
of the whole encoding may be huge. To obviate this scal-
ability issue, we utilize a decomposition scheme for better
efficiency by avoiding the generation of large CNF formu-
las. We provide next an illustration through the 1-MRIs case,
which can be generalized to k-MRIs (k > 1).

In more details, the aim is to partition the initial mining
problem into less complex and more manageable set of sub-
problems. The resolution task is then expected to be easier
than that for the original problem. In other words, the search
space is divided into disjoint parts by the use of the Shan-
non’s principle [Zaki, 1999] (also referred to as guiding path
[Zhang et al., 1996]). In fact, the guiding path is a set of
formulas added to the original formula in order to split the
search space. More formally, let Φ be a propositional for-
mula and {Γ1, . . . ,Γn} be a set of sub-formulas over P(Φ)
s.t. Γ1 ∨ . . . ∨ Γn ≡ ⊤ and Γi ∧ Γj |= ⊥, ∀ i ̸= j.
Then, the satisfiability of the formula Φ is related to the
satisfiability of at least Φ ∧ Γ1≤i≤n. Then, we have that
M(Φ) =

⊎n
i=1 M(Φ ∧ Γi).

In [Jabbour et al., 2020], the authors defined Γi as Γi =
Φ ∧ xai

∧
∧

1≤j<i ¬xaj
, allowing to enforce the enumera-

tion of only frequent itemsets containing the item ai. This is
meant to avoid the encoding of the whole database by con-
sidering only the database Dai

composed of transactions of
D involving ai. Note that all items aj<i are simply removed
from Dai

. Nevertheless, for the k-MRIs computation prob-
lem, in addition to the base Dai

, the remaining transactions
in D should also be considered. This will naturally increase
our previous SAT-encoding size. To overcome this issue,
we propose to apply the decomposition principle twice. The
main idea is to recursively perform the decomposition over
the items of Dai by considering the following set of formu-
las of the form: Γi,j = xai

∧ xaj
∧

∧
l<j, l ̸=i

¬xal
if i < j.

Intuitively, Γ1≤i≤n is extended to Γi,j by performing over Γj

at each branch. More precisely, once an item ai is chosen,
we iterate through the set of transactions involving ai (i.e.,
Dai

). The transaction database D can then be partitioned into
two subbases Dai

∪Daj
and D \ (Dai

∪Daj
). The sub-table
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Cover constraint
p1 ↔ (¬xe)
p2 ↔ (¬xd ∧ ¬xe)
p3 ↔ (¬xb)
p4 ↔ (¬xc)
p5 ↔ (¬xc ∧ ¬xe)
p6 ↔ (¬xa ∧ ¬xb ∧ ¬xc ∧ ¬xd)
Infrequency constraint
p1 + p2 + p3 + p4 + p5 + p6 < 3

Generator constraint
q1 ↔ xe = 1
q2 ↔ xd + xd = 1
q3 ↔ xd = 1
q4 ↔ xc = 1
q5 ↔ xc + xe = 1
q6 ↔ xa + xb + xc + xd = 1

Frequency constraint
xa → (p1 + p2 + p3 + p4 + p5 + q6 ≥ 3)
xb → (p1 + p2 + p3 + p4 + p5 + q6 ≥ 3)
xc → (p1 + p2 + p3 + q4 + q5 + q6 ≥ 3)
xd → (p1 + p4 + p5 + q2 + q3 + q6 ≥ 3)
xe → (p3 + p4 + p6 + q1 + q2 + q5 ≥ 3)

Figure 2: SAT-based encoding for the transaction database shown in Table 1.

Dai ∪ Daj contains either the item ai or aj . Then, for each
transaction Tl ∈ D \ (Dai ∪ Daj ), both variables pl and ql
are set to false which means that such transactions are useless
under Γi,j . Thus, the encoding can be performed by consid-
ering only transactions of Dai

∪ Daj
. Interestingly enough,

this allows us to avoid modeling the entire database, having
a large number of clauses, and dealing with the associated
computational issues.

Algorithm 1 summarizes our SAT-based approach for min-
ing the set of 1-MRIs from transaction databases. It relies
basically on a set of simplifications aiming to reduce the size
of the generated sub-formulas. Following the decomposi-
tion principle discussed above, the algorithm starts by looping
over the set of items of D. More precisely, an item a is picked
up (line 2). Then, if its support is less than the fixed minimum
support λ, then {a} is clearly a 1-MRI (line 4). Otherwise,
the sub-database Da is then considered (the set of items of
Da are named Ωa). Obviously, each frequent item b not be-
longing to Ωa forms with a a 1-MRI (line 9). A second loop
is performed over the items of Ωa. Then, we can distinguish
the following two cases:

1. Supp({b},Da) = |Da ∩ Db| < λ: in this case {a, b} is
clearly the only 1-MRI and it is added to S (line 16).

2. |Da ∩Db| ≥ λ: in such a case, some rational simplifica-
tions are performed to reduce the size of the encoding.
In fact, for each c ∈ Ωa ∪ Ωb no rare itemset of the
form {a, b, c, . . .} can exist in the three following cases:
(i) Supp({c},Da) < λ, (ii) Supp({c},Db) < λ, and
(iii) Supp({c},Da ∩ Db) = |Da ∩ Db| (lines 20-24). In
such cases, the item c can be removed from Da ∪ Db

(function Simplify, line 25). After this simplifi-
cation step, the remaining database is finally encoded
(function Encode in CNF, line 26), and a model enu-
meration procedure over the resulting formula (function
Enumerate Models, line 28) is performed to find the
set of all models that correspond to the set of 1-MRIs.

5 Empirical Studies
We now present the experiments carried out to assess the per-
formance of our symbolic AI approach to mining k-MRIs
from transaction databases.

Algorithm 1 uses the MiniSAT solver, which is a popu-
lar SAT solver written in C++. The solver has been modi-
fied to disable restarts and perform a simple backtrack each
time a model is found. This modification allows the solver

Algorithm 1 SAT-based 1-MRI Computation (SAMRIC)
Input: A transaction database D, a support threshold λ
Output: The set of 1-MRIs S
1: S = ∅, Γ = ∅, Γ′ = ∅, ∆ = ∅
2: for a ∈ Ω do
3: if Supp({a},D) < λ then
4: S ← S ∪ {a}
5: else
6: Γ← Γ ∪ {a}
7: for b ̸∈ Ωa do
8: if {a} <freq {b} && Supp({b}) ≥ λ then
9: S ← S ∪ {a, b}

10: end if
11: end for
12: Γ′ ← Γ
13: for b ∈ Ωa do
14: if Supp({b},Db) ≥ λ then
15: if Supp({b},Da) < λ then
16: S ← S ∪ {a, b}
17: Γ′ ← Γ′ ∪ {b}
18: else
19: ∆← ∅
20: for c ∈ Ωa ∪ Ωb do
21: if Supp({c},Da) < λ || Supp({c},Db) <

λ || Supp({c},Da ∩ Db) = |Da ∩ Db| then
22: ∆← ∆ ∪ {c}
23: end if
24: end for
25: Ds ← Simplify(Da ∪ Db,Γ

′,∆)
26: Ψ = Encode in CNF(Ds)

27: Φ← Ψ ∧ xa ∧ xb ∧
∧
c∈Γ′

¬xc ∧
∧
c∈∆

¬xc

28: S = S ∪
Get Patterns(Enumerate models(Φ))

29: Γ′ ← Γ′ ∪ {b}
30: end if
31: end if
32: end for
33: Γ← Γ ∪ {a}
34: end if
35: end for
36: return S

to enumerate all models instead of stopping at the first satis-
fying assignment [Morgado and Marques-Silva, 2005]. Our
source code and datasets are available at https://github.com/
amel-hidouri/SAMRIC.git. It should be noted here that for
the decomposition, items are sorted in increasing order of fre-
quency. This strategy has been shown to generate small-scale
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Instance |D|, |Ω|, d(%)
1-MRI 2-MRI

λ
Walky-G CP4MII SAMRIC #1-MRIs SAMRIC

Time Time Time #Clauses #Conf Time #2-MRIs

Australian-credit 653, 125, 41

150 7.24 7.13 12.53 3728726 267836 447339 76.32 11232
120 30.67 16.1 28.13 5439614 689799 1069099 176.96 10549
100 94.72 33.23 51.3 6955828 1392377 2026756 327.69 7452
80 331.13 81.85 99.25 8884832 3043183 4126577 713.01 9927
50 OM 340.73 311.94 12968960 12579300 14764676 3455.5 15988

Chess 3196, 75, 49.33

2500 0.61 0.09 0.16 56181 389 511 0.14 1498
1000 15.74 8.85 8.01 2160106 133582 152316 6.93 1231
500 OOM 113.59 54.54 5205068 1250215 1353344 37.14 997
160 OOM 1187.26 270.14 10338201 9470426 9364262 191.51 1344

Kr-vs-kp 3196, 73, 49

1000 17.32 8.71 7.61 2010900 129748 147402 6.32 1028
500 494.37 104 47.78 4464959 1127491 1216675 28.86 933
250 OOM 453.38 138.91 7095525 4252364 4358189 74.88 684
100 OOM 1134.01 256.98 10217782 10447743 9766140 175.3 1417
50 OOM 1111.14 261.7 12014148 11951221 9966663 266.38 793

Hypothyroid 3247, 88, 49

1000 228.25 51.84 15.01 1942537 659795 678192 8.35 1266
750 OOM 114.17 26.77 2836790 1324214 1351554 25.72 1771
500 OOM 254.66 48.82 4249107 2757496 2781524 26.94 851
100 OOM 499.21 83.73 9700357 6357909 6036383 80.73 1322
50 OOM 330.1 65.3 11573554 4677783 4151903 114.66 1696

Liquor 9284, 2626, 0.10

5000 0.78 OM 0.51 ⋆ 0 4051 1.08 8066207
1000 0.83 OM 5.04 20053 9 8482 97.78 7861133
500 2,52 OM 13.26 147137 57 16961 272.4 8164759
250 3,01 OM 39.95 1321041 284 38397 657.23 10128473

Retail 16470, 1030, 0.06

2000 0.41 720.88 0.21 51770 9 16561 0.34 135359185
1000 0.57 723.63 0.41 84644 18 17912 1.47 134727253
500 0.64 726.83 1.26 188118 71 33193 9.4 133613822
250 1.39 867.8 4.07 700815 239 187553 64.16 164337941

Pumsb 49046, 2113, 3.5

48000 0.28 9.599 0.21 13 1 2115 0.17 2218675
32000 15.87 63.01 44.19 7862046 54106 57425 50.5 2154049
24000 OOM 1831.4 767.18 27515963 1425873 1257200 TO –
17000 OOM TO TO – – – TO –

BMS(1) 59602, 497, 0.51

1000 0.11 2.9 0.07 ⋆ 0 901 0.52 112843
500 0.14 6.21 0.17 202 0 3724 3.62 175229
100 0.47 71.65 1.95 494339 305 41949 45.01 4070866
50 1.55 149.99 9.08 4924821 5551 77993 121.81 7195403

Connect 67557, 129, 33.33

7000 108.13 152.97 323.36 88980659 193771 165198 451.61 5916
2000 OM 1049.27 1259.38 225726872 1673400 1180278 2899.82 13900
1000 OM TO 2357.76 307244491 4147061 2787960 TO –
676 TO TO 3041.34 351500671 6406821 6407533 TO –

T10I4D100K 100000, 870, 1.16

500 0.97 151.85 0.55 104730 84 161617 44.09 30645550
400 1.22 202.26 1.18 429303 279 197796 53.16 42326895
300 1.43 267.06 2.64 1349725 836 238334 66.92 57409762
200 1.77 319.79 5.93 3541664 2098 273436 94.58 71668538
100 2.41 390.26 12.05 6145539 4288 344651 1102.51 90024783

Fruithut 181970, 1265, 0.28

1000 0.26 13.83 0.41 2144 1 10576 8.37 1053040
500 0.36 20.3 1.31 44707 39 21412 48.79 1829817
250 0.91 32.63 4.88 1979320 317 41231 570.45 3430925
150 1.57 54.81 12.53 8979961 1140 75567 1967.6 7068064
100 2.49 97.30 24.46 23212662 2662 129198 TO –
50 3.25 234.13 70.06 80901751 10791 294690 TO –

Kosarak 990002, 41270, 0.02

100000 14.79 OOM 0.94 3 1 41268 0.84 851420745
80000 13.51 OOM 1.14 6 2 41275 1.47 851338220
60000 12.87 OOM 1.41 22 3 41297 2.05 851173233
50000 14.1 OOM 1.93 73402 8 41293 2.35 851173218

PowerC 1040000, 140, 5

10000 0.63 OOM 31.44 26627273 332 566 70.16 6041
5000 0.68 OOM 45.28 44666695 562 829 99.53 7007
2500 0.79 OOM 58.37 61139858 945 1447 144.21 11932
1000 1.2 OOM 82.19 91129054 1727 2342 213.52 18969
500 1.3 OOM 104.51 114377882 2801 4302 328.27 52308

Susy 5000000, 190, 10

500000 7.850 OOM 398.59 4290 237 1346 594.18 22698
250000 26.65 OOM 1384.9 57655607 838 3204 1722.32 65811
100000 84.72 OOM 1974.07 361944809 1582 5145 TO –
50000 250.73 OOM TO – – 27187 TO –

Table 2: Experimental results for mining k-minimal rare itemsets using real and synthetic datasets.
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sub-problems [Boudane et al., 2018]. Our experiments were
performed on a Linux machine 32GB of RAM running at 2.66
GHz. We test our approach for k = {1, 2} while varying the
minimum support threshold (λ). The reported runtime is in
seconds and the timeout is set to one hour for each test. Let
us mention that for our algorithm, the computation time in-
cludes both the time needed for generating the CNF formulas
and that for computing all models (i.e. the k-MRIs) of such
formulas. For our empirical evaluation, experiments were
carried out on different commonly used benchmark datasets
taken from the well-known repositories FIMI1, CP4IM2 and
SPMF3. In more details, we use small (i.e., Australian-credit,
Chess, Kr-vs-kp, Hypothyroid, Liquor), medium (i.e., Retail,
Pumsb, BMS(1), Connect) as well as large (i.e., T10I4D100K,
Fruithut, Kosarak, PowerC, Susy) scaled datasets with hun-
dreds, thousands and even millions of transactions, respec-
tively. Characteristics of all these datasets are given in Ta-
ble 2: the number of transactions (|D|), the number of items
(|Ω|), and the density (d).

For k = 1, we compared our algorithm, coined SAMRIC,
to two baselines: the constraint programming based algo-
rithm CP4MII4 proposed recently in [Belaid et al., 2019],
and the specialized method Walky-G5 introduced in [Szath-
mary et al., 2012], according to the running time for different
minimum support threshold values. For the computation of
2-MRIs, since we are the first to define such kind of itemsets,
there are no state-of-the-art so far, we only discuss the results
of our algorithm. Table 2 summarizes the empirical results of
the tested algorithms for k = 1 and k = 2 on each dataset and
the considered λ threshold values. Here, TO (resp. OOM) re-
ported when an algorithm is not able to complete the mining
process under the fixed time (resp. memory limitations).

Results for 1-MRIs. According to Table 2, the specialized
approach Walky-G and SAMRIC have good performance
in terms of computing time. They perform well on several
datasets e.g., T10I4D100K, Fruithut and Susy. Moreover,
experimental results show that SAMRIC surpasses the base-
line CP4MII across almost of datasets. Interestingly enough,
CP4MII reaches timeout/memory-out 20 times, with 15
times for Walky-G and 2 times for SAMRIC. Table 2 shows
also that Walky-G becomes less efficient on dense datasets,
e.g., Chess and Hypothyroid. This can be explained by the
fact that this algorithm stores a large number of frequent gen-
erators. Interestingly, SAMRIC runs faster than Walky-G,
which fails to discover the 1-MRIs for the dataset Kr-vs-kp
with λ ≤ 250, and for Hypothyroid with λ ≤ 750. For Retail
and T10I4D100K datasets, SAMRIC was respectively up to
700 and 66 times faster than CP4MII. It can also be observed
that on Liquor, Kosarak and PowerC datasets, CP4MII was
unable to mine the target itemsets under the timeout for all
the fixed threshold values. However, for the same datasets our
SAMRIC algorithm was able to scale for all minimum support

1http://fimi.ua.ac.be/data/
2http://dtai.cs.kuleuven.be/CP4IM/datasets/
3https://www.philippe-fournier-viger.com/spmf/index.php?

link=datasets.php
4https://gite.lirmm.fr/belaid/cp4borders
5http://coron.loria.fr/

threshold values with a maximum running time of 104 sec-
onds. As one can see from Table 2, for the Connect dataset
and λ = 7000, Walky-G is the best. However, if λ ≤ 2000,
the performance of CP4MII and SAMRIC become better than
Walky-G that fails to discover 1-MRIs. Finally, it is worth
noticing that our algorithm is able to scale for large datasets,
e.g., Susy with 5 million of transactions, while CP4MII fails
for all the considered minimum support threshold values. In
our experiments, we also include the number of 1-MRIs in
Table 2. Generally speaking, the minimum support threshold
λ has a strong impact on the performance of the mining pro-
cess. Thus, the number of patterns gets larger when the value
of λ decreases and it can exceed 14 million (e.g., Kr-vs-kp
dataset). Clearly, the performance of the three algorithms de-
pends on the overall dataset characteristics. Interestingly, our
SAMRIC algorithm scales well for large datasets and lower
values of λ.

Table 2 reports in addition the size of our SAT encoding
according to the number of clauses (#Clauses)6 and conflicts
(#Conf). The results show that the number of conflicts varies
depending on the tested dataset and the λ values. Clearly
enough, the encoding size is proportional to the size of the
dataset, e.g., more than 361 million of clauses for Susy. No-
tably, despite this barrier, our algorithm remains efficient and
able to solve almost datasets under the threshold values.

Results for 2-MRIs. Table 2 contains also the run-time and
the number of found 2-MRIs for all datasets. For the decom-
position, a variant of Algorithm 1 is performed. Let us first
note that the number of 2-MRIs can be very large compared
to the number of 1-MRIs, especially for lower λ values, e.g.,
more than 850 million on Kosarak dataset for λ = 100000.
According to our results, as expected, the computation of 2-
MRIs is time consuming than the one of 1-MRIs. For in-
stance, on Australian-credit dataset, the time needed for dis-
covering the 2-MRIs is about 9 times higher than for 1-MRIs.
Surprisingly, this running time is similar to the one of 1-MRIs
on some datasets (e.g., Chess and Kosarak). More interest-
ingly, on 68 tests, SAMRIC is able to identify the complete
set of 2-MRIs, even for lower threshold values.

6 Conclusions and Future Work
In this paper, we have presented a SAT-based formalization
of the problem of mining k-MRIs, a generalization of min-
imal rare itemsets. Our approach is based on a set of log-
ical constraints in connection with a decomposition scheme
that enables high scalability without forgoing completeness
and efficiency. An extensive set of experiments conducted
over different datasets showed that our approach scales well
and outperforms the CP-based approach CP4MIIwhile com-
peted with the specialized algorithm Walky-G.

In the future, we would like to improve our SAT encoding
for k-MRIs mining, especially for k > 2. Furthermore, we
plan to investigate more advanced and powerful partitioning
techniques to improve the performance of our approach.

6Note that we didn’t count clauses of formulas solved by unit
propagation. We refer to that by ⋆ in Table 2.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2120

http://fimi.ua.ac.be/data/
http://dtai.cs.kuleuven.be/CP4IM/datasets/
https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php


Acknowledgments
This research has received support from the European
Union’s Horizon research and innovation programme un-
der the MSCA-SE (Marie Skłodowska-Curie Actions Staff
Exchange) grant agreement 101086252; Call: HORIZON-
MSCA-2021-SE-01; Project title: STARWARS (STormwA-
teR and WastewAteR networkS heterogeneous data AI-driven
management).

References
[Belaid et al., 2019] Mohamed-Bachir Belaid, Christian

Bessiere, and Nadjib Lazaar. Constraint programming
for mining borders of frequent itemsets. In IJCAI, pages
1064–1070, 2019.

[Boudane et al., 2016] Abdelhamid Boudane, Saı̈d Jabbour,
Lakhdar Sais, and Yakoub Salhi. A SAT-based approach
for mining association rules. In IJCAI, pages 2472–2478,
2016.

[Boudane et al., 2018] Abdelhamid Boudane, Saı̈d Jabbour,
Lakhdar Sais, and Yakoub Salhi. SAT-based data mining.
Int. J. Artif. Intell. Tools, 27(1):1–24, 2018.

[Darrab et al., 2021] Sadeq Darrab, David Broneske, and
Gunter Saake. Modern applications and challenges for rare
itemset mining. Int J Mach Learn Comput, 11(3):208–218,
2021.

[Dlala et al., 2018] Imen Ouled Dlala, Saı̈d Jabbour, Badran
Raddaoui, and Lakhdar Sais. A parallel SAT-based frame-
work for closed frequent itemsets mining. In CP, pages
570–587, 2018.

[Fournier-Viger et al., 2017] Philippe Fournier-Viger, Jerry
Chun-Wei Lin, Bay Vo, Tin Truong Chi, Ji Zhang, and
Hoai Bac Le. A survey of itemset mining. Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery,
7(4):e1207, 2017.

[Hidouri et al., 2021a] Amel Hidouri, Saı̈d Jabbour,
Imen Ouled Dlala, and Badran Raddaoui. On minimal and
maximal high utility itemsets mining using propositional
satisfiability. In IEEE International Conference on Big
Data (Big Data), pages 622–628, 2021.

[Hidouri et al., 2021b] Amel Hidouri, Saı̈d Jabbour, Badran
Raddaoui, and Boutheina Ben Yaghlane. Mining closed
high utility itemsets based on propositional satisfiability.
Data Knowl. Eng., 136:101927, 2021.

[Hidouri et al., 2022] Amel Hidouri, Saı̈d Jabbour, and Bad-
ran Raddaoui. On the enumeration of frequent high utility
itemsets: A symbolic AI approach. In CP, pages 27:1–
27:17, 2022.

[Hu and Martin, 2004] Alan J Hu and Andrew K Martin.
Formal Methods in Computer-Aided Design: 5th Inter-
national Conference, FMCAD 2004, Austin, Texas, USA,
November 15-17, 2004, Proceedings. Springer Science &
Business Media, 2004.

[Izza et al., 2020] Yacine Izza, Said Jabbour, Badran Rad-
daoui, and Abdelahmid Boudane. On the enumeration of

association rules: A decomposition-based approach. In IJ-
CAI, pages 1265–1271, 2020.

[Jabbour et al., 2016] Saı̈d Jabbour, Nizar Mhadhbi, Abde-
sattar Mhadhbi, Badran Raddaoui, and Lakhdar Sais.
Summarizing big graphs by means of pseudo-boolean con-
straints. In IEEE International Conference on Big Data,
pages 889–894, 2016.

[Jabbour et al., 2017] Saı̈d Jabbour, Nizar Mhadhbi, Badran
Raddaoui, and Lakhdar Sais. A SAT-based framework for
overlapping community detection in networks. In PAKDD,
pages 786–798, 2017.

[Jabbour et al., 2018] Saı̈d Jabbour, Fatima Ezzahra Mana,
Imen Ouled Dlala, Badran Raddaoui, and Lakhdar Sais.
On maximal frequent itemsets mining with constraints. In
CP, pages 554–569, 2018.

[Jabbour et al., 2020] Saı̈d Jabbour, Nizar Mhadhbi, Badran
Raddaoui, and Lakhdar Sais. SAT-based models for over-
lapping community detection in networks. Computing,
102(5):1275–1299, 2020.

[Jabbour et al., 2022] Saı̈d Jabbour, Nizar Mhadhbi, Badran
Raddaoui, and Lakhdar Sais. A declarative framework for
maximal k-plex enumeration problems. In AAMAS, pages
660–668, 2022.

[Mannila and Toivonen, 1997] Heikki Mannila and Hannu
Toivonen. Levelwise search and borders of theories in
knowledge discovery. Data mining and knowledge dis-
covery, 1(3):241–258, 1997.

[Morgado and Marques-Silva, 2005] António Morgado and
João Marques-Silva. Algorithms for propositional model
enumeration and counting. Technical report, Instituto de
Engenharia de Sistemas e Computadores, Investigação e
Desenvolvimento em Lisboa, 2005.

[Szathmary et al., 2007] Laszlo Szathmary, Amedeo Napoli,
and Petko Valtchev. Towards rare itemset mining. In IC-
TAI, pages 305–312, 2007.

[Szathmary et al., 2012] Laszlo Szathmary, Petko Valtchev,
Amedeo Napoli, and Robert Godin. Efficient vertical min-
ing of minimal rare itemsets. In CLA, 2012.

[Zaki, 1999] Mohammed J Zaki. Parallel and distributed as-
sociation mining: A survey. IEEE concurrency, pages 14–
25, 1999.

[Zhang et al., 1996] Hantao Zhang, Maria Paola Bonacina,
and Jieh Hsiang. Psato: a distributed propositional prover
and its application to quasigroup problems. Journal of
Symbolic Computation, pages 543–560, 1996.

[Zhang et al., 2012] Shuyuan Zhang, Sharad Malik, and
Rick McGeer. Verification of computer switching net-
works: An overview. In International Symposium on Au-
tomated Technology for Verification and Analysis, pages
1–16, 2012.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2121


	Introduction
	General Setting
	Propositional Satisfiability
	Overview of the Rare Itemsets

	SAT-based Encoding for k-MRIs Mining
	Towards a More Efficient Computation of Rare Itemsets
	Empirical Studies
	Conclusions and Future Work

