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Abstract

Association rule mining is one of the well-studied
and most important knowledge discovery task in
data mining. In this paper, we first introduce the
k-disjunctive support based itemset, a generaliza-
tion of the traditional model of itemset by allow-
ing the absence of up to k items in each transaction
matching the itemset. Then, to discover more ex-
pressive rules from data, we define the concept of
(k, k′)-disjunctive support based association rules
by considering the antecedent and the consequent
of the rule as k-disjunctive and k′-disjunctive sup-
port based itemsets, respectively. Second, we pro-
vide a polynomial-time reduction of both the prob-
lems of mining k-disjunctive support based item-
sets and (k, k′)-disjunctive support based associa-
tion rules to the propositional satisfiability model
enumeration task. Finally, we show through an ex-
tensive campaign of experiments on several popu-
lar real-life datasets the efficiency of our proposed
approach.

1 Introduction
Association rule mining task aims at generating within a
given transaction dataset a set of rules of the form X → Y ,
where X (called the antecedent) and Y (called the conse-
quent) are sets of items [Rakesh et al., 1993]. Intuitively,
these rules express that transactions in the database contain-
ing the items in X tend to also contain the items in Y .
Such rules are of interests in many real-world application do-
mains, including recommendation systems [Sandvig et al.,
2007], medical diagnosis [Ordonez et al., 2006], health in-
surance [Viveros et al., 1996], and more recently for super-
vised learning [Rijnbeek and Kors, 2010; Aglin et al., 2020;
Ali et al., 1997]. Several proposals for discovering differ-
ent kinds of association rule based on itemset mining have
been introduced (readers are referred to [Fournier-Viger et
al., 2017] for a comprehensive survey). However, most of
existing works mainly focused on rules with a conjunction
among items for the antecedent and the consequent. Such de-
tected rules can be seen as Horn rules [Balcázar and Garriga,
2007], a particular fragment of propositional logic formulas.

Recently, some researchers get attention for mining gener-
alized association rules, among them disjunctive association
rules extending the expressive power of classical association
rules. Indeed, when association rules of the form a ∧ b → c
and a∧ b → d cannot be found from a given database, it does
not mean that a ∧ b → c ∨ d will not be an association rule
from that database, which shall be a very useful information
in some cases. For instance, the rules expressing that when
customers buy bread they also buy butter or milk or customers
who buy either Sneakers or shoes also buy socks, would be
relevant for the sales managers as usually some products can-
not be marketed at the same time. Computing such rules can
also help sales managers understand customer behavior and
what she needs, as well as provide appropriate product com-
binations, and to make decisions to promote products.

In previous work, the authors of [Nanavati et al., 2001] de-
fined generalized disjunctive association rules by integrating
in the consequent different logical operators except the nega-
tion. In [Sampaio et al., 2008], the authors presented an al-
gorithm to enumerate disjunctive association rules where the
itemsets for the antecedent and the consequent can be a con-
junction or a disjunction of items. The main issue of this ap-
proach is the high computational complexity since it is based
on Apriori-like algorithm [Agrawal and Srikant, 1994] to
generate frequent itemsets of the disjunctive association rules.
Furthermore, Hamrouni et al. [Hamrouni et al., 2010b] intro-
duced a novel approach, called GARM, to mine disjunctive
closed patterns. Such structures are then used to derive gen-
eralized association rules employing conjunction, disjunction
and negation connectives between items. Later, the authors
in [Alharbi et al., 2014] presented an algorithm to deal with
disjunctive association rules on uncertain databases using two
minimum support thresholds. The first one is used to generate
pairs of itemsets that respect an expected minimum support,
while inducing the disjunctive itemsets that reach the second
minimum support threshold to produce k-disjunctive rules of
the form x → Y where x is an item and Y is a disjunction
of k − 1 items. Finally, the authors in [Hilali et al., 2013;
Hilali-Jaghdam et al., 2011] proposed an approach to dis-
cover association rules of the form X → Y such that X
and Y are frequent itemsets, disjoint and involving infrequent
items. The aforementioned rules are not sufficiently expres-
sive to capture interesting disjunctive relationships among
items, since they restrict the candidate pattern to be fully con-
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tained in the transactions of the database, However, in many
real data with missing items in the transactions, such require-
ment cannot be fulfilled. Moreover, discovering the afore-
mentioned kind of generalized association rules is clearly
more complex than that of classical association rules.

Recently, observing that most data mining tasks often in-
volve constraints, declarative approaches that connect data
mining with symbolic Artificial Intelligence (AI) models, in-
cluding Constraints Programming (CP), Propositional Satis-
fiability (SAT) and Answer Set Programming (ASP), have
emerged. In these frameworks, the problem is formulated
as a logical formula or a constraint network, whose solu-
tions represent the output of the mining task. In this con-
text, a number of symbolic AI approaches have been de-
signed to address a variety of mining problems, includ-
ing among others sequences mining [Jabbour et al., 2013;
Négrevergne and Guns, 2015; Gebser et al., 2016], frequent
itemsets mining [Lazaar et al., 2016; Schaus et al., 2017;
Dlala et al., 2018; Jabbour et al., 2018a; Belaid et al., 2019b;
Hidouri et al., 2021; Hidouri et al., 2022], classical [Belaid et
al., 2019a] and minimal non-redundant [Belaid et al., 2019a;
Izza et al., 2020] association rules mining, and more recently
overlapping communities detection [Jabbour et al., 2016; Jab-
bour et al., 2017; Jabbour et al., 2018b; Jabbour et al., 2020;
Jabbour et al., 2022]. The application of symbolic AI to data
mining is supported by its theoretical and algorithmic founda-
tions and the flexibility it affords, i.e., the ability to incorpo-
rate new user-specified constraints without the need to modify
the underlying algorithms.

In this paper, we propose a symbolic AI framework partic-
ularly suitable for modelling and mining a new kind of dis-
junctive patterns from transaction databases. More precisely,
we make the following major contributions:

• We present k-disjunctive support based itemsets, a gen-
eralized form of traditional itemsets by allowing the ab-
sence of up to k items in each transaction matching the
itemset. Such definition is extended to disjunctive as-
sociation rules, named (k, k′)-disjunctive support based
association rules X → Y , where X (resp. Y ) is a k-
disjunctive (resp. k′-disjunctive) support based item-
set. To find these relevant patterns, we also introduce
their associated measures (i.e., support and confidence)
to quantify their interestingness. Interestingly, the out-
put and the structure of the patterns can be managed
though an incremental setting of the parameters.

• We define a polynomial-time reduction from min-
ing k-disjunctive support based itemsets and (k, k′)-
disjunctive support association rules to the propositional
satisfiability model enumeration problem. The main
strength of our symbolic AI framework lies its ability
to separate the modeling phase from the solving stage.

• We conduct extensive experiments on different popular
real-world datasets to evaluate the efficiency of our ap-
proach to discover (k, k′)-disjunctive support based as-
sociation rules in sequential and parallel setting.

2 Technical Background
2.1 Propositional Logic and Satisfiability Problem
We assume a propositional language L built up inductively
from a countable set PS of propositional letters, the Boolean
constants ⊤ (true or 1) and ⊥ (false or 0), and the standard
logical connectives {¬,∧,∨,→,↔} in the usual way. We
use the letters x, y, z, etc. to range over the elements of PS .
Propositional formulas of L are denoted by Φ,Ψ,Γ, etc. A
literal is a propositional variable (x) of PS or its negation
(¬x). A clause is a (finite) disjunction of literals, while a
term is a (finite) conjunction of literals. A clause containing
only one literal is called a unit clause. For any formula Φ
from L, P(Φ) denotes the symbols of PS occurring in Φ. A
conjunctive normal form (CNF) formula is a (finite) con-
junction of clauses. Also, a formula in disjunctive normal
form (DNF) is a (finite) disjunction of terms.

A Boolean interpretation I of a propositional formula Φ is
a mapping from P(Φ) to {0, 1}. If I(Φ) = 1, then I is called
a model of Φ, and we write I |= Φ. Let M(Φ) denote the
set of all models of Φ. We write |=UP to denote the logical
consequence restricted to unit propagation1.

The propositional satisfiability problem (SAT) is the prob-
lem of determining whether a CNF formula admits a model
or not. At present, this widely studied NP-Complete problem
has been successfully applied in various practical settings, in-
cluding data mining [Raedt et al., 2008; Guns et al., 2017],
overlapping community detection [Jabbour et al., 2018b;
Jabbour et al., 2020], and more recently queries answering
over databases [Dixit, 2019; Bienvenu and Bourgaux, 2022].

2.2 Association Rules Mining
Let Ω denotes a universe of items (or symbols). The let-
ters a, b, c, etc. will be used to range over the elements of
the universe Ω. A classical itemset X over Ω is defined
as a subset of Ω, i.e., X ⊆ Ω. X can be seen as a con-
junction of items. We denote by 2Ω the set of all item-
sets over Ω and we use the capital letters X,Y, Z, etc. to
range over the elements of 2Ω. A transaction database D
is a finite set of pairs denoted by {(1, T1), . . . , (m,Tm)} s.t.
Ti ∈ 2Ω \ {∅} for 1 ≤ i ≤ m. Given an itemset X and
a transaction database D, the cover of X in D is defined as
C(X,D) = {(i, Ti) ∈ D and X ⊆ Ti}. The support of X
in D is then defined as Supp(X,D) = |C(X,D)|. A gener-
alized disjunctive itemset, in short GDI, is a disjunctive col-
lection of itemsets, which will be denoted by [X1, . . . , Xp].
Note that this square bracket notation is used to distinguish it
from a classical itemset [Nanavati et al., 2001]. Obviously,
a GDI [X] = [X1, . . . , Xp] can be seen as a DNF formula∨

1≤i≤p(∧a∈Xi
a). The support of a GDI in the transaction

database D is defined by the following equation:

Supp([X],D) =
|
⋃

Xi∈X C(Xi,D)|
|D|

Given a transaction database D, an association rule (in
short AR) is an implication of the form X → Y where X

1Unit propagation is a kind of inference based on resolution with
unit clauses, i.e., Φ∧x∧ (¬x∨ y1 ∨ . . .∨ yn) |=UP (y1 ∨ . . .∨ yn).
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and Y are two disjoint itemsets called the antecedent and the
consequent of the rule, respectively [Rakesh et al., 1993].
The interestingness of an AR is computed through two sta-
tistical measures, called the support and the confidence. The
support of X → Y in the database D, written as:

Supp(X → Y,D) =
Supp(X ∪ Y,D)

|D|

determines the occurrence frequency of the rule in D, and the
confidence of X → Y in D is then defined as:

Conf(X → Y,D) =
Supp(X ∪ Y,D)

Supp(X,D)

Technically, the confidence is the conditional probability of
the occurrence of the consequent of the association rule
given its antecedent. Hereafter, a generalized disjunctive
association rule (GDAR, for short) is an AR of the form
[X1, . . . , Xp] → [Y1, . . . , Yq]. When there is no ambiguity, a
GDAR [X1, . . . , Xp] → [Y1, . . . , Yq] will be simply denoted
by [X] → [Y ]. GDARs extend the expressive power of ARs
by capturing disjunctive relationships among items [Nanavati
et al., 2001]. The support and confidence constraints of a
GDAR are expressed as follows:

Supp([X] → [Y ],D) =
|
⋃

Xi∈X C(Xi,D) ∩
⋃

Yi∈Y C(Yi,D)|
|D|

Conf([X] → [Y ],D) =
|
⋃

Xi∈X C(Xi,D) ∩
⋃

Yi∈Y C(Yi,D)|
|
⋃

Xi∈X C(Xi,D)|

3 Formal Approach
Although traditional itemsets are useful patterns, they are
not sufficiently expressive to catch disjunctive relationships
among items. To discover more valuable information from
transaction databases, GDIs extend traditional itemsets by al-
lowing the disjunction among conjunctive items [Nanavati
et al., 2001]. Clearly, these two previous models share the
same requirement: they restrict the candidate pattern to be
fully contained in the transactions of the database. Due to
such over-restriction, useful knowledge may not always be
detected from data, since some relevant patterns can partially
match the transactions of the database. To alleviate such lim-
itation, we revisit the basic model of patterns to extend its
expressive power and thus enhance the relevance of knowl-
edge that can be recovered from transaction databases. For
this purpose, let us define the notions of k-disjunctive cover
and k-disjunctive support.
Definition 1. Let D be a transaction database and k a pos-
itive integer. The k-disjunctive cover of an itemset X is
Ck(X,D) = {(i, T ) ∈ D | T ∩ X ̸= ∅ and |X \ T | ≤ k}.
Then, the k-disjunctive support of X is defined as usual as:
Suppk(X,D) = |Ck(X,D)|.

Technically speaking, unlike the cover in the traditional
model of itemsets that constrains an itemset to be entirely
contained in the transaction, the k-disjunctive cover relaxes
such constraint so that a transaction can miss up to k of the
items in the itemset X (but should at least contain one of the
items). The k-disjunctive support of X determines thereby
the number of matched transactions in the database accord-
ing to the k-disjunctive cover. Obviously, if k = 0, then

Supp0(X,D) = Supp(X,D). Interestingly, for a given item-
set X one can deduce a GDI parameterized by k, in short
k-GDI, as [X1, X2, . . . , Xp] where Xi = [X ∩ Ti | (i, Ti) ∈
Ck(X,D)].
Proposition 1. Let D be a transaction database, and k, l two
positive integers. Deciding whether there exists an itemset X
s.t. |X| ≥ l and Suppk(X,D) = |D| is NP-complete.

Based on the k-disjunctive support, we can determine how
interesting an itemset is, as we show next.
Definition 2. Let D be a transaction database and α > 0
a support threshold. Then, an itemset X is called a k-
disjunctive support based frequent itemset (k-DSFI, for
short) if and only if Suppk(X,D) ≥ α.

Intuitively, Definition 2 states that an itemset is frequent
w.r.t. the k-disjunctive support if it meets a minimum sup-
port threshold. We say also that an itemset X is closed
w.r.t. the k-disjunctive support if and only if for all X ⊂ Y ,
Suppk(Y,D) < Suppk(X,D).

Proposition 2 shows that finding a k-disjunctive support
based frequent itemset of size at least l is NP-complete.
Proposition 2. Let D be a transaction database, k, l two pos-
itive integers, and α > 0 a minimum support threshold. De-
ciding whether there exists a k-DSFI X in D s.t. |X| ≥ l is
NP-complete.

Now, we are able to extend the generalized form of itemset
cover introduced previously to the association rule setting.
Definition 3. Let D be a transaction database, and k, k′ two
positive integers. We define the (k, k′)-disjunctive support
and (k, k′)-disjunctive confidence of an AR X → Y as:

Suppk,k
′
(X → Y,D) =

|Ck(X,D) ∩ Ck′
(Y,D)|

|D|

Confk,k
′
(X → Y,D) =

Suppk,k
′
(X → Y,D)

Suppk(X,D)

Similarly to itemsets, for a given association rule X →
Y one can deduce a GDAR w.r.t. the parameters k and k′,
written as follows:

[X ∩ T | T ∈ Ck(X,D)] → [Y ∩ T | T ∈ Ck′
(Y,D)]

Next, an association rule X → Y is closed w.r.t. the
(k, k′)-disjunctive support constraint iff there is no associa-
tion rule X ′ → Y ′ such that the following conditions hold:

1. X ⊆ X ′, Y ⊆ Y ′, and X ∪ Y ⊂ X ′ ∪ Y ′,
2. Suppk,k

′
(X → Y,D) = Suppk,k

′
(X ′ → Y ′,D).

It is important to note the following result.
Property 1. Let D be a transaction database, X → Y an
AR, and [X ′] → [Y ′] the GDAR associated to X → Y .
Then, Suppk,k

′
(X → Y,D) = Supp([X ′] → [Y ′],D) and

Confk,k
′
(X → Y,D) = Conf([X ′] → [Y ′],D).

Definition 4. Let D be a transaction database, α > 0 a min-
imum support threshold, and β > 0 a minimum confidence
threshold. Then, an AR X → Y is a (k, k′)-disjunctive sup-
port based valid AR ((k, k′)-DSVAR, for short) if and only
if Suppk,k

′
(X → Y,D) ≥ α and Confk,k

′
(X → Y,D) ≥ β.
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A (k, k′)-DSVAR requires two input parameters k and k′ to
control the number of missing items in transactions. Notably,
by varying these two parameters, one can increase or decrease
the number of items forming the antecedent or the consequent
of a (k, k′)-DSVAR. Obviously, if k and k′ are both set to
0, then a (k, k′)-DSVAR simply corresponds to a classical
association rule.

Once again, we stress that our more fine-grained approach
is general enough to encompass traditional models of pattern
as a particular instance, by properly setting the parameters k
and k′. The next corollary follows from Proposition 2.
Corollary 1. Let D be a transaction database, k, k′, l, l′ pos-
itive integers, and α > 0 (resp. β > 0) a minimum support
(resp. confidence) threshold. Deciding whether there exists
a (k, k′)-DSVAR X → Y in D s.t. |X| ≥ l and |Y | ≥ l′ is
NP-complete.
Example 1. Consider the transaction database D depicted
in Table 1. For α = 4 and k = 1, X1 = {a, b, c, d},
X2 = {a, c, e}, and X3 = {f, g, h, i} are 1-DSFIs. The
GDIs representations of X1, X2, and X3 are respectively:
[{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}],
[{a, c}, {a, c, e}, {a, e}], and
[{g, h, i}, {f, g, h, i}, {f, g, i}, {f, g, h}].
Also, we have the following (1, 1)-DSVARs: r1 = {d, e} →
{a, b, c} and r2 = {f, h} → {g, i}. The corresponding
GDARs of r1 and r2 are respectively:

r1 : [{d}, {e}, {d, e}] → [{a, b, c}, {a, b}, {a, c}, {b, c}]
r2 : [{f}, {h}, {f, h}] → [{g}, {i}, {g, i}]

with Supp1,1(r1,D) = Supp1,1(r2,D) = 4
9 ,

Conf1,1(r1,D) = 4
7 , and Conf1,1(r2,D) = 4

6 .

tid Itemset
t1 b c d
t2 a c d
t3 a b d e
t4 a b c e f
t5 a c f h
t6 d e g h i
t7 e f g h i
t8 e f g i
t9 f g h

Table 1: A sample database D

Problem Definition. Given a transaction database D, and
two positive integers k and k′, in the forthcoming subsections
our main objective is to mine the set of all (closed) k-DSFIs
and (closed) (k, k′)-DSVARs that meet the minimum support
and confidence constraints. We shall refer to these two prob-
lems as CDSFIMk, and CDSVARMk,k′ , respectively.

3.1 Symbolic Encoding of the CDSFIMk Problem
Given a transaction database D, a minimum support thresh-
old α (expressed in percentage), and a positive integer k, our
focus is to find the set of all closed k-DSFIs supported by at
least α transactions in D. In this subsection, we describe a
new symbolic encoding for the CDSFIMk problem. Our key
idea is to encode the task of CDSFIMk into a CNF proposi-
tional formula whose models correspond exactly to the set of

closed k-DSFIs in D. That is, the CDSFIMk problem will be
reduced to the problem of computing all models of an under-
lying CNF formula. Notice that the distinction between the
modeling and the solving step offers a straightforward way
to evolve the specification of the problem, by simply adding
new constraints to the symbolic encoding. Besides, the solv-
ing step can be constantly optimized through further improve-
ments performed by the symbolic AI community. In fact, re-
cent breakthrough in the efficiency of propositional satisfia-
bility solving technology opens an avenue for encoding vari-
ous realistic applications to SAT. However, keep in mind that
the problem encoding might have a great impact on the effi-
ciency of the solving phase. The challenge is thus to provide
the most appropriate encoding combining efficiency and suc-
cinctness, while ensuring correctness and completeness. This
requires clearly a judicious choice of propositional variables
and logical constraints as well as their reformulation in CNF.

Next, we present our symbolic encoding for CDSFIMk as
follows. First, to establish a one-to-one mapping between the
models of the symbolic encoding and the set of (closed) k-
DSFIs, each item a ∈ Ω (resp. each transaction (i, Ti) ∈
D) is associated with a propositional variable xa (resp. qi).
Second, we introduce the constraints allowing us to obtain the
propositional formula for the CDSFIMk problem.
Cover constraint. The first constraint is the cover con-
straint expressed as follows:∧

(i,Ti)∈D

(qi ↔ (
∑

a∈Ω\Ti

xa ≤ k)) (1)

Constraint (1) ensures that a transaction Ti supports the k-
DSFI X when up to k items of X are not in Ti. This
constraint is a conjunction of the so-called conditional car-

dinality constraints of the from y →
n∑

i=1

xi ≤ k. It gen-

eralizes the well-known cardinality constraints that naturally
arise in different propositional encoding of real-world prob-
lems. Several encodings have been designed to translate (con-
ditional) cardinality constraints into CNF (e.g. [Sinz, 2005;
Eén and Sörensson, 2006; Bailleux et al., 2006; Boudane et
al., 2018]).
Frequency constraint. Now, to constrain the candidate
itemset to be a k-DSFI, i.e., to cover at least m × α trans-
actions, we add the following cardinality constraint:

m∑
i=1

qi ≥ m× α (2)

Closure constraint. Moreover, we introduce the closure
constraint allowing us to complete our symbolic encoding of
the CDSFIMk problem. This constraint provides the condi-
tion under which a k-DSFI is closed.∧

a∈Ω

(¬xa →
∨

(i,Ti)∈D,a ̸∈Ti

(qi ∧
∑

b∈Ω\Ti

xb = k)) (3)

Intuitively, Constraint (3) simply asserts that an item a cannot
be included in the candidate k-DSFI if its addition violates the
cover constraint in at least one transaction. We illustrate the
closure constraint with the following example.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

2136



Example 2. In Table 1 and for k = 2, the closure constraint
over the item e is as follows:

¬xe → (q1 ∧ (xa + xf + xg + xh + xi = 2)) ∨
(q2 ∧ (xb + xf + xg + xh + xi = 2)) ∨
(q5 ∧ (xb + xd + xg + xi = 2)) ∨
(q9 ∧ (xa + xb + xc + xd + xi = 2))

Recall that the k-DSFI relaxes the core property of classi-
cal itemsets that requires the full matching of the itemset with
a transaction to be in its cover. Then, to find more useful k-
DSFIs one can require that each item appears at least γ times
in the itemset. Such constraint can be simply expressed as:∧

a∈Ω

(xa →
∑

(i,Ti)∈D | a∈Ti

qi ≥ γ) (4)

Proposition 3. The propositional formula Φα,γ
CDSFIMk

= (1) ∧
(2)∧(3)∧(4) encodes the problem of mining closed k-DSFIs
in D where each item appears γ times.

Interestingly, Proposition 3 shows that there exists a one-
to-one mapping between the models of the propositional
formula Φα,γ

CDSFIMk
and the closed k-DSFIs induced from D

where each item appears γ times.

3.2 Symbolic Encoding of the CDSVARMk,k′
Problem

This subsection presents a polynomial-time reduction from
mining closed (k, k′)-DSVARs to the problem of enumerat-
ing the models of a CNF formula. First, we use two disjoint
sets of propositional variables, namely xa and ya, ∀a ∈ Ω, to
model the antecedent X and the consequent Y of the (k, k′)-
DSVAR X → Y . Similarly, the sets {p1, . . . , pm} and
{q1, . . . , qm} are introduced to capture the disjunctive sup-
port of X and X → Y , respectively.
Our approach relies also on numerous logical constraints, de-
picted in Figure 1, to model the problem of computing (k, k′)-
DSVARs. Specifically, the first Constraint (5) excludes the
same item to belong to both X and Y . Constraints (6) and
(7) simply encode the supports of X and Y . In addition, for-
mulas (8) and (9) express the support and the confidence of
the (k, k′)-DSVAR. Constraint (10) enforces that each item
appears in at least γ transactions. Last, the closure constraint
can be expressed through Constraint (11).
Proposition 4. Let D be a transaction database, α (resp. β)
a minimum support (resp. confidence) threshold, and k, k′

two positive integers. The formula Φα,β,γ
CDSVARMk,k′ = (5)∧(6)∧

(7)∧(8)∧(9)∧(10)∧(11) encodes the computation of closed
(k, k′)-DSVARs in D s.t. each item appears at least γ times.

The propositional formula Φα,β,γ
CDSVARMk,k′ involves (condi-

tional) cardinality constraints (see Figure 1). As mentioned
above, these constraints can be translated into CNF. The pre-
vious symbolic encoding is polynomial, making our approach
of closed (k, k′)-DSVAR mining problem polynomial in the
size of the transaction database D. Fortunately, although the
encoding of the conditional cardinality constraints (e.g., Con-
straints 7, 10, 11), the number of variables and clauses of our
encoding is polynomial w.r.t. the number of items (n) and the
number of transactions (m) in the database.

Next, we will consider the computation of a special kind of
(k, k′)-DSVAR when k = 0. Specifically, the aim is to find
the set of (closed) (k, k′)-DSVARs that give rise to GDARs
of the form X → [Y1, . . . , Yp]. This kind of rules is always
considered in the literature (e.g. [Hamrouni et al., 2010a;
Alharbi et al., 2014]), and it allows to discover more interest-
ing relations between variables in transaction databases. In
what follows, when there is no ambiguity, a (0, k′)-DSVAR
will be simply denoted by k′-DSVAR.

4 Experimental Evaluation
We now present the experiments carried out to assess the ef-
ficiency of the approach described in the paper. For this, we
study the running time for computing the set of closed k′-
DSVARs in sequential and parallel setting. Our approach is
implemented in the C++ language top-on the well-known sat-
isfiability solver MiniSAT [Eén and Sörensson, 2002], which
is adapted as a non-blocking clause model enumeration pro-
cedure. The pigeon-hole encoding [Jabbour et al., 2014;
Boudane et al., 2018] is applied to translate the different
(cardinality) constraints into CNF. We also employ the appli-
cation programming interface OpenMP that supports multi-
platform shared memory multiprocessing programming in C
and C++ languages. To increase efficiency, we adopt a de-
composition technique similar to the the one defined in [Izza
et al., 2020]. The encoding is partitioned by considering dif-
ferent sub-problems Φ1, . . . ,Φn, where Φi = Φα,β,γ

CDSVARMk,k′ ∧
xai ∧

∧
j<i ¬xaj where Ω = {a1, . . . , an}.

4.1 Experimental Setup
Our experiments were performed on a Linux machine with
Intel Xeon quad-core processors and 32GB of RAM running
at 2.66 GHz. For all runs, time-out and memory-out were set
to 2 hours and 10 GB, respectively. We use a set of datasets
coming from the FIMI2 repository. We also fix the minimum
confidence threshold β to 95%3 while the value of γ is iden-
tical to α. Note that numerous minimum support values are
tested w.r.t. the size of datasets. We did not perform any
comparative evaluation since the baselines [Hamrouni et al.,
2010a; Alharbi et al., 2014] are limited to specific rules in-
volving only a disjunction of items in the consequent of rules.

For the empirical evaluation, we perform two types of ex-
periments. In the first experimental study, we perform a
sequential comparison to compute the set of all closed k′-
DSVARs. In the second experimental evaluation, we carry
out a parallel evaluation to find all closed k′-DSVARs while
changing the number of cores used for the computation.

4.2 Sequential Evaluation
Table 2 contains closed k′-DSVARs mining results. It reports
the number of closed k′-DSVARs (#k′-CDSVARs) and the
total CPU time (in seconds) for each dataset with different
values of k′ (between 0 and 4), and by varying α. We also
use the symbol ”–” to mention that the approach is not able
to scale on the set of all closed k′-DSVARs under the time

2http://fimi.ua.ac.be/data/
3Similar results were observed when β is set to 85% and 90%.
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Figure 1: SAT Encoding Scheme for closed (k, k′)-DSVARs Mining

Instance α
k’=0 k’=1 k’=2 k’=3 k’=4

#0-CDSVARs time(s) #1-CDSVARs time(s) #2-CDSVARs time(s) #3-CDSVARs time(s) #4-CDSVARs time(s)

chess
3196, 75

75% 287183 8.43 11191898 649.83 48078061 3164.66 80848542 4777.37 85301308 4926.95
80% 109356 2.76 3488808 149.73 8110917 342.628 8817802 361.38 8818493 356.76
85% 32201 0.70 778548 23.14 1275841 37.84 1276771 37.13 1276771 36.82
90% 6471 0.16 85483 2.13 94152 2.37 94152 2.34 94152 2.33
95% 539 0.05 1358 0.06 1358 0.06 1358 0.06 1358 0.06

mushroom
8124, 112

20% 20062 3.08 107894 91.29 535763 1271.64 – – – –
25% 4504 1.81 30186 26.41 161307 244.89 971009 1895.89 – –
30% 2688 0.60 15800 8.42 67367 64.15 322975 323.41 1363490 1180.99
35% 1424 0.43 7753 4.98 35956 35.31 175211 166.04 660736 497.63
40% 576 0.32 3143 2.03 15220 10.81 59547 32.74 159198 60.39

pumsb
49046, 7117

89% 50321 49.26 4132701 7010.22 – – – – – –
90% 30202 38.48 2116159 2300.65 4718682 4393.83 5983488 5183.34 6012634 5122.55
91% 17662 31.76 1041036 977.62 2071177 1631.89 2557882 1858.79 2571349 1864.72
92% 9630 25.76 430130 477.98 438667 523.63 438667 518.18 438667 501.55
93% 4931 20.33 210517 208.91 212549 210.37 212549 206.27 212549 202.29
94% 2448 19.15 83100 79.57 84093 78.95 84093 77.14 84093 80.23

connect
67557, 129

91% 407225 217.18 – – – – – – – –
93% 159895 91.60 4652371 3625.45 5653940 4422.61 5653940 4486.13 5653940 4370.51
95% 40579 19.14 1018059 709.92 1169408 798.10 1169408 789.23 1169408 785.37
97% 5974 5.14 27885 16.08 27885 15.57 27885 15.47 27885 16.12

retail
88162, 16470

1% 172 29.30 386 143.03 1204 1260.06 – – – –
2% 60 24.85 141 32.76 279 59.37 530 110.65 922 165.38
3% 35 23.43 76 26.17 140 29.28 214 28.93 271 26.19
4% 18 22.14 43 22.87 65 22.76 76 22.24 78 23.78
5% 16 21.75 39 22.43 57 22.34 66 21.81 68 21.58

T10I4D100K
100000, 870

0.3% 9335 29.69 27336 1237.02 – – – – – –
0.4% 2993 19.51 7877 109.84 13813 710.16 32168 2952.36 – –
0.5% 1249 16.61 2713 29.76 4257 78.62 7208 179.95 12571 364.41
0.6% 855 15.31 1485 18.41 2051 24.60 2692 30.38 3338 32.19
0.7% 661 14.20 1013 14.70 1174 14.80 1258 14.53 1282 14.03
0.8% 500 13.45 606 13.76 677 13.61 709 13.41 716 13.35

T40I10D100K
100000, 942

1% 1407877 4955.20 – – – – – – – –
2% 2293 193.45 – – – – – – – –
3% 793 63.31 1407 1967.77 – – – – – –
4% 440 43.98 568 109.18 1282 791.32 6735 5833.62 – –
5% 316 37.22 346 41.61 429 65.39 716 123.98 1431 220.83
6% 316 31.51 239 31.89 249 32.13 259 31.77 269 31.50

Table 2: Experimental results for mining closed k′-DSVARs (0 ≤ k′ ≤ 4) for representative sample of datasets

limit. As one can observe from Table 2, the time needed to
compute the set of closed k′-DSVARs increases continuously
with the parameter k′. This can be explained by the fact that
relaxing the cover constraint increases the number of closed
k′-DSVARs. Such relaxation can also lead to more conflicts
when finding all models of the underlying CNF formula. An-
other observation that can be made is that for k′ > 0 more
variables are needed to encode Constraints (5), (6), etc. For
instance, for chess data and α = 75%, the number of classi-
cal association rules (i.e., k′ = 0) is equal to 287183, while
this number is close to 85 millions for 4-CDSVARs (k′ = 4).
For the chess solving time, it passes from 8.43 seconds for

k′ = 0 to about 5000 seconds for k′ = 4. Similar behavior is
observed across all datasets with different α values.

4.3 Parallel Solving
In the second part of our empirical evaluation, we extended
our approach for computing closed k′-DSVARs in parallel. In
fact, as shown in [Izza et al., 2020], the decomposition tech-
nique generates independent sub-problems that can be han-
dled on a multi-core shared memory machine. We perform
similar experiments by using 1, 2 and 4 cores and varying
k′ from 1 to 10 to see how the performance of our approach
varies. We also consider different threshold values in our par-
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Figure 2: Parallel solving for a representative sample of datasets

allel implementation. Figure 2 shows the empirical results for
a representative sample of datasets. As expected, the parallel-
based approach allows to reduce significantly the running
time needed to discover all closed k′-DSVARs. For instance,
with a single core, the running time exceeds 1000 seconds
to mine the closed 6-DSVARs in the mushroom dataset with
α = 35%. When the number of cores is more than one, this
task is achieved while reducing the running time (800 seconds
and 540 seconds for 2 and 4 cores, respectively). Moreover,
the time needed to extract all closed k′-DSVARs for the large
dataset T40I10D100K, with α = 6%, is reduced from 31.50
seconds with a single core to less than 9 seconds with 4 cores.
This observation remains valid for the different values of k′.
In addition, it is worth noticing from Figure 2 that the per-
centage of gain is more remarkable by varying the number of
cores from 1 to 2 rather than from 2 to 4. The unique excep-
tion is the dataset T40I10D100K with α = 5%. This is due to
the fact that the decomposition is applied before the solving
process and no dynamic method is employed to control the
load balancing. Consequently, the time needed by the cores

to handle their assigned sub-tasks is generally different.

5 Conclusions and Future Work
In this paper, we have presented disjunctive support based
patterns, a generalization of traditional patterns by allowing
the absence of up to k items in each transaction supporting
the pattern. We also designed a new symbolic encoding for
closed k-DSFIs and (k, k′)-DSVARs mining problems using
propositional logic. We proved that our polynomial encoding
allows to control the rules by varying the two parameters k
and k′. An extensive campaign of experiments carried out
over different real-world datasets has shown the efficiency of
our approach to compute (k, k′)-DSVARs.

Different research directions can improve the present work.
First, our framework can be extended for mining minimal
non-redundant (k, k′)-DSVARs. Furthermore, as shown in
the paper, relaxing the cover constraint leads to more difficult
problems. Our goal is then to improve the efficiency of our
approach by considering some pre-processing techniques.
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