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Abstract
It has been found that many real networks, such
as power grids and the Internet, are non-robust,
i.e., attacking a small set of nodes would cause
the paralysis of the entire network. Thus, the Net-
work Enhancement Problem (NEP), i.e., improv-
ing the robustness of a given network by mod-
ifying its structure, has attracted increasing at-
tention. Heuristics have been proposed to ad-
dress NEP. However, a hand-engineered heuris-
tic often has significant performance limitations.
A recently proposed model solving NEP by re-
inforcement learning has shown superior perfor-
mance than heuristics on in-distribution datasets.
However, their model shows considerably inferior
out-of-distribution generalization ability when en-
hancing networks against the degree-based targeted
attack. In this paper, we propose a more effective
model with stronger generalization ability by in-
corporating domain knowledge including measure-
ments of local network structures and decision cri-
teria of heuristics. We further design a hierarchical
attention model to utilize the network structure di-
rectly, where the query range changes from local
to global. Finally, we propose neural confined lo-
cal search (NCLS) to realize the effective search
of a large neighborhood, which exploits a learned
model to confine the neighborhood to avoid ex-
haustive enumeration. We conduct extensive exper-
iments on synthetic and real networks to verify the
ability of our models.

1 Introduction
Modern society has become increasingly dependent on the
availability of networked systems, such as power grids, com-
munication networks, traffic networks, and so on. Net-
work robustness, which measures the ability of networks to
maintain reliable operation in the presence of attacks [El-
lens and Kooij, 2013], has attracted more and more atten-
tion because for many real-world networks, failures of a
small number of nodes may cause the malfunction of the
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entire network [Albert et al., 2000; Holme et al., 2002;
Wang and Rong, 2009]. The underlying reason is that ro-
bustness is not sufficiently considered when designing these
networks. It has been found that the robustness of a network
is determined by its structure [Albert et al., 2000]. Thus a
natural question is: Can we improve the robustness of a given
network as much as possible by slightly modifying its struc-
ture? We call this problem the Network Enhancement Prob-
lem (NEP).

This paper considers a specific set of NEP, as in [Dar-
variu et al., 2021], while our methods apply in more gen-
eralized settings. First, we specify the network robust-
ness of a given network G against an attack algorithm A
as R(G) = Eξ∼A(G) p(G, ξ)1, where p(G, ξ) is the min-
imum fraction of nodes that must be removed from G in
the order ξ to disconnect it. Note A is required in the def-
inition because even the same network may show different
levels of robustness under different attack algorithms. For
instance, a scale-free network [Barabási and Albert, 1999;
Faloutsos et al., 1999] is robust to random attack and vul-
nerable to targeted attack [Albert et al., 2000]. Second, we
consider adding a certain number of links in a network to im-
prove its robustness.

Existing methods can be divided into two cate-
gories: heuristic methods [Beygelzimer et al., 2005;
Sánchez Martı́nez, 2009; Wang and Van Mieghem, 2010;
Wang et al., 2014; Li et al., 2018] and the Reinforcement
Learning (RL) based method [Darvariu et al., 2021]. In the
next section, we will review heuristic methods in detail.
As we will see, developing a heuristic algorithm often
requires extensive expert domain knowledge. In addition, the
performance of a hand-engineered heuristic is often limited
by the designer’s intuition and experience. In contrast, the
RL based method, named NEP-DQN [Darvariu et al., 2021],
models the problem in the Markov Decision Process (MDP)
framework and learns end-to-end solutions with DQN [Mnih
et al., 2013]. With NEP-DQN, complex decision rules that
are hard to specify by hand are automatically discovered
through trial and error.

Although NEP-DQN performs better on In-
Distribution (ID) datasets than hand-engineered heuris-

1A comprehensive discussion of various robustness measures can
be referred to [Liu et al., 2017].
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tics , it lacks the ability to generalize well for Out-Of-
Distribution (OOD) scenarios when enhancing networks
against the degree-based targeted attack, i.e., removing
nodes from a network in decreasing order of their degree.
Towards a more effective decision model with stronger
generalization ability, we incorporate domain knowledge
to improve both the state and action representations, which
are crucial in the decision-making process. In particular,
we introduce measurements from the field of complex
networks, such as various centrality measures [Barrat et al.,
2004] to characterize the local neighborhood structure of
a node. We also use decision criteria of hand-engineered
heuristics, such as degree product, distance, and algebraic
distance [Fiedler, 1973] to characterize the node pairs. To
capture the global position of nodes in the network, we
assign a two-dimensional coordinate to each node using the
eigenvectors of the graph Laplacian such that adjacent nodes
are mapped to neighboring points in the coordinate space.
We solve NEP by adapting the Attention Model (AM) [Kool
et al., 2018], i.e., adding a feature extraction module to
AM. We call the adapted model NEP-AM. NEP-AM uses
the network structure information indirectly through the
introduced features. To directly utilize the network structure
information, we add a structure-aware attention module [Shi
et al., 2020] that only allows nodes to query local neighbors
to NEP-AM. Thus the resulting model is a hierarchical
attention model, i.e., the query range changes from local to
global. We name it NEP-HAM.

Let l be the edge budget. A solution can be represented as
a node sequence of length 2l. The k-opt local search [Aarts
et al., 2003] is generally used to improve a solution further.
The solution is iteratively improved until a local optimum is
achieved. In each iteration, we search the k-exchange neigh-
borhood for a better candidate to replace the current solu-
tion. The k-exchange neighborhood contains feasible solu-
tions that are obtained by exchanging k nodes of the cur-
rent solution. The size of the k-exchange neighborhood is
O(

(
2l
k

)
nk), where n is the number of nodes of the network.

In practice, k is usually set as a small value so that the algo-
rithm can finish in a reasonable amount of time [Ma et al.,
2019]. However, removing this constraint can lead to better
solutions by exploring a larger neighborhood. To this end,
we propose Neural Confined Local Search (NCLS). In par-
ticular, we define the restricted k-exchange neighborhood by
restricting the selection of k nodes to be consecutive. The size
of the restricted k-exchange neighborhood is O(2lnk). How-
ever, examining all candidates in the restricted k-exchange
neighborhood is also infeasible, especially when k is large.
Hence, we use a learned policy πθ to generate a neural con-
fined neighborhood that includes high-quality candidates de-
coded from πθ. The neural confined neighborhood is a sub-
set of the restricted k-exchange neighborhood and of size
O(2lη), where η is a hyperparameter that balances effective-
ness and efficiency. NCLS effectively searches the restricted
k-exchange neighborhood by only examining candidates in
the neural confined neighborhood, which will be illustrated
by experiments.

In the experiment, we compare our models with heuristics
and NEP-DQN on synthetic and real networks using two at-

tack algorithms. We evaluate the ID and OOD generalization
ability on synthetic networks, and the active search [Bello et
al., 2016] on real networks. For NCLS, we set large values
for k to test whether it can realize the effective search of large
neighborhoods. Additionally, we visualize the validation re-
sults during the entire training process, where we study the
impact of node coordinates. Our results show that: 1) NEP-
AM outperforms baselines in almost all cases. In particular,
it has a much stronger OOD generalization ability than NEP-
DQN; 2) NEP-HAM performs better than or comparable to
NEP-AM in most cases; 3) NCLS can improve the quality
of solutions by effectively searching large neighborhoods; 4)
Node coordinates are crucial for NEP-AM and provide addi-
tional information for NEP-HAM.

To summarize, our contributions are as follows.
1) Towards a more effective decision model with stronger

generalization ability, we propose NEP-AM, where do-
main knowledge is incorporated to improve both the
state and action representations. To directly utilize the
network structure, we propose NEP-HAM by adding a
structure-aware attention module to NEP-AM.

2) To further improve the solving of NEP, we propose
NCLS, which exploits a learned policy to effectively
search a large neighborhood. Specially, it realizes the
effective search of the restricted k-exchange neighbor-
hood of size O(2lnk) by examining its subset of size
O(2lη), i.e., the neural confined neighborhood.

3) We demonstrate the superiority of NEP-AM/HAM
through extensive experiments, including the evaluation
of the ID, OOD generalization ability, and active search.
We verify NCLS’s ability to search larger neighbor-
hoods. In addition, we compare validation curves and
assert the importance of providing node coordinates.

2 Related Work
Network robustness is a wide-ranging area of research that
began around 20 years ago. NEP is one of the most im-
portant research topics in network robustness and has at-
tracted increasing attention due to its applicability in real-
world applications. There are many works addressing NEP
by designing heuristic algorithms [Beygelzimer et al., 2005;
Sánchez Martı́nez, 2009; Wang and Van Mieghem, 2010;
Wang et al., 2014; Li et al., 2018]. These methods insert
an edge between the current best unconnected pair of nodes,
where the quality of an unconnected pair of nodes is mea-
sured by some criterion, and repeat this process until the end.
Let L be the graph Laplacian and λ2(L) be the second small-
est eigenvalue of L. Criteria in [Beygelzimer et al., 2005;
Sánchez Martı́nez, 2009; Wang and Van Mieghem, 2010;
Li et al., 2018] are designed to maximize λ2(L), which is
called algebraic connectivity in the network jargon. The ra-
tionale lies in that the algebraic connectivity is a lower bound
of node connectivity [Fiedler, 1973], reflecting the robustness
of a network under the strongest attack algorithm, which in-
volves identifying the minimum number of nodes that must
be removed to disconnect the network. Since a network G’s
smallest degree provides an upper bound of its algebraic con-
nectivity [Fiedler, 1973], the smallest degree has been used
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as a surrogate objective to maximize λ2(L). For instance, in
each step, a link is added to unconnected nodes with lowest
degrees [Beygelzimer et al., 2005] or between the minimum
degree node and a random chosen node [Sánchez Martı́nez,
2009]. To optimize λ2(L) directly, a useful property is that
the improvement of λ2(L) by inserting (u, v) can be approx-
imated by |eu − ev|2, where e is the eigenvector of L corre-
sponding to λ2(L) [Ghosh and Boyd, 2006]. To exploit this
property, in each step, [Wang and Van Mieghem, 2010] adds
a link between unconnected u, v with the maximal algebraic
distance dA(u, v) = |eu − ev|. [Li et al., 2018] finds that
in a special class of graphs, two nodes maximizing the alge-
braic distance are the ones with minimum local centrality and
maximum distance. They thus propose a criterion based on
their finding. Other than algebraic connectivity, the criterion
in [Wang et al., 2014] is built based on effective resistance
Ω(u, v) = (L̂−1)v,v + (L̂−1)u,u − 2(L̂−1)v,u, where L̂−1

is the pseudo inverse of L [Ellens et al., 2011]. Intuitively,
for a node pair with few alternative and longer paths, its ef-
fective resistance will be larger than that with a high number
of alternative and short paths. Thus, the unconnected nodes
with maximum effective resistance, i.e., argmaxu,v Ω(u, v),
are selected in [Wang et al., 2014]. From the above introduc-
tion, we can see that the design of a heuristic algorithm is a
complex task requiring extensive domain knowledge. In ad-
dition, the performance of a heuristic is often limited by the
designer’s intuition and experience.

In recent years, machine learning techniques are increas-
ingly being used to solve combinatorial optimization prob-
lems, such as Travelling Salesman Problem [Vinyals et al.,
2015; Bello et al., 2016; Deudon et al., 2018; Kool et al.,
2018], KnapSack [Bello et al., 2016], Vehicle Routing Prob-
lem [Nazari et al., 2018; Kool et al., 2018], Maximum
Cut [Khalil et al., 2017], and so on. These methods can
be divided into two categories: supervised learning based
and RL based. However, supervised learning does not ap-
ply to NEP since the optimal labels are unavailable. [Dar-
variu et al., 2021] proposes an RL based method NEP-DQN,
which uses a neural network Qθ(s, v) to estimate the opti-
mal action-value function. In particular, a graph neural net-
work [Dai et al., 2016] is employed to extract the represen-
tations of state and action, where the raw feature of a node
is a binary variable indicating whether the node is an edge
stub. These representations are used to calculate the action-
value function. θ is trained based on a variant of DQN [Mnih
et al., 2013]. After training, the node chosen under state s
is given by π(s) = argmaxv Qθ(s, v). However, the do-
main knowledge is completely ignored in NEP-DQN, which
causes its poor OOD generalization ability. In contrast, our
proposed methods exploit domain knowledge to improve the
representations of state and action, which are essential for the
decision process. Previous work [Hu et al., 2019] has also
considered the confine of the neighborhood of 1-opt local
search. However, their method can not be directly general-
ized to larger k. Some studies, including [Wu et al., 2021;
Ma et al., 2021], focus on using RL to learn improvement
heuristics directly, rather than using pre-trained models to
guide classical improvement heuristics as in our work.

3 Methodology
In this section, we first describe the decision process and then
present our proposed NEP-AM and NEP-HAM. Finally, we
introduce the NCLS.

3.1 The Decision Process and Policy Learning
Let G be the network to enhance, V = {1, 2 · · · , n} be
the node set consisting of n nodes. Given the edge bud-
get l, there are 2l steps in the decision procedure. At
each step, the agent observes a state, decides which node
to choose, and then acts to change the state. Specifically,
for 0 ≤ t ≤ l − 1, the state s2t is a tuple (G2t, ∅), where
G2t = G ⊕ {(v2i, v2i+1)}t−1

i=0 is obtained by adding edges
{(v2i, v2i+1)}t−1

i=0 into G, v0, v1, · · · , v2t−1 are nodes chosen
in previous steps, ∅means there is no edge stub. After observ-
ing s2t, the agent chooses an edge stub v2t and enters a new
state s2t+1 = (G2t+1, {v2t}), where G2t+1 = G2t. Then the
agent chooses v2t+1 and insert (v2t, v2t+1) into G2t+1 so that
G2t+2 = G2t+1⊕{(v2t, v2t+1)}. The agent repeats this pro-
cess to the final step and receives a reward as the robustness
improvement of G2l against G.

Let πθ be a parameterized policy, where θ refers to the pa-
rameters of a model. We learn πθ by maximizing the expected
reward:

L(θ) = Eτ∼πθ
[R(τ)] (1)

where τ = (s0, v0, · · · , s2l−1, v2l−1) is a trajectory. R(τ) is
the robustness improvement of the final network G2l against
G. We use the REINFORCE [Williams, 1992] to estimate the
gradient and introduce a baseline b(s) to reduce the variance:

∇L(θ) ∼ (R(τ)− b(s))
2l−1∑
i=0

∇θ logπθ(vi|si) (2)

where τ is sampled from πθ and ‘∼’ means the right-hand
side is an unbiased estimator of the gradient.

3.2 NEP-AM
NEP-AM consists of three parts: a feature extraction module
that extracts node features, an encoder that generates node
and state representations from the extracted features, and a
decoder that makes decisions based on the node and state rep-
resentations. We discuss these three parts in detail below.

Feature Extraction Module
High-quality state and action representations help improve
the policy’s performance. We introduce the following two
kinds of features2. The first type, aiming to characterize the
local structure near a node, includes centrality measures (the
degree centrality and the average neighbor degree) and the
clustering coefficient. Centrality measures, with a strong
ability to distinguish nodes, have been widely used to iden-
tify critical nodes in complex networks [Liu et al., 2016].
The clustering coefficient complements centrality measures
by characterizing the presence of loops in the local neighbor-
hood [Costa et al., 2007]. The goal of the second type is to de-
scribe the relative relationship between the edge stub and the

2We provide a detailed introduction to the feature selection in the
appendix.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2124

https://github.com/MarginalCentrality/IJCAI-2023-NEP/blob/main/appendix.pdf


other nodes. Inspired by heuristics [Wang and Van Mieghem,
2010; Li et al., 2018], we compute the distance, product of
degree, and algebraic distance between the considered node
pairs. And we adopt the Jaccard coefficient [Lü and Zhou,
2011] to characterize the similarity between the considered
node pairs. All statistics are normalized between 0 and 1.
In addition, to capture the global position of nodes in the
network, we project them into a two-dimensional coordi-
nate space by using the eigenvectors associated with the two
smallest nonzero eigenvalues of the graph Laplacian, which
has the property that adjacent nodes have smaller Euclidean
distances in the coordinate space. We will illustrate the indis-
pensable role of node coordinates through experiments.

Encoder
The encoder generates low-dimensional representations for
states and actions. The critical step involves computing node
representations from the raw features. For node 1 ≤ i ≤
n, we put all extracted features into a vector xi, perform a
linear transformation to map xi to the initial representation
hi, and process hi by multiple transformer layers [Vaswani
et al., 2017]. Let o be the number of transformer layers. For
1 ≤ j ≤ o, the computation steps in the j-th layer are listed
in (3).

ĥj
i ← MHA(hj−1

i , {hj−1
1 , · · · , hj−1

n })
h̃j
i ← BN1(ĥ

j
i + hj−1

i )

hj
i ← BN2(FF(h̃

j
i ) + h̃j

i )

(3)

where hj−1
i is the representation of i-th node produced by the

j − 1-th layer and h0
i = hi. MHA refers to the multi-head

attention mechanism [Vaswani et al., 2017]. In each head,
hj−1
i is mapped into a query, {hj−1

1 , · · · , hj−1
n } are mapped

into keys and values, and comparabilities between the query
and keys are computed to combine the values into an embed-
ding for node i. Embeddings of node i on all heads are lin-
early projected to the single representation ĥj

i . BN1 and BN2

are batch normalization modules [Ioffe and Szegedy, 2015]
with learnable affine parameters. FF is the point-wise feed-
forward network.

During the 2t-th step of the decision process, the action
representation of selecting node i is the representation of node
i, i.e., ho

i , computed from G2t by the procedure described
above. The state s2t is represented as hs = [hG, he], where
the graph embedding hG is obtained via the sum or mean
of all node embeddings, he is the default vector when there
is no edge stub. The representation for s2t+1 is computed
similarly, the only difference is that he is replaced by the node
representation of the edge stub.

Decoder
The decoder makes decisions based on the state representa-
tion hs and node representations {ho

i }ni=1. In the first step,
the decoder computes a glimpse as below.

g = MHA(hs, {ho
1, · · · , ho

n}) (4)

where MHA is almost the same as described above, except
that the compatibility of a node is masked as −∞ if the node
is infeasible. At step 2t, nodes with degree equal to n− 1 are

infeasible; at step 2t+1, nodes that are connected to the edge
stub are infeasible.

In the second step, the glimpse g is mapped into query q,
the node embedding ho

i is mapped into key ki. The compati-
bility ui is computed as below:

ui =

C · tanh(q
T ki√
d
), if i is feasible

−∞, otherwise

(5)

where d is the dimension of the query, C is a hyperparameter
to balance exploration and exploitation [Bello et al., 2016].
Finally, the compatibilities are transformed by a Softmax op-
erator into probabilities.

3.3 NEP-HAM
In the encoder of NEP-AM, initial node embeddings hi,
which are indirectly computed from the network structure
through extracted features, are used as the input of multiple
transformer layers. One way to improve the performance is to
make the input directly depend on the network structure. To
this end, we add a structure-aware multi-head attention mod-
ule [Shi et al., 2020] before the multiple transformer layers,
where node i queries its first order neighbors and combines
their values in the added module. The resulting NEP-HAM
model is a hierarchical attention model, i.e., the query range
changes from local to global. Compared to NEP-AM, NEP-
HAM enables the direct utilization of the network structure.

3.4 Neural Confined Local Search
Given an initial solution, k-opt local search is a commonly
used technique to improve the solution. As stated in the in-
troduction, k is restricted to a small value to maintain a rea-
sonable running time. To remove this restriction, we pro-
pose NCLS to realize the effective search of a restricted k-
exchange neighborhood of size O(2lnk) by only examin-
ing candidates in the neural confined neighborhood of size
O(2lη), where η is a hyperparameter to balance effectiveness
and efficiency. We can take a large k for the number of can-
didates to check is independent of k.

Now we introduce the details of NCLS. Let wp = {p, (p+
1)%2l, · · · , (p + k − 1)%2l} be the index set of exchange-
able nodes, where p is the starting index. Let F be the set
of all feasible solutions, v = {v1, v2, · · · , v2l} be a feasible
solution. We define the restricted k-exchange neighborhood
as N (v) = ∪2lp=1Np(v), where Np(v) is defined as below.

Np(v) = {v′ ∈ F : v′i = vi, ∀1 ≤ i ≤ 2l, i /∈ wp} (6)

It is clear that the size of N (v) is O(2lnk) and an exhaus-
tive enumeration overN (v) is unfeasible for large k. To con-
fine N (v), we first apply the partial solution v′ = {vi : ∀1 ≤
i ≤ 2l, i /∈ wp} to G and obtain a state s′. Then we generate
η groups of nodes {(vi1, · · · , vik)}

η
i=1 by a learned policy πθ

from s′. We can either sample these groups from πθ or per-
form a beam search. All solutions that can be obtained by re-
placing exchangeable nodes with a node group form the neu-
ral confined neighborhood. Thus, the neural confined neigh-
borhood is of size O(2lη). The rationale behind NCLS is that
we can decode high-quality groups from a learned policy.
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Test G τ(%) LDP FV ERes Greedy NEP-DQN NEP-AM (ours) NEP-HAM (ours)

ID

BA
1 0.025 (0.036) 0.017 (0.043) 0.019 (0.048) 0.045 (0.033) 0.047* (0.057*) 0.047* (0.057*) 0.049 (0.060)

2.5 0.087 (0.092) 0.036 (0.112) 0.090 (0.104) 0.091 (0.074) 0.117 (0.130) 0.126* (0.134*) 0.133 (0.135)
5 0.301 (0.164) 0.175 (0.181) 0.312 (0.187) 0.167 (0.139) 0.289 (0.222) 0.341* (0.225*) 0.352 (0.227)

ER
1 0.090 (0.087) 0.079 (0.094) 0.088 (0.102) 0.152 (0.069) 0.128 (0.104*) 0.129 (0.106) 0.140* (0.104*)

2.5 0.189 (0.163) 0.155 (0.169) 0.182 (0.174) 0.262 (0.135) 0.279 (0.173) 0.305* (0.177*) 0.309 (0.179)
5 0.307 (0.232) 0.247 (0.247) 0.284 (0.254*) 0.418 (0.212) 0.482 (0.249) 0.499* (0.254*) 0.540 (0.256)

OOD
(100)

BA
1 0.163 (0.151) 0.003 (0.139) 0.053 (0.159) — 0.016 (0.178) 0.160* (0.206) 0.158 (0.197*)

2.5 0.407 (0.308) 0.191 (0.304) 0.313 (0.312) — 0.115 (0.399) 0.414* (0.415*) 0.420 (0.420)
5 0.573 (0.463) 0.442 (0.463) 0.484 (0.465) — 0.478 (0.566*) 0.616* (0.605) 0.630 (0.605)

ER
1 0.135 (0.022) 0.107 (0.022) 0.133 (0.023*) — 0.082 (0.023*) 0.249* (0.024) 0.297 (0.024)

2.5 0.166 (0.038) 0.138 (0.039*) 0.167 (0.040) — 0.133 (0.038) 0.288* (0.040) 0.303 (0.040)
5 0.184 (0.057) 0.176 (0.059*) 0.200 (0.059*) — 0.157 (0.056) 0.289* (0.060) 0.305 (0.060)

OOD
(500)

BA
0.05 0.002 (0.018) 0.000 (0.017) 0.000 (0.026) — 0.000 (0.012) 0.020* (0.019*) 0.021 (0.014)
0.1 0.021 (0.068) 0.000 (0.036*) 0.000 (0.068) — 0.000 (0.023) 0.028* (0.036*) 0.029 (0.034)
0.2 0.084 (0.113*) 0.000 (0.080) 0.010 (0.121) — 0.000 (0.074) 0.071* (0.079) 0.044 (0.096)

ER
0.05 0.156 (0.180) 0.111 (0.167) 0.145 (0.178*) — 0.093 (0.174) 0.248 (0.170) 0.173* (0.165)
0.1 0.196 (0.221) 0.139 (0.212) 0.180 (0.221) — 0.121 (0.217*) 0.316 (0.215) 0.224* (0.215)
0.2 0.262 (0.271*) 0.187 (0.265) 0.236 (0.272) — 0.183 (0.268) 0.397 (0.269) 0.287* (0.268)

Table 1: Comparison of the average RI evaluated on the ID test set and OOD test set. Values outside (inside) the parentheses indicate the
average RIs against the targeted (random) attack. The best results are boldfaced and the second-best results are marked with asterisks. Dashs
indicate unavailable solutions due to the unbearable computational time.

4 Experiments
The main goal of this section is to provide answers to the
following research questions. RQ1: Does NEP-AM outper-
form previous baselines? RQ2: How does the performance of
NEP-HAM compare with NEP-AM? RQ3: Can NCLS effec-
tively search the restricted k-exchange neighborhood? RQ4:
How important are node coordinates to the performance of
NEP-AM/HAM?

4.1 Datasets
We use synthetic networks generated from graph models and
real-world networks. The first model is Barabási-Albert (BA)
model [Barabási and Albert, 1999]. An instance is generated
according to the growth and preferential attachment mech-
anisms, where newly added nodes preferentially attach to
M existing nodes with probabilities proportional to the de-
grees of those nodes. The second model is Erdős-Rényi (ER)
model [Erdos et al., 1960]. An instance is generated by uni-
formly sampling from the set consisting of all networks with
n nodes and m edges. To evaluate RL pretraining, which is
introduced below, we generate networks of 3 different sizes:
20, 100, and 500. We set M = 2 for BA and m = p ×

(
n
2

)
for ER, where p is set as 0.2 for 20, 100, and 0.015 for 500.

We take 10 real-world networks: the road networks in
Kazakhstan, Poland, Romania, Finland, and Turkey, and
the power grids in the Switzerland, Czech Republic, United
Kingdom, Hungary, and Sweden3. For convenience, we ab-
breviate these country names by country codes in the follow-
ing paper, i.e., KZ, PL, RO, FI, TR, CH, CZ, GB, HU, and
SE.

4.2 Comparing Methods and Parameter Setup
As in [Darvariu et al., 2021], we set up two attack algorithms:
the first is the degree-based targeted attack, as we mentioned
before; the second is the random attack, known as random

3All real-world networks are available at this URL. All source
code is available at this github repository.

failures in the network jargon, where nodes are removed
in random order. We compare with 5 baselines, including
4 heuristics and NEP-DQN. Heuristics, involving Greedy,
LDP [Wang et al., 2014], FV [Wang and Van Mieghem,
2010], and ERes [Wang et al., 2014] have been introduced
in the related work section. Their criteria are formally listed
below.

Greedy(u, v) = R(G⊕ {(u, v)})−R(G)

LDP(u, v) = −1× deg(u)× deg(v)

FV(u, v) = dA(u, v)

ERes(u, v) = Ω(u, v)

(7)

where deg(u) is the degree of u, dA(u, v) is the algebraic
distance between u, v, Ω(u, v) is the effective resistance be-
tween them. For each method, we evaluate the Robustness
Improvement (RI):

RI(G) = R(Ḡ)−R(G) (8)
where Ḡ is the network enhanced by the method.

For NEP-AM and NEP-HAM, we set the initial embedding
dimension dhi

= 32, the number of transformer layers o = 3.
In MHA, the number of heads is set as H = 8, the key and
value dimensions are set to dk = dv = dhi

/H . The number
of hidden neurons in FF is set as 512. The C in (5) is set to
10. Models are trained using Adam optimizer; the batch size
is fixed at 128, and the learning rate is fixed at 1e− 4. Other
hyperparameters, such as max norm of the gradients (1.0 or
∞), set pooling function (sum or mean) to compute the graph
embedding hG, baseline function b(s) in (2) (the exponential
or greedy rollout baseline [Kool et al., 2018]), are adjusted to
optimize the performance of our models. The experiments
are conducted on a server (56-core Intel Xeon Gold 6348
CPU 2.60GHz, 1T RAM, 8 NVIDIA A100 GPUs) under the
Python 3.9.12 and PyTorch 1.12.1 environments.

4.3 Evaluation of RL Pretraining (RQ1 & RQ2)
Our goal in RL pretraining is to test the ability of a pre-trained
model to generalize to both ID and OOD test sets. To this end,
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G LDP FV Eres Greedy NEP-DQN NEP-AM (ours) NEP-HAM (ours)
KZ 0.080 (0.163) 0.160 (0.197) 0.160 (0.186) 0.240 (0.221) 0.400* (0.203) 0.480 (0.257*) 0.480 (0.261)
PL 0.130 (0.140) 0.087 (0.167) 0.087 (0.186) 0.043 (0.189) 0.304* (0.230) 0.435 (0.234*) 0.435 (0.239)
RO 0.185 (0.183) 0.074 (0.189) 0.111 (0.216) 0.148 (0.211) 0.370 (0.235) 0.519 (0.264) 0.444* (0.261*)
TR 0.057 (0.180) 0.086 (0.204) 0.086 (0.193) 0.114 (0.220) 0.514 (0.247) 0.743 (0.258) 0.657* (0.256*)
FI 0.143 (0.145) 0.143 (0.154) 0.095 (0.187) 0.190 (0.192) 0.524 (0.189) 0.476* (0.235) 0.476* (0.231*)
CH 0.091 (0.100) 0.091 (0.140) 0.091 (0.175) 0.091 (0.186) 0.136* (0.226) 0.182 (0.249*) 0.182 (0.259)
CZ 0.116 (0.272) 0.116 (0.268) 0.116 (0.302) 0.093 (0.253) 0.186 (0.375) 0.395* (0.357) 0.419 (0.365*)
GB 0.171 (0.273) 0.122 (0.271) 0.073 (0.290) 0.220 (0.319) 0.463 (0.379) 0.488* (0.359) 0.537 (0.367*)
HU 0.190 (0.127) 0.000 (0.168) 0.143* (0.162) 0.095 (0.151) 0.190 (0.185) 0.190 (0.225) 0.190 (0.215*)
SE 0.156 (0.169) 0.094 (0.202) 0.188 (0.241) 0.094 (0.255) 0.313* (0.276) 0.312 (0.293) 0.344 (0.290*)

Table 2: Comparison of RI evaluated on real networks. Values outside (inside) the parentheses indicate the RIs against the targeted (random)
attack. The best results are boldfaced and the second-best results are marked with asterisks.

we conduct experiments on synthetic networks. We generate
a training set, a validation set, an ID test set, and two OOD
test sets for each network model. The training set consists
of 214 networks, while both the validation set and the test
set consist of 27 networks. The network size in the training,
validation, and ID test sets is 20, while the network size in
the first/second OOD test set is 100/500. For each network,
the edge budget is set as a percentage τ of the maximal pos-
sible number of edges, i.e., the number of edges to insert is
l =

(
n
2

)
τ . We set the values of τ as 1%, 2.5%, and 5% for

networks with 20 or 100 nodes, and decrease these values for
networks with 500 nodes to 0.05%, 0.1%, and 0.2% to mit-
igate the expensive computation cost. We train a model for
each attack method, network model, and edge budget com-
bination. The training steps are set as 400k, 300k, and 200k
for τ = 1%, 2.5%, 5%, respectively. We then choose the pre-
trained model with the best validation performance for each
combination and report the best performance achieved by the
pre-trained models for each OOD test set.

Table 1 displays the average RIs against both targeted and
random attacks. The results for targeted (random) attack are
outside (inside) the parentheses. Dashes are used to indicate
unavailable solutions due to the unbearable computational
time. We use names like “BA-100” (“OOD-100”) to repre-
sent the BA (OOD) test set consisting of networks with 100
nodes.

Targeted attack. We make the following observations re-
garding the targeted attack from Table 1. 1) In the ID test
set, NEP-DQN performs better or comparable to all heuris-
tics. NEP-AM improves the results of NEP-DQN for nearly
all cases, and the maximum relative increase of average
RI (17.99%) is reached at BA-20, τ=5%. 2) In the OOD
test sets, NEP-DQN is beaten by FV and ERes in most
cases and performs significantly worse than LDP in all cases.
In particular, its performance degrades severely at BA-500,
where no robustness improvements are obtained. In compar-
ison, NEP-AM works better than the best-performing heuris-
tic (LDP) in almost all cases. For instance, NEP-AM out-
performs LDP by 33.33% for BA-500 at τ=0.1% and by
57.07% ∼ 84.44% (51.53% ∼ 61.22%) for ER-100 (ER-
500). The only case where LDP achieves a non-marginal im-
provement (18.31%) over NEP-AM is BA-500 at τ=0.2%. In
addition, NEP-AM can generate meaningful solutions even

for BA-500 at τ=0.05%, where all baselines fail to yield im-
provements. 3) For ID and OOD-100, NEP-HAM performs
better than NEP-AM in almost all cases, especially for the
ER model. For instance, compared with NEP-AM, average
RIs brought by NEP-HAM have a relative increase of 8.53%
and 8.22% for ER-20 at τ = 1%, 5%, and of 19.28% for ER-
100 at τ = 1%. One possible reason is that, compared to
BA networks, the features are more evenly distributed across
nodes in ER networks, making the network structure informa-
tion more important. And in NEP-HAM, the network struc-
ture directly affects node representations by determining the
local query range. However, this direct dependence on net-
work structure harms the generalization ability of NEP-HAM
when applied to larger networks. This is evidenced by the
worse performance of NEP-HAM compared to NEP-AM on
ER-500. Despite this, NEP-HAM still outperforms LDP on
OOD-500 except at BA-500, τ=0.2%.

Random attack. We make the following observations re-
garding the random attack from Table 1. 1) The observations
for the ID test set are similar to those for the targeted attack.
However, the relative improvements of NEP-AM compared
to NEP-DQN against the random attack (1.35% ∼ 3.08%)
are less evident than those (0.78% ∼ 17.99%) against the tar-
geted attack. The reason, as pointed out by [Darvariu et al.,
2021], is that improving network robustness against the ran-
dom attack is a simpler task than against the targeted attack
such that: a) even heuristics are enough to generate compet-
itive solutions and b) a learned policy can only obtain a lim-
ited performance improvement. 2) In OOD-100, NEP-DQN
provides better or at least comparable performance than the
best baseline (ERes), which differs significantly from the sit-
uation observed under the targeted attack. An explanation is
that generalization to OOD-100 for the challenging task (im-
proving against the targeted attack) requires a more effec-
tive decision model than for the easy task (improving against
the random attack). NEP-AM outperforms NEP-DQN by
4.01% ∼ 15.73% on OOD-100. In OOD-500, NEP-AM out-
performs over NEP-DQN in all cases (0.37% ∼ 58.33%) ex-
cept at ER-500, τ = 0.05% and ER-500, τ = 0.1%, where
the differences are small (less than 2.3%). However, compet-
itive heuristics (LDP and ERes) perform best for OOD-500.
That is because the severely changed network structures de-
grade the performance of NEP-AM such that the competitive
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heuristics beat it. 3) In the ID test set, NEP-HAM outper-
forms NEP-AM in all cases (0.75% ∼ 5.25%) except at ER-
20, τ = 1%, where the average RI of NEP-HAM is 1.89%
lower than that of NEP-AM. For OOD-100, NEP-HAM per-
forms on par with NEP-AM. For instance, they have the same
result values on ER-100. For OOD-500, the average RIs of
NEP-HAM are 0.37% ∼ 26.32% lower than that of NEP-AM
in all cases, except for BA-500, τ = 0.2%, where NEP-HAM
outperforms NEP-AM by 21.52%.

Conclusions. 1) In the ID test set, NEP-AM outperforms
all baselines for both attack methods, and NEP-HAM fur-
ther surpasses NEP-AM. 2) When it comes to OOD test sets,
NEP-AM shows better generalization ability than NEP-DQN,
especially for the targeted attack where NEP-AM outper-
forms the best-performing heuristic in almost all cases. NEP-
HAM performs better than or comparable to NEP-AM in
OOD-100. Although directly utilizing network structure in-
formation contributes to the performance gain of NEP-HAM,
it hinders its generalization to more severely changed network
structures, i.e., OOD-500. 3) NEP-AM/HAM also suffers
from performance degradation on OOD test sets. One poten-
tial solution is to include a competitive heuristic, e.g., LDP, as
a sub-policy of the decision model such that the heuristic can
be utilized when a significant distribution shift is detected.
We will explore this solution in future work.

4.4 Evaluation of Active Search (RQ1 & RQ2)
In active search [Bello et al., 2016], we focus on testing
a model’s ability to solve a single instance, which involves
continuously optimizing the model’s parameters while keep-
ing track of the best solution. We test our models on real
networks, with a fixed τ value as 2.5%. The edge budget
is computed using the same method in RL Pretraining. All
models (including NEP-DQN) are trained for 50k steps4. We
try NEP-AM/HAM with or without the entropy regulariza-
tion [Haarnoja et al., 2018] and report the best results. For
entropy regularization, we set the target entropy to −n, ini-
tialize the dual variable α to 10, and fix the learning rate for
α to 1e − 4. We present the results in Table 2, where the re-
sults regarding targeted (random) attack are outside (inside)
the parentheses. For NEP-DQN performs significantly bet-
ter than heuristics on real networks, we mainly compare our
models with NEP-DQN in the discussion below.

Targeted attack. We analyze the results regarding the tar-
geted attack in Table 2 as below. 1) In 7 (8) out of 10 real
networks, NEP-AM (NEP-HAM) outperforms NEP-DQN
significantly with a relative increase of RIs ranging from
5.40% (9.90%) to 112.37% (125.27%). On SE, NEP-AM
performs slightly worse than NEP-DQN with −0.32% lower
RI, while NEP-HAM outperforms NEP-DQN by 9.90%. On
HU, all models have the same RI. On FI, the RI of NEP-
AM (NEP-HAM) is 9.16% lower than NEP-DQN. This indi-
cates the entropy regularization does not effectively prevent
the premature convergence of our models. In future work,
we will explore incorporating intrinsic rewards [Burda et al.,

4We discuss the results under different training steps in the ap-
pendix.

2018] to improve our models’ exploration ability to address
this issue. 2) NEP-HAM performs better than or equal to
NEP-AM in 8 out of 10 real networks. Specifically, it out-
performs NEP-AM by 6.08%, 10.04%, and 10.26% on CZ,
GB, and SE, respectively. However, on RO and TR, the RIs
of NEP-HAM are 14.45% and 11.57% lower than NEP-AM.

Random attack. We analyze the results regarding the ran-
dom attack in Table 2 as below. 1) NEP-AM outperforms
NEP-DQN in 8 out of 10 real networks. Specifically, NEP-
AM shows significant improvements on FI, KZ, and HU with
relative increases of RIs at 24.34%, 26.60%, and 21.62%, re-
spectively. However, on CZ and GB networks, NEP-AM per-
forms slightly worse than NEP-DQN with about 5% lower
RIs. NEP-HAM narrows the performance gap to NEP-DQN
on these two networks to about 3%. 2) In 5 out of 10 real
networks, NEP-HAM has a slight advantage over NEP-AM
with relative increases of RIs ranging from 1.56% to 4.02%.
However, NEP-AM performs slightly better than NEP-HAM
by 1.73% and 4.65% on FI and HU networks, respectively.
They have similar performance in the remaining three net-
works, with about or less than 1% performance differences.

Conclusions. 1) Our models show significant progress in
solving NEP for real networks against both attack methods.
However, we should improve their exploration ability to fur-
ther improve their performance, especially for the targeted
attack. 2) NEP-HAM performs better than or similar to NEP-
AM in most real networks.

4.5 Evaluation of the NCLS (RQ 3)
We aim to check whether NCLS can realize the effective
search of the restricted k-exchange neighborhood with large k
values. Due to the extremely long computation time of k-opt
local search with large k values, we compare NCLS with 1-
opt local search. We evaluate them on the ID test sets of syn-
thetic networks at τ = 5% and real networks at τ = 2.5%.
The NEP-AM/HAM model trained in previous experiments
is used to generate initial solutions for NCLS and 1-opt local
search. In particular, we sample 8 initial solutions for each
synthetic network and attack method and 32 (128) initial so-
lutions for each real network for the targeted (random) attack.
To generate a neural confined neighborhood, we perform a
beam search with width 2 to find the η = min{2k, 100}
groups of nodes with the highest probability under a trained
model to replace the exchangeable nodes. We set k to 5, 7.
We update the current solution with the best solution in the
neighborhood and iteratively improve the solution until ob-
taining a local optimal solution. We process all initial solu-
tions in parallel, and choose the best-improved solution as the
final solution. We present the results in Table 3 and also list
the results of NEP-AM and NEP-HAM in the table for eas-
ier comparison. We use names like “NCLS-AM” to represent
NCLS with both initial solutions and neural confined neigh-
borhoods generated by a trained NEP-AM model and “LS-
AM” to represent the 1-opt local search with initial solutions
generated by a trained NEP-AM model. When comparing
NCLS-AM (NCLS-HAM) with NEP-AM (NEP-HAM), we
report the best results among NCLS-AM (NCLS-HAM) with
k = 5, 7. We observe that for NCLS-AM (NCLS-HAM),
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G NEP-AM LS-AM NCLS-AM NEP-HAM LS-HAM NCLS-HAM
k=5 k=7 k=5 k=7

BA 0.341 (0.225) 0.550 (0.320) 0.627 (0.349) 0.642 (0.363) 0.352 (0.227) 0.547 (0.325) 0.618 (0.347) 0.648 (0.362)
ER 0.499 (0.254) 0.821 (0.322) 0.832 (0.330) 0.837 (0.339) 0.540 (0.256) 0.816 (0.324) 0.837 (0.337) 0.837 (0.337)
KZ 0.480 (0.257) 0.520 (0.264) 0.480 (0.273) 0.520 (0.268) 0.480 (0.261) 0.520 (0.257) 0.480 (0.269) 0.520 (0.269)
PL 0.348 (0.234) 0.435 (0.235) 0.435 (0.242) 0.435 (0.239) 0.435 (0.239) 0.435 (0.237) 0.435 (0.237) 0.478 (0.241)
RO 0.519 (0.264) 0.444 (0.262) 0.630 (0.261) 0.630 (0.266) 0.444 (0.261) 0.444 (0.259) 0.556 (0.261) 0.593 (0.273)
TR 0.743 (0.258) 0.743 (0.253) 0.771 (0.265) 0.771 (0.268) 0.657 (0.256) 0.657 (0.253) 0.771 (0.269) 0.743 (0.268)
FI 0.476 (0.235) 0.476 (0.231) 0.476 (0.235) 0.476 (0.240) 0.476 (0.231) 0.476 (0.223) 0.476 (0.237) 0.476 (0.236)

CH 0.182 (0.249) 0.182 (0.237) 0.182 (0.248) 0.182 (0.257) 0.182 (0.259) 0.182 (0.265) 0.182 (0.289) 0.182 (0.281)
CZ 0.395 (0.357) 0.419 (0.347) 0.419 (0.347) 0.419 (0.352) 0.419 (0.365) 0.395 (0.358) 0.419 (0.354) 0.442 (0.358)
GB 0.488 (0.359) 0.585 (0.362) 0.561 (0.371) 0.610 (0.370) 0.537 (0.367) 0.561 (0.365) 0.585 (0.370) 0.585 (0.370)
HU 0.190 (0.225) 0.190 (0.206) 0.190 (0.221) 0.190 (0.225) 0.190 (0.215) 0.190 (0.207) 0.190 (0.212) 0.190 (0.213)
SE 0.312 (0.293) 0.344 (0.287) 0.344 (0.291) 0.375 (0.298) 0.344 (0.290) 0.375 (0.288) 0.375 (0.291) 0.375 (0.292)

Table 3: Evaluation of NCLS under different k. Values outside (inside) the parentheses indicate the RIs against the targeted (random) attack.
The best results are boldfaced.

these best results are consistently achieved with k = 7 in
most cases.

Targeted attack. We make the following observations re-
garding the targeted attack in Table 3 as below. 1) When
dealing with synthetic networks (BA and ER), NCLS-
AM/HAM performs better than LS-AM/HAM. Specifically,
with k = 5, NCLS-AM/HAM outperforms LS-AM/HAM
by 14%/12.98% on BA networks and by 1.34%/2.57% on
ER networks. With k = 7, the advantages of NCLS-
AM/HAM expand further to 16.73%/18.46% on BA net-
works and 1.95%/2.57% on ER networks. 2) For real net-
works, with k = 5, NCLS-AM outperforms LS-AM in two
networks (RO and TR) by 41.89% and 3.77%, respectively.
It performs equally well as LS-AM in six networks and worse
in two networks (KZ and GB) with a 7.69% and 4.10% dif-
ference. With k = 7, NCLS-AM outperforms LS-AM in
four networks (RO, TR, GB, and SE) by 41.89%, 3.77%,
4.27% and 9.01%, and performs equally well as LS-AM in
all other networks. It is worth noting that LS-AM, NCLS-
AM with k = 5, and NCLS-AM with k = 7 tend to have
the same results in most networks. However, this does not
imply our methods cannot search a larger neighborhood ef-
fectively. The reason for these results is that the initial so-
lutions sampled from NEP-AM are good enough such that
even LS-AM can find high-quality local optima. We find
that when we generate initial solutions randomly, 1-opt lo-
cal search is much worse than NCLS. For instance, in KZ,
NCLS-AM with k = 5 outperforms 1-opt local search by
50%. The results on other real networks are similar, thus
omitted here. We can conduct similar analyses to compare
LS-HAM and NCLS-HAM with k = 5, 7. NCLS-HAM with
k = 5 outperforms LS-HAM in four networks (RO, TR, CZ,
and GB) by 25.23%, 17.35%, 6.08%, and 4.28%. It performs
equally to LS-HAM in five real networks, but performs worse
than LS-HAM in one network (KZ) by 7.69%. Meanwhile,
NCLS-HAM with k = 7 outperforms LS-HAM in five real
networks with relative increases of RIs ranging from 4.28%
to 33.56%, and performs equally to LS-HAM in all remain-
ing real networks. 3) NCLS-AM (NCLS-HAM) shows sig-
nificant improvements over NEP-AM (NEP-HAM) on syn-
thetic networks, with an increase of 88.27% (84.09%) on

BA networks and 67.74% (55%) on ER networks. For real
networks, NCLS-AM (NCLS-HAM) improves the results of
NEP-AM (NEP-HAM) on 7 out of 10 real networks with rel-
ative increases of RIs ranging from 3.77% to 25% (5.49% to
33.56%).

Random attack. We make the following observations re-
garding the random attack in Table 3 as below. 1) For
synthetic networks (BA and ER), with k = 5, NCLS-
AM (NCLS-HAM) produces better results than LS-AM (LS-
HAM). Specifically, NCLS-AM (NCLS-HAM) outperforms
LS-AM (LS-HAM) by 9.06% (6.77%) on BA networks and
by 2.48% (4.01%) on ER networks. When the value of k
is increased to 7, these advantages are further increased to
13.44% (11.38%) on BA networks and 5.28% (4.01%) on
ER networks. 2) For real networks, with k = 5, NCLS-
AM (NCLS-HAM) outperforms LS-AM (LS-HAM) on eight
real networks with relative increases of RIs ranging from
1.39% to 7.28% (0.77% to 9.06%). In the remaining two
networks, NCLS-AM (NCLS-HAM) performs equally to LS-
AM (LS-HAM) on one network and worse than LS-AM
(LS-HAM) on another by 0.38% (1.12%). With k = 7,
NCLS-AM (NCLS-HAM) outperforms LS-AM (LS-HAM)
on all (nine) real networks with relative increases in RIs rang-
ing from 1.44% to 9.22% (1.37% to 6.04%). 3) For syn-
thetic networks, NCLS-AM (NCLS-HAM) improves the re-
sults of NEP-AM (NEP-HAM) by 61.33% (59.47%) on BA
networks and by 33.46% (31.64%) on ER networks. For real
networks, NCLS-AM (NCLS-HAM) improves the results of
NEP-AM (NEP-HAM) on 8 out of 10 real networks with rel-
ative increases in RIs ranging from 0.76% to 6.23% (0.69%
to 11.58%).

Conclusions. 1) NCLS can realize the effective search of
the restricted k-exchange neighborhood by only examining
a few candidates generated by a trained model. 2) NCLS-
AM (NCLS-HAM) as a post-processing tool can significantly
improve the results of NEP-AM (NEP-HAM) on both attack
methods.

4.6 Comparison of Validation Curves (RQ 4)
In the previous subsection, we compare pre-trained models
on synthetic networks. In this subsection, we evaluate the
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Figure 1: Validation Curves.

performance of NEP-AM and NEP-HAM throughout the en-
tire training process by measuring the average RI on the val-
idation set. We also investigate the necessity of recomputing
node coordinates as the network structure changes. Although
methods [Demmel, 1997] have been proposed to approximate
the eigenvectors of graph Laplacian efficiently, there is still
computational overhead. A natural idea is to fix the node
coordinates during the decision process. Thus, we consider
these models with fixed node coordinates. We display the re-
sults of the targeted attack in Fig. 1, which shows the average
RI against the training step. The results of the random attack
are similar, thus omitted here. From the figure, we can see
that: 1) In all cases, NEP-HAM (orange lines) has an obvious
advantage over NEP-AM (blue lines) on all training steps. 2)
With fixed node coordinates, the performance of NEP-AM
degrades severely. Thus, updated node coordinates provide
essential information for NEP-AM to capture the changing
of the network structure. 3) With fixed node coordinates, the
performance of NEP-HAM also degrades somewhat, but not
so much as NEP-AM. That is because NEP-HAM exploits the
network structure more directly than NEP-AM. Thus, recom-
puting node coordinates is indispensable for NEP-AM and
provides some extra information for NEP-HAM.

5 Discussions
Scalability. Our models face two scalability issues5.
Firstly, the changing network structure in the decision pro-
cess requires recomputing node coordinates, which is time-
consuming. To address this, we suggest computing exact
node coordinates only in the first decision step and adjust-
ing them dynamically in subsequent steps using matrix per-
turbation theory [Chan et al., 2014]. Secondly, the computa-
tion of the multi-head attention mechanism is quadratic with

5We provide a running time comparison in the appendix.

graph size. We propose replacing it with the ProbSparse self-
attention [Zhou et al., 2021], which calculates the inner prod-
uct O(n log n) times and does not compromise performance.
Generalization to different network patterns. In this
work, we only focus on how well our models generalize to
different network sizes within the same network model. We
run a pilot experiment and find that when we train our models
on BA networks and test them on ER networks, their perfor-
mance is slightly worse than NEP-DQN trained on ER net-
works. We are working on a solution to address this chal-
lenge. We build an encoder qϕ(z|G) to map the network G to
a distribution over the latent vector z, where the distribution
distance between two similar structures is small, and learn a
policy πθ(v|s, z) conditioned on z. For decision, we select
node v with probability p(v) =

∫
qϕ(z|G)πθ(v|s, z)dz.

Defending against an unknown attack method. Our work
aims to improve network robustness against two common at-
tack methods. However, it is often difficult to anticipate the
attack method beforehand. To address this, we suggest max-
imizing the robustness against the strongest attack strategy
A∗ mentioned in the related work section. Let G∗ be the op-
timal solution under A∗. For arbitrary strategy A, we have
RA∗

(G∗) ≤ RA(G∗) ≤ RA(Ḡ), where Ḡ is the optimal
solution under A. However, the gap between RA∗

(G∗) and
RA(Ḡ) may be large. Our methods can be applied to seek G∗

by modifying the reward function.
Conclusions. We develop NEP-AM and NEP-HAM for
solving NEP. In NEP-AM, we incorporate domain knowledge
to get high-quality state and action representations. In NEP-
HAM, we add a structure-aware attention module to NEP-
AM to directly utilize the network structure information. To
further improve the results of NEP-AM/HAM, we introduce
NCLS to realize the effective search of a large neighborhood.
We demonstrate our models’ superiority and NCLS’s effec-
tiveness through extensive experiments.
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